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a Puzzle

Your friend claims to have a 3 x 3 x 3 array of numbers, such that when
adding 3 of the numbers along vertical lines or any horizontal row or column
you get the numbers shown below:

2/1/3 1
s /2 /2 /1/2
3| 1] 2|* 3/3
2
5 | 1| 2 5
5
2| 2| 3

We have a cubical array of 27 seven numbers and the 27 line sums are
fixed. Is your friend telling the truth? How to tell?
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Zen Meditation

e The answer will depend on the kind of numbers she is using!! This
suggests three interesting variations of linear algebra.

e Problem A: Given a rational matrix A € Q™*™ and a rational vector
b€ Q™. Is there a solution for the system Ax = b, x > 0, i.e. a solution
with all non-negative entries? If yes, find one, otherwise give a proof of
infeasibility.

e Problem B: Given an integral matrix A € Z™*™ and an integral vector
be Z™. Is there a solution for the system Ax =0b, x >0, x € Z"7 i.e.
a solution using only non-negative integer entries? If yes, find a solution,

otherwise, find a proof of infeasibility.

e Which of the two problems is harder in practice?
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Lattice Point Problems

Given a subset X of R?, there are a number of basic problems about lattice
points:

e Decide whether X NZ< is non empty.
e |f X is bounded, count how many lattice points are in X.

e Given a norm, such as the [, or [, norms, find the shortest lattice vector
of X.

e Given a linear functional ¢ - x we wish to optimize it over the lattice
points of X, i.e. find the lattice point in X that maximizes (minimizes)
cx.
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e Given a polynomial f(x) € Z[xy,...,z4], find y € X N Z¢ which
maximizes the value f(y).

e How to generate a lattice point in X uniformly at random?

e Find a Hilbert bases for a polyhedral cone X.

We present an algebraic-analytic point of view:

GENERATING FUNCTIONS!!
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COUNTING LATTICE POINTS:
BARVINOK's ENCODING
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The Generating Function Encoding
Given K C R we WANT to compute the generating function

f(K) = Z 21 252 L 20,

acKNzd

Think of the lattice points as monomials!!!  EXAMPLE: (7,4,-3) is

7,4,—3
2{%9%3 °.

f(K) has inside all lattice points of K. But it is too long! In fact, this is
an infinite formal power series if K is not bounded, but if K is a polytope
it is a (Laurent) polynomial.

We need a SHORT REPRESENTATION!!!
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BARVINOK's ANSWER:

When K is a rational convex polyhedron, i.e. K = {x € R"|Ax =
b, Bx <}, where A, B are integral matrices and b, b’ are integral vectors,
The generating function f(K), and thus ALL the lattice points of the
polyhedron K, can be encoded in a “short” sum of rational functions!!!

EXAMPLE 1: Suppose my polyhedron is the infinite half-line P = {z|z >

0}

=
.73 -2-101 2 34 56 7...

1

f(P):l—l—z—l—z2+z3—|—...:1 .
— 2
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Example 2
Let P be the square with vertices V3 = (0,0), Vo = (5000,0), V3
(5000, 5000), and V4 = (0, 5000).

(0,5000): « (5000, 500

©0  (5000,0)

The generating function f(P) has over 25,000,000 monomials, f(P) =
1+ 21 4 20+ 2125 + 220 + - - - + 2200025000,
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But it has only four rational functions in its Barvinok’s encoding.

1 215000 225000 215000225000

I—)(-2) 0-aD(-2) 0-ml-2) 0-n -2
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Barvinok’s Original Algorithm (1993 Barvinok)

Assume the dimension d is fixed. Let P be a rational convex d-dimensional
polytope. Then, in polynomial time on the size of the input, we can write

the generating function f(P) = ) cpnza2”. as a polynomial-size sum of
rational functions of the form:

ZE’L' d - o (1)

where I is a polynomial-size indexing set, and where E; € {1,—1} and
Ui, Vij € 7 for all i and j.

We present a version for cones because to count lattice points for
polytopes is...
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Enough to do it for CONES

Set your polytope P inside the hyperplane ¢ = 1. What we want is the
generating function of the lattice points in the cone.

=1

Y
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Enough to do it for SIMPLE CONES

By the INCLUSION-EXCLUSION principle, we can just add the
generating functions of the simplicial pieces!
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Simple Cones are Easy
For a simple cone K C R4

ZuEHﬂZd z*
(1 —2ze)(1 —z%2)...(1— z¢)

fK) =

IT is the half open parallelepiped {x|r = a1c1 + -+ 4+ ageq, 0 < o < 1}.

/
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Example
In this case, we have d = 2 and ¢; = (1,2), co = (4,—1). We have:

 mt izt A tantiat+aiti+a+l
(1—2123)(1 — 223 ") |

f(K)
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Barvinok’s cone decomposition lemma

Theorem [Barvinok| Fix the dimension d. Then there exists a polynomial
time algorithm which decomposes a rational polyhedral cone K C R? into
unimodular cones K; with numbers ¢; € {—1,1} such that

f(K) = ZE’Lf(KZ) ] < oo.

el

Main idea Triangulation is TOO expensive, allow simplicial cones’s rays to
be outside the original cone. Rays are short integer vectors inside a convex
body, apply Minkowski's theorem!
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Minkowski’s Theorem

First Minkowski’s Theorem: Let A C R"™ be a lattice, K C R™ be a
convex set compact centrally symmetric set (i.e., x € K = —x € K) with
vol(K') > 2™ det(A). Then K must contain a non-zero lattice point u.
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Step 1

a = (det(U1l U2))%
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SUMMARY of Barvinok Algorithm for cones

Input is a full-dimensional convex rational convex pointed cone K in R
specified by linear inequalities and linear equations.

1. We triangulate K and reduce everything to simple cones 01,09, ..., 0.
Polynomially many because of FIXED dimension.

2. Apply Barvinok’'s decomposition of o; into unimodular cones. We get a
signed unimodular cone decomposition of K.

3. Retrieve a signed sum of multivariate rational functions, one per cone,
. . N
which represents the series ) zm 7%
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EXAMPLE

For the triangle o with vertices Vy = (—1,—-1), Vi = (2,—1), and
Vo = (—1,2) we have
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Counting Lattice Points FAST!

LEMMA: The number of lattice points in P is the limit when the vector
(1,...,2y,) goes to (1,1,...,1).

TROUBLE: The vector (1,1,...,1) is a pole in all the rational functions, a
singularity, because the Barvinok rational functions are

ZCL

[T, (1= 2p)
HOW TO COMPUTE THIS LIMIT??77
Shall | expand into monomials???

The singularity gets resolved that way...right?
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NO WAY!

Never fully expand the rational

functions into ALL monomials!

UME

RICAL COMPLEX ANALYSIS 101

_LUA

'E THE RATIONAL FUNCTIONS!
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Computation of Residues for rational functions
This reduces to computing a residue at a pole 2.

If f(2) = 02 an(z — 20)¥, the residue is defined as

Res(f(z9)) = a_1.

p(2)
q(z)’

Given a rational function f(z) = and a pole zy we use

THEOREM Henrici's Algorithm for the residue: If p(z),q(z) have degree
no more than d, then residue at zg can be computed in no more than 0(d?)

arithmetic operations.
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Algorithm
(CASE 1) If z is a simple pole is TRIVIAL, then Resf(zy) = &2

— q'(z0)"

(CASE 2) Else zj is a pole of order m > 1,
(A) Write f(z) p()

— G—20)"q1(2)°

(B) Expand p, g1 in powers of (z — zq)

p(z) = ag+ai(z — 20) +as(z — 20)° + ... q1(2) = bg+bi(z — z) +
b2(2—20)2—|—...

(C) The Taylor expansion of p(z)/q1(z) at zg is co+ c1(z — 20) + c2(2z —
20)% + c3(z — 29)° + ... where

a 1
co = 32, and ¢, = g-(ar — bick—1 — bacg—2 — - - — byco)

(D) OUTPUT Res(f(z0)) = ¢m—1.
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Monomial Substitution

Lemma: Let us fix k&, the number of binomials in the denominator of a
rational function. Given a rational function sum g of the form

where u;, v;; are integral d-dimensional vectors, and a monomial map
Yy : C* — C? given by the variable change z; — zi“zé” ... zkn whose
image does not lie entirely in the set of poles of g(x), then there exists a
polynomial time algorithm which, computes the function g(¢(z)) as a sum
of rational functions of the same shape as g(z).
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Corollary: Random Generation of Lattice Points

How to pick a random lattice point? Markov chain methods have been
around for some time, but they work on some “roundness” assumptions!!
Not working well for all polytopes! (work by Dver, Frieze, Kannan, Lovasz,
Simonovits and others)

THEOREM (Barvinok-Pak) Let P be a convex rational polytope in R
Then using O(d?log(size(P))) calls to Barvinok's counting algorithm, one
can in polynomial time can sample uniformly from set P N Z<.
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Boolean operations on rational functions

Lemma: Let Si,5 be finite subsets of Z™ and let f(S1,z) and f(S2, )
be the corresponding generating functions, represented as short rational
functions with at most k& binomials in each denominator. Then there exist
a polynomial time algorithm, which, given f(S;, x), computes

2

o (1 — xvis)

x
50805 = Ty

€1
with s < 2k and ~; rational numbers, u;, v;; nonzero integers.

Same with finite unions or complements!
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The Projection Lemma
Lemma Consider a rational polytope P C R™ and a linear map T :

Z"™ — ZF. There is a polynomial time algorithm which computes a short
representation of the generating function f(T(P NZ"), x)

zlz% + z%zg + zfzg’ + z{’zg + zi:’z% projects to  z1 + z?f + zf + zir’
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Polynomial Evaluation Lemma

Lemma: Given a Barvinok rational function f(.5), representing a finite set
of lattice points S, and a polynomial g with integer coefficients we can
compute, in time polynomial on the input size a Barvinok rational function
for the generating function

f(S,9,2) => gla)z".

NOTE: This is independent of the degree of g.
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Differential Operators give the coefficients:

We can define the basic differential operator associated to f(x) = z,

zra%- Z 2% = Z zr—z Z o2

ac PNza ac PNza ac PNZd

Next if f(2) = c¢- zlﬁl C zgd, then we can compute again a
rational function representation of gp ¢(2) by repeated application of basic
differential operators:

) B o Bd 5
() () o
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Dilations of Polyhedra
Let P be a convex polytope in R%. For each integer n > 1, let

nP = {nqlq € P}
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Ehrhart Counting function
For P a d-polytope, let

i(P,n) = #(nPNZL) =#{qe P |ng € 2%}

This is the number of lattice points in the dilation nP.

Similarly if P° denotes the of P.

i(P°,n) =#{qge P— 0P| nqgecZ%
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Example 1: Cubes

D S S S

P 3P

i(Pn) = (n+ 1) i(P°n) = (n— 1)’
In general for a d-dimensional unit cube we have i(P,n) = (n + 1)¢
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Example 2

Let P be the tetrahedron

(1,1, 13)

Then

13 1
i(Pon) = Fn3+n2 — 6n+ 1

WARNING: The coefficients of Ehrhart polynomials can be negative!

— Lattice Points —
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Example 3: MAGIC SQUARES polytopes

WARNING: The theory for polytopes with fractional vertices is more
complicated.

. o 2 :
We can consider the convex polytope inside R™ of magic n X n squares
of magic sum 1. For example, for n = 3 the vertices are

1/3 0 [2/3 2/3 011/3 O |2/31/3 [1/32/13 O
2/31/310 011/3 2/3 2/311/3 0 0 |11/3 2/3

0 |2/3 1/ 1/32/30 13 0 (2/3] |23 0 |1/3

In this case the Ehrhart counting function is not a polynomial, it is a
quasipolynomial!

262 4 2541 if 3s
' _J 09 3 !
i( P, s) { 0 otherwise,
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Ehrhart-Macdonald Theorem

Theorem (E. Ehrhart 1962, |I. Macdonald 1963)

Let P be a full dimensional rational polytope. Then i(P,n) is univariate
quasipolynomial, the Ehrhart quasipolynomial of P, in the dilation variable
n and of degree dim(P) whose leading term on each quasipolynomial piece
equals the volume of P.

Moreover, when the coordinates of the vertices of P are integers i( P, n)
is a polynomial.
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A Generalized version

Theorem Let P be a convex rational d-polytope. Let f be any homogeneous
polynomial function in Z[z1, 2o, ..., x4 of degree D. Then the counting
function

ipg(n)= Y fla)
aEnPNZY,

is a quasipolynomial of degree d + D with rational coefficients on the
variable n. lts leading coefficient equals the integral of f over the polytope

P.
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Example

Suppose the polytope P is the unit square [0,1]?, and that f(x,y) is of
the form z¥y*. Then

i(P,n) =n*+2n+1=(n+1)

i(P,xy,n) =1/4n* +1/2n% + 1/4n?
13
i(P,z%y%,n) =1/9n% +1/3n° + %n‘l +1/6n° +1/36n°
i(P, 2%y, n) =1/16n® +1/4n" +3/8n° +1/4n° +1/16n*
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LattE

e Our goal was to implement and develop algebraic-analytic algorithms.
Current Members: JDL, M. Koppe, B. Dutra.

e First implementation of Barvinok's encoding algorithm.  Software
implemented in C4++.

e \We used also libraries from CDD, NTL.

e We wuse BOTH geometric computing AND symbolic-algebraic
manipulations!!
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VISIT:

www.math.ucdavis.edu/~latte

with lots of nice stuff about lattice points on polytopes...

THANK YOU!
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