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Le Menu

PARAMETRIC POLYTOPES

MULTIVARIATE EHRHART’s THEORY

GENERALIZATIONS AND YOUR CREDIT CARD!

HILBERT and GRAVER BASES.
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THE PROBLEM!!!
Given a polytope, P = {x|Ax = b, x ≥ 0},

COUNT HOW MANY LATTICE POINTS are inside P .

x

y

z

A=[3,5,17]   

φA(b) = #{(x, y, z)|3x + 5y + 17z = b, x ≥ 0, y ≥ 0, z ≥ 0}
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More general...
Let

φA(b) = #{x : Ax = b, x ≥ 0, x integral}.

It counts the number of lattice points inside convex polyhedra with
fix matrix A.

1. (APPLIED MATHEMATICIAN) Fast exact evaluation of φA(b) for fixed
values of b. or compute a “short” representation of φA(b).

2. (PURE MATHEMATICIAN) To compute explicit exact formulas in terms
of the parameters bi.
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EXAMPLE When A = [3, 5, 17], a short formula for φA(b) would be a
generating function!

∞
∑

n=0

φA(n)tn =
1

(1 − t17) (1 − t5) (1 − t3)
.

From that, you can see that φA(100) = 25, φA(1110) = 2471, etc...

Disclaimers: Whenever I say counting, I mean EXACT COUNTING.
There is a rich and exciting theory of estimation and approximation, but
that is not us!

We really care to get this rational functions In PRACTICE!!
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Jesús De Loera

MOTIVATION
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Combinatorics
Many discrete structures can be counted this way: e.g. matchings on

graphs, Hamiltonian cycles, t-designs, linear extensions of posets, MAGIC
squares:

5

12 0 5 7

0 12 7 5

7 5 0 12

5 7 12 0

QUESTION:HOW MANY 4 × 4 magic squares with sum n are
there? Call this number M4×4(n).
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The possible tables are non-negative integer solutions of the system of
equations: Four equations, one for each row sum and column sum. For
example,

x11 + x12 + x13 + x14 = 24, first row
x13 + x23 + x33 + x43 = 24, third column
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Generating Function Formulas

The problem we have is equivalent to determining a short expression for
∑∞

n=0 M4×4(n)tn.

Because we are dilating a polytope, as we increase the magic sum n,
one can prove the following theorem:

Theorem The number of 4×4 magic squares with magic sum n has a toric
rational generating function:

t8 + 4 t7 + 18 t6 + 36 t5 + 50 t4 + 36 t3 + 18 t2 + 4 t + 1

(−1 + t)
4
(−1 + t2)

4
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Compiler Design
How often is a certain instruction I of the computer code executed?
Example:

void proc(int N, int M)

{

int i,j;

for (i=2N-M; i<= 4N+M-min(N,M), i++)

for(j=0; j<N-2*i; j++)

I;

}

{(i, j) ∈ Z
2|i ≥ 2N−M, i ≤ 4N +M−min(N, M), j ≥ 0, j−2i ≤ N−1}
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Algebra and Number Theory

Number Theory Relations to the theory of partitions, Geometry of
Numbers. For example, Frobenius problem: Given relatively prime a1, ..., an

what is the highest value of N for which a1x1 + · · · + anxn = N, xi ≥ 0 is
integral INFEASIBLE.

Representation Theory: The calculation of multiplicities and tensor
product multiplicities for decomposition of representations into irreducible
representations are given by Gelf’and-Tsetlin polytopes, Hive Polytopes
(Knutson-Tao), Berenstein-Zelevinsky polytopes, Lattice-Path cones
(Littelmann). Kostant’s partition function for simple Lie algebras can
be seen naturally as counting lattice points.

Commutative Algebra The Hilbert series of monomial algebras and
Grobner bases of toric ideals can be seen as problems of counting lattice
points in certains polytopes.
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EHRHART’s THEORY

& THE DESCRIPTION OF

φA(b)
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Dilations of Polyhedra
Let P be a convex polytope in R

d. For each integer n ≥ 1, let

nP = {nq|q ∈ P}

P 3P
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Ehrhart Counting function
For P a d-polytope, let

i(P, n) = #(nP ∩ Z
d) = #{q ∈ P |nq ∈ Z

d}

This is the number of lattice points in the dilation nP .

Similarly if P ◦ denotes the interior of P .

i(P ◦, n) = #{q ∈ P − ∂P | nq ∈ Z
d}
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Example 1: Cubes

P 3P

i(P, n) = (n + 1)2 i(P ◦, n) = (n − 1)2

In general for a d-dimensional unit cube we have i(P, n) = (n + 1)d
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Example 2
Let P be the tetrahedron

y

x

z

(1,0,0)

(0,1,0)

(0,0,0)
(1,1, 13)

Then

i(P, n) =
13

6
n3 + n2 −

1

6
n + 1

WARNING: The coefficients of Ehrhart polynomials can be negative!
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Example 3: MAGIC SQUARES polytopes

WARNING: The theory for polytopes with fractional vertices is more
complicated.

We can consider the convex polytope inside R
n2

of magic n×n squares
of magic sum 1. For example, for n = 3 the vertices are

0
0

0
0

0

01/3

2/3

2/3

2/30
1/3

2/3 1/3

2/3

1/3

1/3

2/3

2/31/3

2/3 1/3

2/3 1/3

1/3 2/3

1/3 2/3

1/3 2/3

1/30

0
0

0
0

In this case the Ehrhart counting function is not a polynomial, it is a
quasipolynomial!

i(P, s) =

{

2
9s

2 + 2
3s + 1 if 3|s,

0 otherwise,
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Ehrhart-Macdonald Theorem

Theorem (E. Ehrhart 1962, I. Macdonald 1963)

Let P be a full dimensional rational polytope. Then i(P, n) is univariate
quasipolynomial, the Ehrhart quasipolynomial of P , in the dilation variable
n and of degree dim(P ) whose leading term on each quasipolynomial piece
equals the volume of P .

Moreover, when the coordinates of the vertices of P are integers i(P, n)
is a polynomial.
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A Generalized version

Theorem Let P be a convex rational d-polytope. Let f be any homogeneous
polynomial function in Z[x1, x2, . . . , xd] of degree D. Then the counting
function

iP,f(n) =
∑

α∈nP∩Zd,

f(α)

is a quasipolynomial of degree d + D with rational coefficients on the
variable n. Its leading coefficient equals the integral of f over the polytope
P .
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Example

Suppose the polytope P is the unit square [0, 1]2, and that f(x, y) is of
the form xkyk. Then

i(P, n) =n2 + 2n + 1 = (n + 1)2

i(P, xy, n) =1/4 n4 + 1/2 n3 + 1/4 n2

i(P, x2y2, n) =1/9 n6 + 1/3 n5 +
13

36
n4 + 1/6 n3 + 1/36 n2

i(P, x3y3, n) =1/16 n8 + 1/4 n7 + 3/8 n6 + 1/4 n5 + 1/16 n4
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A Key Structure Theorem.
Theorem. For a d × n integral matrix A and a parameter vector b ∈
cone(A),

• there exist a finite decomposition of Z
d ∩ cone(A) such that φA is a

multivariate polynomial of degree n−d in each piece. The number n−d
is the dimension of the polytope {x|Ax = bx ≥ 0}.

• More precisely, cone(A) can be decomposed into pieces, called chambers,
such that, for all integral vectors b inside a chamber the function φA(b)
can be written as a fixed polynomial function of degree n − d in the

variables b1, . . . , bd plus a “correction polynomial” of smaller degree. The

correction terms depend periodically on the values of b1, b2, . . . , bd.

• The chambers are convex polyhedral subcones of cone(A), that subdivide

its interior and their union equals cone(A).

– counting – 22
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Example

A =







2 1 1 0 0 0

0 1 0 2 1 0

0 0 1 0 1 2







�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

1
2

3

4

5

6

Two dimensional
 slice of  the cone

Ax=b  x>=0.
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Here is the formula for the chamber marked in the picture.

φA(b1, b2, b3) =
b2b3

2
+

b2b
2
3

8
−

b2
3

24
+ correction

correction =











1 + b2
2 + 2b3

3 if b1 = 0 and b2 = 0 mod2
1
2 + b2

2 + 5b3
12 if b1 = 1 and b2 = 1 mod2

1
2 + 3b2

8 + 13b3
24 otherwise.
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Example:

A=

1

−1

0

1

0

−1

0

0

0

−1

1

0

1

0

1

0

−1 0

0 −1

0

0

1

−1

e−e

e−e

e−e

e−e

e−e

e−e

1 3

2 3

1 4

1 2
3

2 4

4

 slice of  the cone
Ax=b  x>=0.

Two dimensional
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1. If min{b3,−b2, b1 + b2} ≥ 0 then

φK4(b) = (b1 + b2 + 3)(b1 + b2 + 2)(b1 + b2 + 1)/6.

2. If min{b1, b2, b3} ≥ 0 then

φK4(b) = (b1 + 1)(b1 + 2)(b1 + 3b2 + 3)/6.

3. If min{b1, b2, b1 + b3, b2 + b3,−b3} ≥ 0 then φK4(b) = 1 + 11
6 b1 +

2/3 b3 +b2 +3/2 b1 b2 +b1
2+1/6 b1

3+1/2 b1
2
b2 −1/6 b3

3 −1/2 b1 b3
2+

1/2 b1 b3 − 1/2 b3
2.

4. If min{b1, b2 + b3,−b1 − b3} ≥ 0 then φK4(b) = (b1 + 2)(b1 +
1)(2b1 + 3b2 + 3 + 3b3).
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Chamber Geometry.
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COUNTING LATTICE

POINTS INSIDE

MORE COMPLICATED

REGIONS, CAN WE?
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Can one count inside other regions?

When the sets are arbitrary really bad things can happen, even in small
fixed dimension!

• Given (a, b, c) positive integers, deciding whether there is a lattice point
in the set {x|ax2 + bx = c, x ≥ 0} is an NP-complete problem.

• Deciding whether there is a non-negative integer root for arbitrary
polynomials in Z[x1, . . . , x9] is undecidable.

Thus we clearly need to be less ambitious!
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But convex sets must be tractable, right?

A convex set C is a set of Euclidean space such that for any pair
of points in C the line segment joining x and y is completely inside C.
Polyhedra are the simplest case.

NOT   CONVEX
  CONVEX

CAN ONE EASILY COUNT THE LATTICE POINTS OF CONVEX SETS?
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EARLIER WORKERS
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CREDIT CARD CYBER-THIEVES CARE

For an integer number n consider the 4-dimensional convex body

B(n) = {x ∈ R4 : x2
1 + x2

2 + x2
3 + x2

4 ≤ n}

Jacobi proved that if |B(n)| is the number of lattice points in B(n), for
n of the form pq = n, where p, q are primes, we have

|B(n)| − |B(n − 1)| = 8(1 + p + q + n)

If we know that n = pq, then a factorization of n can be done fast if we
know how to compute |B(n)|!!

RSA cryptosystems used in Internet transactions can be broken if
you know how to count lattice points fast.
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HILBERT and GRAVER:

INTEGRAL BASES FOR

CONES and SUBSPACES

– counting – 33
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Toward Non-negative Integral Bases for CONES and

SUBSPACES

• We know from Weyl-Minkowski’s theorem that every cone C can be
written using finite linear combination of its rays.

• Can we do the same for the lattice points?, Can we find finitely many
lattice points G = {g1, g2, . . . , gk} in C that can be used to write any
v ∈ C ∩ Z

n as a non-negative linear combination of hi’s? We are
looking for Hilbert bases

• How about if we want the same not for a cone but for a subspace? Then
we will obtain the so called Graver bases.
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Cones of Magic Squares and Cubes

• Recall the magic arrays form a convex polyhedral cones of the form
Ax = 0, x ≥ 0, where A is a matrix with 0, 1,−1 entries.

• EXAMPLE: The cone C of 3×3 magic matrices is defined by the system
of equations (i.e, row sums, column sums, and diagonal sums are equal).

x11 + x12 + x13 = x21 + x22 + x23 = x31 + x32 + x33

x11 + x12 + x13 = x11 + x21 + x31 = x12 + x22 + x32 = x13 + x23 + x33

x11 + x12 + x13 = x11 + x22 + x33 = x31 + x22 + x13,

and the inequalities xij ≥ 0.

The cone C of magic squares has dimension 3, it is a cone based on a
quadrilateral, thus it has 4 rays.

– counting – 35
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0
0

0
0

0

01/3

2/3

2/3

2/30
1/3

2/3 1/3

2/3

1/3

1/3

2/3

2/31/3

2/3 1/3

2/3 1/3

1/3 2/3

1/3 2/3

1/3 2/3

1/30

0
0

0
0

Figure 1: The four RAYS the cone of 3 × 3 magic squares.

• For a cone C of magic arrays we are interested in SC = C ∩ Z
n, the

semigroup of the cone C.

• Let C ⊆ R
n be a polyhedral cone with rational generators and let Λ ⊆ Z

n

be a lattice.

A finite set H = {h1, . . . , ht} ⊆ Λ∩C a generating set of the (Λ∩C,+)
if for every z ∈ Λ∩C there are non-negative integral multipliers λ1, . . . , λt

such that z =
∑t

i=1 λihi.
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If the generating set of lattice points is minimal, then it is called a Hilbert
bases.

In general it is hard to compute Hilbert basis. A fast completion and
project-and-lift method is implemented in 4ti2.

0 2 1
2 1 0
1 0 2

1 1 1
1 1 1
1 1 1

1 0 2
2 1 0
0 2 1

0
2 0 1

1 2
1 2 0

1 2 0
0 1 2
2 0 1

Figure 2: The Hilbert bases of the cone of 3 × 3 magic squares.
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Graver Bases

• The lattice L(A) = {x ∈ Z
n : Ax = 0} has a natural partial order.

For u, v ∈ Z
n we say that u is conformal to v, denoted u < v, if

|ui| ≤ |vi| and uivi ≥ 0 for i = 1, . . . , n, that is, u and v lie in the same
orthant of R

n and each component of u is bounded by the corresponding
component of v in absolute value.

• The Graver basis of an integer matrix A is the set of conformal-minimal
nonzero integer dependencies on A.

• Example: If A = [1 2 1] then its Graver basis is

±{[2,−1, 0], [0,−1, 2], [1, 0,−1], [1,−1, 1]}

.
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Graver Bases (Continued)

• Theorem: Graver basis is equal to the union of all Hilbert bases, one
for each of the orthants.

• Think of the Graver basis as vectors connecting lattice points All lattice
points are in fact connected by these vectors!!

• We have a connected graph on the lattice points of

P (b) := {x| Ax = b, x ≥ 0}

. More precisely:

• Consider L(b) := {x| Ax = b, x ≥ 0, x ∈ Z
n}.
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Nodes are lattice points in L(b) and the Graver basis elements give
directed edges departing from each lattice point u ∈ L(b).

• Theorem The Graver basis contains all edges for all integer hulls
conv({x| Ax = b, x ≥ 0, x ∈ Z

n}) as b changes.
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Graver bases are Test Sets
• A TEST SET is a finite collection of integral vectors with the property

that every feasible non-optimal solution of an integer program can be
improved by adding a vector in the test set.

• Theorem [J. Graver 1975] Graver bases for A can be used to solve the
augmentation problem Given A ∈ Z

m×n, x ∈ N
n and c ∈ Z

n, either
find an improving direction g ∈ Z

n, namely one with x − g ∈ {y ∈ N
n :

Ay = Ax} and cg > 0, or assert that no such g exists.
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BAD and GOOD news:

• Graver test sets can be exponentially large even in fixed dimension!

• People typically store a list of the whole test set. Very large indeed.
(New ways to store them available, using Generating Functions.

• Theorem: (Barvinok-Woods) In fixed dimension, the Hilbert bases and
the Graver bases of a cone can be computed in polynomial time.

• In arbitrary dimension it is NP-hard to decide whether you have a full
Hilbert (Graver) basis.

• NEW RESULTS: Graver bases become very manageable for concrete
families of matrices. Polynomial time computation!!
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Nice Matrices: N-fold Systems

Fix any pair of integer matrices A and B with the same number of
columns, of dimensions r × q and s × q, respectively. The n-fold matrix of
the ordered pair A, B is the following (s + nr) × nq matrix,

[A,B](n) := (1n⊗B)⊕(In⊗A) =













B B B · · · B
A 0 0 · · · 0
0 A 0 · · · 0
... ... . . . ... ...
0 0 0 · · · A













.

Theorem Fix any integer matrices A, B of sizes r×q and s×q, respectively.
Then there is a polynomial time algorithm that, given any n, we can compute
the Graver bases of [A, B](n).
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Proof by Example

• Key Lemma Fix any pair of integer matrices A ∈ Z
r×q and B ∈ Z

s×q.
Then there is a polynomial time algorithm that, given n, computes the
Graver basis G([A,B](n)) of the n-fold matrix [A,B](n). In particular, the
cardinality and the bit size of G([A, B](n)) are bounded by a polynomial
function of n.

• Key Idea (from Algebraic Geometry) [Aoki-Takemura, Santos-
Sturmfels, Hosten-Sullivant] For every pair of integer matrices A ∈ Z

r×q

and B ∈ Z
s×q, there exists a constant g(A, B) such that for all n, the

Graver basis of [A, B](n) consists of vectors with at most g(A, B) the
number nonzero components. The smallest constant g(A, B) possible is
the Graver complexity of A, B.
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Proof by Example

Consider the matrices A = [1 1] and B = I2. The Graver complexity of the
pair A, B is g(A, B) = 2.

[A,B](2) =









1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1









, G([A, B](2)) = ±
(

1 −1 −1 1
)

.

– counting – 45
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By our theorem, the Graver basis of the 4-fold matrix

[A, B](4) =

















1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

















,

G([A, B](4)) = ±

















1 −1 −1 1 0 0 0 0
1 −1 0 0 −1 1 0 0
1 −1 0 0 0 0 −1 1
0 0 1 −1 −1 1 0 0
0 0 1 −1 0 0 −1 1
0 0 0 0 1 −1 −1 1

















.
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