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Convexity I

Everything we do takes place inside Euclidean d-dimensional
space Rd .

We have the traditional Euclidean inner-product, norm of
vectors, and distance between two points x , y defined by√

(x1 − y1)2 + . . . (x2 − y2)2.

The set of all points [x , y ] := {αx + (1− α)y : 0 ≤ α ≤ 1} is
called the line segment between x and y . The points x and y
are the endpoints of the interval.

A subset S of Rn is called convex if for any two distinct points
x1, x2 in S the line segment joining x1, x2, lies completely in S .
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Convexity II

A linear functional f : Rd → R is given by a vector
c ∈ Rd , c 6= 0.

For a number α ∈ R we say that Hα = {x ∈ Rd : f (x) = α}
is an affine hyperplane or hyperplane for short.

The intersection of finitely many hyperplanes is an affine
space. The affine hull of a set A is the smallest affine space
containing A.

Note that a hyperplane divides Rd into two halfspaces
H+
α = {x ∈ Rd : f (x) ≥ α} and H−α = {x ∈ Rd : f (x) ≤ α}.

Halfspaces are convex sets.
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Convexity III

The intersection of finitely many half-spaces is a polyhedron

Similarly: A polyhedron is then the set of solutions of a
system of linear inequalities

P = {x ∈ Rd :< ci , x >≤ βi},

for some non-zero vectors ci in Rd and some real numbers βi .

The intersection of convex sets is always convex. Let A ⊂ Rd ,
the convex hull of A, denoted by conv(A), is the intersection
of all the convex sets containing A.

A polytope is the convex hull of a finite set of points in Rd . It
is the smallest convex set containing the points.

The image of a convex set under a linear transformation is
again a convex set.

Polyhedra and polytopes are always a convex sets!!

How are POLYTOPES and POLYHEDRA related?
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Convexity IV

Theorem: [Weyl-Minkowski] Every polytope is a polyhedron.
Every bounded polyhedron is a polytope.

This allows us to represent all polytopes in two ways inside a
computer!! Either as a list of vertices, or as system of
inequalities.



Crash Course on Combinatorial Convexity
A Catalogue of famous and useful polytopes
Crash Course on Computational Complexity

Convexity IV

Theorem: [Weyl-Minkowski] Every polytope is a polyhedron.
Every bounded polyhedron is a polytope.
This allows us to represent all polytopes in two ways inside a
computer!! Either as a list of vertices, or as system of
inequalities.



Crash Course on Combinatorial Convexity
A Catalogue of famous and useful polytopes
Crash Course on Computational Complexity

Convexity V

Definition: Given finitely many points A := {x1, x2, . . . , xn}
we say the linear combination

∑
γixi is

an affine combination if
∑
γi = 1.

a convex combination if it is affine and γi ≥ 0 for all i .

Lemma: (EXERCISE) For a set of points A in Rd we have
that conv(A) equals all finite convex combinations of A:

conv(A) = {
∑
xi∈A

γixi : γi ≥ 0 and γ1 + . . . γk = 1}

Definition A set of points x1, . . . , xn is affinely dependent if
there is a linear combination

∑
aixi = 0 with

∑
ai = 0.

Otherwise we say they are affinely independent.

Lemma: A set of d + 2 or more points in Rd is affinely
dependent.
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Convexity VI

Here are three classical theorems about convex sets. We invite you
to provide proofs for them (EXERCISE)!!

Theorem: (Caratheodory’s theorem): If x ∈ conv(S) ⊂ Rd ,
then x is the convex combination of d + 1 points.

Theorem: (Radon’s theorem): If a set A with d + 2 points in
Rd then A can be partitioned into two sets X ,Y such that
conv(X ) ∩ conv(Y ) 6= ∅.
Theorem: (Helly’s theorem): If C is a collection of closed
bounded convex sets in Rd such that each d + 1 sets have
nonempty intersection then the intersection of all sets in C is
non-empty.
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Convexity VI

For a convex set S in Rd . A linear inequality f (x) ≤ α is said
to be valid on S if every point in P satisfies it.

A set F ⊂ S is a face of P if and only there exists a linear
inequality f (x) ≤ α which is valid on P and such that
F = {x ∈ P : f (x) = α}. Then the hyperplane defined by f is
a supporting hyperplane of F .

The dimension of an affine set is the largest number of
affinely independent points in the set minus one. The
dimension of a set in Rd is the dimension of its affine hull.

A face of dimension 0 is called a vertex. A face of dimension 1
is called an edge, and a face of dimension dim(P)− 1 is called
a facet. The empty set is defined to be a face of P of
dimension −1. Faces that are not the empty set or P itself are
called proper.
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Convexity VII

Theorem: The set of of faces of a polyhedron (polytope)
forms also a finite poset by containment.

For any d-polytope, denote by fi (P) the number of i-faces of
P. The f-vector of P is

f (P) = (f0(P), f1(P), . . . , fd−1(P)).

Theorem (Euler-Poincaré formula) For any d-dimensional
Polytope P, then

d∑
i=−1

(−1)i fi (P) = 0

Theorem (Upper bound theorem) For any d-polytope P with
n vertices has no

fi (P) ≤ fi (C (n, d))

Where C (n, d) is a special polytope, the cyclic polytope. In
particular fd−1(P) ≤ O(nbd/2c).
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Convexity VIII

Definition: Two polytopes are combinatorially isomorphic if
their face posets are the same.

It follows: two polytopes P,Q are isomorphic if there is a
one-to-one correspondence pi to qi between the vertices such
that conv(pi : i ∈ I ) is a face of P if and only if
conv(qi : i ∈ I ) is a face of Q.

Definition: The graph of a polytope (or polyhedron) is the
graph given of 1-dimensional faces (edges) and the vertices
(0-dimensional faces).

Theorem: (Balinski’s theorem) The graphs of d-dimensional
polytopes are always d-connected.

QUESTION: How can we compute the faces of a polyhedron?
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QUESTION: How can we compute the faces of a polyhedron?
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Convexity IX

For A ⊂ Rd polar of A is

Ao = {x ∈ Rd :< x , a >≤ 1 for every a ∈ A}

Another way of thinking of the polar is as the intersection of
the halfspaces, one for each element a ∈ A, of the form

{x ∈ Rd :< x , a >≤ 1}

Example 1: Take L a line in R2 passing through the origin,
what is Lo? the perpendicular line that passes through the
origin.

Example 2: If the line L does not pass through the origin
then, Lo is a clipped line orthogonal to the given line that
passes through the origin.
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Convexity X

Theorem For any polytope P, there is a polytope P∗, a polar
polytope of P, whose face lattice is isomorphic to the reversed
poset of the face lattice of P.

idea of proof: Translate P ⊂ Rd to contain the origin as its
interior point. For a non-empty face F of P define

F̂ = {x ∈ Po :< x , y >= 1for all y ∈ F}

and for the empty face defineˆ= P0.
The hat operation applied to faces of a d-polytope P satisfies

1 The set F̂ is a face of Po

2 dim(F ) + dim(F̂ ) = d − 1.

3 The hat operation is involutory: ˆ̂F = F .
4 If F ,G ⊂ P are faces and F ⊂ G ⊂ P, then Ĝ , F̂ are faces of

Po and Ĝ ⊂ F̂ .
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A few key examples to play...
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Simplices

Let e1, e2, . . . , ed+1 be the standard unit vectors in Rd+1. The
standard d-dimensional simplex ∆d is conv({e1, . . . , ed+1}).
Thus
∆d = {x = (x1, . . . , xd+1) : xi ≥ 0 and x1 + x2 + · · ·+ xd+1 =
1}.
Note that for polytope P = conv({a1, . . . , am}) we can define
a linear map f : ∆m−1 → P by the formula
f (λ1, . . . , λm) = λ1a1 + · · ·+ λmam. Thus f (∆m−1) = P.
Every polytope is the image of the standard simplex under a
linear transformation.
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Cubes and Zonotopes

Let {ui : i ∈ I} be the set of all 2d vectors in Rd whose
coordinates are either 1 or -1.

The polytope Id = conv({ui : i ∈ I} is called the standard unit
d-dimensional cube. Thus I d = {(x1, . . . , xd) : −1 ≤ xi ≤ 1}.
The images of a cube under linear transformations receive the
name of zonotopes.
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Birkhoff’s polytope

Let Bn be the convex polytope of real non-negative matrices
with all row and column sums equal to one (doubly-stochastic
matrices). The dimension of Bn is (n − 1)2.
The polytope Bn is called the Birkhoff polytope, the
assignment polytope, or the Birkhoff-von Neumann polytope.

Graph of Bn: The vertices of Bn are the n × n permutation
matrices. The edges of Bn correspond to cycles in the
complete bipartite Kn,n. Its graph has diameter 2.

Facets: For each pair (i , j) with 1 ≤ i , j ≤ n, the doubly
stochastic matrices with (i , j) entry equal to 0 is a facet
(maximal proper face) of Bn and all facets arise in this way.

The linear projection of Bn given by multiplying each matrix
by a vector v gives a Permutahedron.
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Cyclic Polytopes

The moment curve is a curve parametrized as follows:
γ(t) = (t, t2, t3, . . . , td).

definition Take n different values for t. That gives n different
points in the curve. The cyclic polytope C (n, d) is the convex
hull of such points.

Lemma: Every hyperplane intersects the moment curve
γ(t) = (t, t2, t3, . . . , td) in no more than d points.

Theorem: The largest possible number of i-dimensional faces
of a d-polytope with n vertices is achieved by the cyclic
polytope C (n, d).
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Computational Complexity
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Computational Complexity

We need a theory to measure how difficult is to compute!!!

The study of the efficiency of algorithms and the difficulty of
problems.

Problem: a generic computational question that can be
stated without any data specificied.

Examples:

Clique: Given a graph G = (V ,E ) and an integer k, does G
have a clique of size k?

An instance of a problem is a particular specification of the
data.

Examples:

Does the Peterson graph have a clique of size 4?
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Algorithms

An algorithm is a finite set of instructions for performing basic
operations on an input to produce an output.

An algorithm A solves a problem P if given a representation
of each instance I as input it supplies as output the solution
of instance I .

Instances can have more than one representation.

A graph G = (V ,E ) can be represented as a adjacency matrix,
incidence matrix, adjacency list, etc.
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Running time

Question: How to measure the efficiency of an algorithm A?

Answer: Running time - count of the number of elementary
operations needed to run the algorithm.

Key insight: the number of operations depends on the
difficulty of the instance and the size of the input.

Worst case difficulty: consider run times of “hard” instances.
Express run time as a function of the amount of “memory”
needed to represent the instance!
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Binary encoding size of an instance

The size of an instance depends on its representation.

The encoding size of a representation is the number of binary
digits (bits) needed to encode it into memory.

Some examples of binary encoding sizes:

1 n = 118.

n = 64 + 32 + 16 + 4 + 2

= 110110 (in binary)

That is, |n| = 7 bits
More generally, n ∈ Z can be encoded in around log2 n bits.

2 The set S = {0, . . . , n} can also be encoded in around log2 n
bits.
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Some examples of binary encoding sizes:
1 n = 118.

n = 64 + 32 + 16 + 4 + 2

= 110110 (in binary)

That is, |n| = 7 bits
More generally, n ∈ Z can be encoded in around log2 n bits.

2 The set S = {0, . . . , n} can also be encoded in around log2 n
bits.
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Polynomial time algorithms

If the running time of an algorithm is bounded by a
polynomial function of the input size, then we say the
algorithm runs in polynomial time.

For example: ordering a finite list L of numbers

Input size of the normal form representation of L is the size n.

Silly algorithm requires around
(n
2

)
comparisons and

re-ordering of the lists.
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P vs NP: What you need to know

What do you mean is HARD TO COMPUTE X ??

Figure: I tried to compute X, I can’t do it, therefore it must be hard!



Crash Course on Combinatorial Convexity
A Catalogue of famous and useful polytopes
Crash Course on Computational Complexity

Figure: I can’t compute X, but if I could do it, the problems of all these
people would be solved too! therefore it must be hard!

#P-complete problems is a family of COUNTING problems, if one
finds a fast solution for one, you find it for all the members of the
family!
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Many of the problems we care about require LISTING all the
elements of a set: e.g., list all facets, all vertices. There are no
uniformly accepted complexity notions for LISTING algorithms,
and the output size can be LARGE.

An algorithm is output sensitive if it runs in TIME polynomial
in both the input size and the output size.

An algorithm is compact if it runs in SPACE polynomial in the
input size ONLY.
An ideal listing algorithm is a compact output-sensitive
algorithm. Hard to find!!!
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Thank you
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