Crash Course on Combinatorial Convexity A Catalogue of famous and useful polytopes Crash Course on Computational Complexity

Basic Concepts in Convexity and Computation

Jesús A. De Loera, UC Davis

June 19, 2011

Crash Course on Combinatorial Convexity A Catalogue of famous and useful polytopes Crash Course on Computational Complexity

Combinatorial Convexity

• Everything we do takes place inside Euclidean d-dimensional space \mathbb{R}^d .

- Everything we do takes place inside Euclidean d-dimensional space \mathbb{R}^d .
- We have the traditional Euclidean inner-product, norm of vectors, and distance between two points x, y defined by $\sqrt{(x_1 y_1)^2 + \dots (x_2 y_2)^2}$.

- Everything we do takes place inside Euclidean d-dimensional space \mathbb{R}^d .
- We have the traditional Euclidean inner-product, norm of vectors, and distance between two points x, y defined by $\sqrt{(x_1 y_1)^2 + \dots (x_2 y_2)^2}$.
- The set of all points $[x, y] := \{\alpha x + (1 \alpha)y : 0 \le \alpha \le 1\}$ is called *the line segment* between x and y. The points x and y are the endpoints of the interval.

- Everything we do takes place inside Euclidean d-dimensional space \mathbb{R}^d .
- We have the traditional Euclidean inner-product, norm of vectors, and distance between two points x, y defined by $\sqrt{(x_1 y_1)^2 + \dots (x_2 y_2)^2}$.
- The set of all points $[x, y] := \{\alpha x + (1 \alpha)y : 0 \le \alpha \le 1\}$ is called *the line segment* between x and y. The points x and y are the endpoints of the interval.
- A subset S of \mathbb{R}^n is called convex if for any two distinct points x_1, x_2 in S the line segment joining x_1, x_2 , lies completely in S.

• A linear functional $f: \mathbb{R}^d \to \mathbb{R}$ is given by a vector $c \in \mathbb{R}^d, c \neq 0$.

- A linear functional $f: \mathbb{R}^d \to \mathbb{R}$ is given by a vector $c \in \mathbb{R}^d, c \neq 0$.
- For a number $\alpha \in \mathbb{R}$ we say that $H_{\alpha} = \{x \in \mathbb{R}^d : f(x) = \alpha\}$ is an affine hyperplane or hyperplane for short.

- A linear functional $f: \mathbb{R}^d \to \mathbb{R}$ is given by a vector $c \in \mathbb{R}^d, c \neq 0$.
- For a number $\alpha \in \mathbb{R}$ we say that $H_{\alpha} = \{x \in \mathbb{R}^d : f(x) = \alpha\}$ is an affine hyperplane or hyperplane for short.
- The intersection of finitely many hyperplanes is an affine space. The affine hull of a set A is the smallest affine space containing A.

- A linear functional $f: \mathbb{R}^d \to \mathbb{R}$ is given by a vector $c \in \mathbb{R}^d, c \neq 0$.
- For a number $\alpha \in \mathbb{R}$ we say that $H_{\alpha} = \{x \in \mathbb{R}^d : f(x) = \alpha\}$ is an affine hyperplane or hyperplane for short.
- The intersection of finitely many hyperplanes is an affine space. The affine hull of a set A is the smallest affine space containing A.
- Note that a hyperplane divides \mathbb{R}^d into two halfspaces $H_{\alpha}^+ = \{x \in \mathbb{R}^d : f(x) \ge \alpha\}$ and $H_{\alpha}^- = \{x \in \mathbb{R}^d : f(x) \le \alpha\}$. Halfspaces are convex sets.

• The intersection of finitely many half-spaces is a polyhedron

- The intersection of finitely many half-spaces is a polyhedron
- Similarly: A polyhedron is then the set of solutions of a system of linear inequalities

$$P = \{x \in \mathbb{R}^d : \langle c_i, x \rangle \leq \beta_i \},\$$

- The intersection of finitely many half-spaces is a polyhedron
- Similarly: A polyhedron is then the set of solutions of a system of linear inequalities

$$P = \{x \in \mathbb{R}^d : \langle c_i, x \rangle \leq \beta_i \},\$$

for some non-zero vectors c_i in \mathbb{R}^d and some real numbers β_i .

• The intersection of convex sets is always convex. Let $A \subset \mathbb{R}^d$, the convex hull of A, denoted by conv(A), is the intersection of all the convex sets containing A.

- The intersection of finitely many half-spaces is a polyhedron
- Similarly: A polyhedron is then the set of solutions of a system of linear inequalities

$$P = \{x \in \mathbb{R}^d : \langle c_i, x \rangle \leq \beta_i \},\$$

- The intersection of convex sets is always convex. Let $A \subset \mathbb{R}^d$, the convex hull of A, denoted by conv(A), is the intersection of all the convex sets containing A.
- A polytope is the convex hull of a finite set of points in \mathbb{R}^d . It is the smallest convex set containing the points.

- The intersection of finitely many half-spaces is a polyhedron
- Similarly: A polyhedron is then the set of solutions of a system of linear inequalities

$$P = \{x \in \mathbb{R}^d : \langle c_i, x \rangle \leq \beta_i \},\$$

- The intersection of convex sets is always convex. Let $A \subset \mathbb{R}^d$, the convex hull of A, denoted by conv(A), is the intersection of all the convex sets containing A.
- A polytope is the convex hull of a finite set of points in \mathbb{R}^d . It is the smallest convex set containing the points.
- The image of a convex set under a linear transformation is again a convex set.

- The intersection of finitely many half-spaces is a polyhedron
- Similarly: A polyhedron is then the set of solutions of a system of linear inequalities

$$P = \{x \in \mathbb{R}^d : \langle c_i, x \rangle \leq \beta_i\},\$$

- The intersection of convex sets is always convex. Let $A \subset \mathbb{R}^d$, the convex hull of A, denoted by conv(A), is the intersection of all the convex sets containing A.
- A polytope is the convex hull of a finite set of points in \mathbb{R}^d . It is the smallest convex set containing the points.
- The image of a convex set under a linear transformation is again a convex set.
- Polyhedra and polytopes are always a convex sets!!

- The intersection of finitely many half-spaces is a polyhedron
- Similarly: A polyhedron is then the set of solutions of a system of linear inequalities

$$P = \{x \in \mathbb{R}^d : \langle c_i, x \rangle \leq \beta_i \},\$$

- The intersection of convex sets is always convex. Let $A \subset \mathbb{R}^d$, the convex hull of A, denoted by conv(A), is the intersection of all the convex sets containing A.
- A polytope is the convex hull of a finite set of points in \mathbb{R}^d . It is the smallest convex set containing the points.
- The image of a convex set under a linear transformation is again a convex set.
- Polyhedra and polytopes are always a convex sets!!
- How are POLYTOPES and POLYHEDRA related?

• **Theorem:** [Weyl-Minkowski] Every polytope is a polyhedron. Every bounded polyhedron is a polytope.

- **Theorem:** [Weyl-Minkowski] Every polytope is a polyhedron. Every bounded polyhedron is a polytope.
- This allows us to represent all polytopes in two ways inside a computer!! Either as a list of vertices, or as system of inequalities.

• **Definition:** Given finitely many points $A := \{x_1, x_2, \dots, x_n\}$ we say the linear combination $\sum \gamma_i x_i$ is

- **Definition:** Given finitely many points $A := \{x_1, x_2, \dots, x_n\}$ we say the linear combination $\sum \gamma_i x_i$ is
 - an affine combination if $\sum \gamma_i = 1$.
 - a convex combination if it is affine and $\gamma_i \geq 0$ for all i.

- **Definition:** Given finitely many points $A := \{x_1, x_2, \dots, x_n\}$ we say the linear combination $\sum \gamma_i x_i$ is
 - an affine combination if $\sum \gamma_i = 1$.
 - a convex combination if it is affine and $\gamma_i \geq 0$ for all i.
- **Lemma:** (EXERCISE) For a set of points A in \mathbb{R}^d we have that conv(A) equals all finite convex combinations of A:

$$conv(A) = \{ \sum_{x_i \in A} \gamma_i x_i : \gamma_i \ge 0 \text{ and } \gamma_1 + \dots \gamma_k = 1 \}$$

- **Definition:** Given finitely many points $A := \{x_1, x_2, \dots, x_n\}$ we say the linear combination $\sum \gamma_i x_i$ is
 - an affine combination if $\sum \gamma_i = 1$.
 - a convex combination if it is affine and $\gamma_i \geq 0$ for all i.
- **Lemma:** (EXERCISE) For a set of points A in \mathbb{R}^d we have that conv(A) equals all finite convex combinations of A:

$$conv(A) = \{ \sum_{x_i \in A} \gamma_i x_i : \gamma_i \ge 0 \text{ and } \gamma_1 + \dots \gamma_k = 1 \}$$

• **Definition** A set of points x_1, \ldots, x_n is affinely dependent if there is a linear combination $\sum a_i x_i = 0$ with $\sum a_i = 0$. Otherwise we say they are affinely independent.

- **Definition:** Given finitely many points $A := \{x_1, x_2, \dots, x_n\}$ we say the linear combination $\sum \gamma_i x_i$ is
 - an affine combination if $\sum \gamma_i = 1$.
 - a convex combination if it is affine and $\gamma_i \geq 0$ for all i.
- **Lemma:** (EXERCISE) For a set of points A in \mathbb{R}^d we have that conv(A) equals all finite convex combinations of A:

$$conv(A) = \{ \sum_{x_i \in A} \gamma_i x_i : \gamma_i \ge 0 \text{ and } \gamma_1 + \dots \gamma_k = 1 \}$$

- **Definition** A set of points x_1, \ldots, x_n is affinely dependent if there is a linear combination $\sum a_i x_i = 0$ with $\sum a_i = 0$. Otherwise we say they are affinely independent.
- **Lemma:** A set of d + 2 or more points in \mathbb{R}^d is affinely dependent.

Here are three classical theorems about convex sets. We invite you to provide proofs for them (EXERCISE)!!

• Theorem: (Caratheodory's theorem): If $x \in conv(S) \subset \mathbb{R}^d$, then x is the convex combination of d+1 points.

Here are three classical theorems about convex sets. We invite you to provide proofs for them (EXERCISE)!!

- Theorem: (Caratheodory's theorem): If $x \in conv(S) \subset \mathbb{R}^d$, then x is the convex combination of d+1 points.
- **Theorem:** (Radon's theorem): If a set A with d+2 points in \mathbb{R}^d then A can be partitioned into two sets X, Y such that $conv(X) \cap conv(Y) \neq \emptyset$.

Here are three classical theorems about convex sets. We invite you to provide proofs for them (EXERCISE)!!

- Theorem: (Caratheodory's theorem): If $x \in conv(S) \subset \mathbb{R}^d$, then x is the convex combination of d+1 points.
- **Theorem:** (Radon's theorem): If a set A with d+2 points in \mathbb{R}^d then A can be partitioned into two sets X, Y such that $conv(X) \cap conv(Y) \neq \emptyset$.
- Theorem: (Helly's theorem): If C is a collection of closed bounded convex sets in \mathbb{R}^d such that each d+1 sets have nonempty intersection then the intersection of all sets in C is non-empty.

• For a convex set S in \mathbb{R}^d . A linear inequality $f(x) \leq \alpha$ is said to be valid on S if every point in P satisfies it.

- For a convex set S in \mathbb{R}^d . A linear inequality $f(x) \leq \alpha$ is said to be valid on S if every point in P satisfies it.
- A set $F \subset S$ is a face of P if and only there exists a linear inequality $f(x) \leq \alpha$ which is valid on P and such that $F = \{x \in P : f(x) = \alpha\}$. Then the hyperplane defined by f is a supporting hyperplane of F.

- For a convex set S in \mathbb{R}^d . A linear inequality $f(x) \leq \alpha$ is said to be valid on S if every point in P satisfies it.
- A set $F \subset S$ is a face of P if and only there exists a linear inequality $f(x) \leq \alpha$ which is valid on P and such that $F = \{x \in P : f(x) = \alpha\}$. Then the hyperplane defined by f is a supporting hyperplane of F.
- The dimension of an affine set is the largest number of affinely independent points in the set minus one. The dimension of a set in R^d is the dimension of its affine hull.

- For a convex set S in \mathbb{R}^d . A linear inequality $f(x) \leq \alpha$ is said to be valid on S if every point in P satisfies it.
- A set $F \subset S$ is a face of P if and only there exists a linear inequality $f(x) \leq \alpha$ which is valid on P and such that $F = \{x \in P : f(x) = \alpha\}$. Then the hyperplane defined by f is a supporting hyperplane of F.
- The dimension of an affine set is the largest number of affinely independent points in the set minus one. The dimension of a set in \mathbb{R}^d is the dimension of its affine hull.
- A face of dimension 0 is called a vertex. A face of dimension 1 is called an edge, and a face of dimension dim(P) 1 is called a facet. The empty set is defined to be a face of P of dimension -1. Faces that are not the empty set or P itself are called proper.

• **Theorem:** The set of of faces of a polyhedron (polytope) forms also a finite poset by containment.

- **Theorem:** The set of of faces of a polyhedron (polytope) forms also a finite poset by containment.
- For any *d*-polytope, denote by $f_i(P)$ the number of *i*-faces of P. The f-vector of P is

$$f(P) = (f_0(P), f_1(P), \dots, f_{d-1}(P)).$$

- **Theorem:** The set of of faces of a polyhedron (polytope) forms also a finite poset by containment.
- For any *d*-polytope, denote by $f_i(P)$ the number of *i*-faces of P. The f-vector of P is

$$f(P) = (f_0(P), f_1(P), \dots, f_{d-1}(P)).$$

 Theorem (Euler-Poincaré formula) For any d-dimensional Polytope P, then

$$\sum_{i=-1}^{d} (-1)^{i} f_{i}(P) = 0$$

- **Theorem:** The set of of faces of a polyhedron (polytope) forms also a finite poset by containment.
- For any *d*-polytope, denote by $f_i(P)$ the number of *i*-faces of P. The f-vector of P is

$$f(P) = (f_0(P), f_1(P), \dots, f_{d-1}(P)).$$

 Theorem (Euler-Poincaré formula) For any d-dimensional Polytope P, then

$$\sum_{i=-1}^{d} (-1)^{i} f_{i}(P) = 0$$

• **Theorem** (Upper bound theorem) For any *d*-polytope *P* with *n* vertices has no

$$f_i(P) \leq f_i(C(n,d))$$

• **Definition:** Two polytopes are combinatorially isomorphic if their face posets are the same.

- Definition: Two polytopes are combinatorially isomorphic if their face posets are the same.
- It follows: two polytopes P, Q are isomorphic if there is a one-to-one correspondence p_i to q_i between the vertices such that $conv(p_i: i \in I)$ is a face of P if and only if $conv(q_i: i \in I)$ is a face of Q.

- Definition: Two polytopes are combinatorially isomorphic if their face posets are the same.
- It follows: two polytopes P, Q are isomorphic if there is a one-to-one correspondence p_i to q_i between the vertices such that $conv(p_i: i \in I)$ is a face of P if and only if $conv(q_i: i \in I)$ is a face of Q.
- **Definition:** The graph of a polytope (or polyhedron) is the graph given of 1-dimensional faces (edges) and the vertices (0-dimensional faces).

- Definition: Two polytopes are combinatorially isomorphic if their face posets are the same.
- It follows: two polytopes P, Q are isomorphic if there is a one-to-one correspondence p_i to q_i between the vertices such that $conv(p_i: i \in I)$ is a face of P if and only if $conv(q_i: i \in I)$ is a face of Q.
- **Definition:** The graph of a polytope (or polyhedron) is the graph given of 1-dimensional faces (edges) and the vertices (0-dimensional faces).
- **Theorem:** (Balinski's theorem) The graphs of *d*-dimensional polytopes are always *d*-connected.

- Definition: Two polytopes are combinatorially isomorphic if their face posets are the same.
- It follows: two polytopes P, Q are isomorphic if there is a one-to-one correspondence p_i to q_i between the vertices such that $conv(p_i: i \in I)$ is a face of P if and only if $conv(q_i: i \in I)$ is a face of Q.
- **Definition:** The graph of a polytope (or polyhedron) is the graph given of 1-dimensional faces (edges) and the vertices (0-dimensional faces).
- **Theorem:** (Balinski's theorem) The graphs of *d*-dimensional polytopes are always *d*-connected.
- QUESTION: How can we compute the faces of a polyhedron?

• For $A \subset \mathbb{R}^d$ polar of A is

$$A^o = \{x \in \mathbb{R}^d : \langle x, a \rangle \leq 1 \text{ for every } a \in A\}$$

• For $A \subset \mathbb{R}^d$ polar of A is

$$A^o = \{x \in \mathbb{R}^d : \langle x, a \rangle \leq 1 \text{ for every } a \in A\}$$

• For $A \subset \mathbb{R}^d$ polar of A is

$$A^o = \{x \in \mathbb{R}^d : \langle x, a \rangle \leq 1 \text{ for every } a \in A\}$$

$$\{x \in \mathbb{R}^d : \langle x, a \rangle \leq 1\}$$

• For $A \subset \mathbb{R}^d$ polar of A is

$$A^o = \{x \in \mathbb{R}^d : \langle x, a \rangle \leq 1 \text{ for every } a \in A\}$$

• Another way of thinking of the polar is as the intersection of the halfspaces, one for each element $a \in A$, of the form

$$\{x \in \mathbb{R}^d : \langle x, a \rangle \leq 1\}$$

• Example 1: Take L a line in \mathbb{R}^2 passing through the origin, what is L^o ?

• For $A \subset \mathbb{R}^d$ polar of A is

$$A^o = \{x \in \mathbb{R}^d : \langle x, a \rangle \leq 1 \text{ for every } a \in A\}$$

$$\{x \in \mathbb{R}^d : \langle x, a \rangle \leq 1\}$$

- Example 1: Take L a line in \mathbb{R}^2 passing through the origin, what is L^o ? the perpendicular line that passes through the origin.
- **Example 2:** If the line *L* does not pass through the origin then,

• For $A \subset \mathbb{R}^d$ polar of A is

$$A^o = \{x \in \mathbb{R}^d : \langle x, a \rangle \leq 1 \text{ for every } a \in A\}$$

$$\{x \in \mathbb{R}^d : \langle x, a \rangle \leq 1\}$$

- Example 1: Take L a line in \mathbb{R}^2 passing through the origin, what is L^o ? the perpendicular line that passes through the origin.
- Example 2: If the line L does not pass through the origin then, L^o is a clipped line orthogonal to the given line that passes through the origin.

• For $A \subset \mathbb{R}^d$ polar of A is

$$A^o = \{x \in \mathbb{R}^d : \langle x, a \rangle \leq 1 \text{ for every } a \in A\}$$

$$\{x \in \mathbb{R}^d : \langle x, a \rangle \leq 1\}$$

- Example 1: Take L a line in \mathbb{R}^2 passing through the origin, what is L^o ? the perpendicular line that passes through the origin.
- Example 2: If the line L does not pass through the origin then, L^o is a clipped line orthogonal to the given line that passes through the origin.

• **Theorem** For any polytope P, there is a polytope P^* , a polar polytope of P, whose face lattice is isomorphic to the reversed poset of the face lattice of P.

- **Theorem** For any polytope P, there is a polytope P^* , a polar polytope of P, whose face lattice is isomorphic to the reversed poset of the face lattice of P.
- idea of proof: Translate $P \subset \mathbb{R}^d$ to contain the origin as its interior point. For a non-empty face F of P define

$$\hat{F} = \{x \in P^o : \langle x, y \rangle = 1 \text{ for all } y \in F\}$$

and for the empty face define \hat{P}^0 .

The hat operation applied to faces of a d-polytope P satisfies

- The set \hat{F} is a face of P°
- **3** The hat operation is involutory: $\hat{\hat{F}} = F$.
- If $F, G \subset P$ are faces and $F \subset G \subset P$, then \hat{G}, \hat{F} are faces of P^o and $\hat{G} \subset \hat{F}$.

A few key examples to play...

Simplices

• Let $e_1, e_2, \ldots, e_{d+1}$ be the standard unit vectors in \mathbb{R}^{d+1} . The standard d-dimensional simplex Δ_d is $conv(\{e_1, \ldots, e_{d+1}\})$. Thus

$$\Delta_d = \{x = (x_1, \dots, x_{d+1}) : x_i \ge 0 \text{ and } x_1 + x_2 + \dots + x_{d+1} = 1\}.$$

- Note that for polytope $P = conv(\{a_1, \ldots, a_m\})$ we can define a linear map $f: \Delta_{m-1} \to P$ by the formula $f(\lambda_1, \ldots, \lambda_m) = \lambda_1 a_1 + \cdots + \lambda_m a_m$. Thus $f(\Delta_{m-1}) = P$.
- Every polytope is the image of the standard simplex under a linear transformation.

Cubes and Zonotopes

- Let $\{u_i : i \in I\}$ be the set of all 2^d vectors in \mathbb{R}^d whose coordinates are either 1 or -1.
- The polytope $I_d = conv(\{u_i : i \in I\})$ is called the *standard unit d*-dimensional cube. Thus $I^d = \{(x_1, \dots, x_d) : -1 \le x_i \le 1\}$.
- The images of a cube under linear transformations receive the name of zonotopes.

• Let B_n be the convex polytope of real non-negative matrices with all row and column sums equal to one (doubly-stochastic matrices). The dimension of B_n is $(n-1)^2$. The polytope B_n is called the Birkhoff polytope, the

assignment polytope, or the Birkhoff-von Neumann polytope.

- Let B_n be the convex polytope of real non-negative matrices with all row and column sums equal to one (doubly-stochastic matrices). The dimension of B_n is $(n-1)^2$. The polytope B_n is called the Birkhoff polytope, the assignment polytope, or the Birkhoff-von Neumann polytope.
- Graph of B_n : The vertices of B_n are the $n \times n$ permutation matrices. The edges of B_n correspond to cycles in the complete bipartite $K_{n,n}$. Its graph has diameter 2.

- Let B_n be the convex polytope of real non-negative matrices with all row and column sums equal to one (doubly-stochastic matrices). The dimension of B_n is $(n-1)^2$. The polytope B_n is called the Birkhoff polytope, the assignment polytope, or the Birkhoff-von Neumann polytope.
- Graph of B_n : The vertices of B_n are the $n \times n$ permutation matrices. The edges of B_n correspond to cycles in the complete bipartite $K_{n,n}$. Its graph has diameter 2.
- Facets: For each pair (i,j) with $1 \le i,j \le n$, the doubly stochastic matrices with (i,j) entry equal to 0 is a *facet* (maximal proper face) of B_n and all facets arise in this way.

- Let B_n be the convex polytope of real non-negative matrices with all row and column sums equal to one (doubly-stochastic matrices). The dimension of B_n is $(n-1)^2$. The polytope B_n is called the Birkhoff polytope, the assignment polytope, or the Birkhoff-von Neumann polytope.
- Graph of B_n : The vertices of B_n are the $n \times n$ permutation matrices. The edges of B_n correspond to cycles in the complete bipartite $K_{n,n}$. Its graph has diameter 2.
- Facets: For each pair (i,j) with $1 \le i,j \le n$, the doubly stochastic matrices with (i,j) entry equal to 0 is a *facet* (maximal proper face) of B_n and all facets arise in this way.
- The linear projection of B_n given by multiplying each matrix by a vector \mathbf{v} gives a Permutahedron.

• The moment curve is a curve parametrized as follows:

$$\gamma(t)=(t,t^2,t^3,\ldots,t^d).$$

- The moment curve is a curve parametrized as follows:
 - $\gamma(t) = (t, t^2, t^3, \dots, t^d).$
- **definition** Take n different values for t. That gives n different points in the curve. The cyclic polytope C(n, d) is the convex hull of such points.

- The moment curve is a curve parametrized as follows:
 - $\gamma(t) = (t, t^2, t^3, \dots, t^d).$
- **definition** Take n different values for t. That gives n different points in the curve. The cyclic polytope C(n, d) is the convex hull of such points.
- **Lemma:** Every hyperplane intersects the moment curve $\gamma(t) = (t, t^2, t^3, \dots, t^d)$ in no more than d points.

- The moment curve is a curve parametrized as follows: $\gamma(t) = (t, t^2, t^3, \dots, t^d)$.
- **definition** Take n different values for t. That gives n different points in the curve. The cyclic polytope C(n,d) is the convex hull of such points.
- **Lemma:** Every hyperplane intersects the moment curve $\gamma(t) = (t, t^2, t^3, \dots, t^d)$ in no more than d points.
- **Theorem:** The largest possible number of *i*-dimensional faces of a *d*-polytope with *n* vertices is achieved by the cyclic polytope C(n, d).

• We need a theory to measure how difficult is to compute!!!

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.
- Problem: a generic computational question that can be stated without any data specificied.

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.
- Problem: a generic computational question that can be stated without any data specificied.
- Examples:
 - CLIQUE: Given a graph G = (V, E) and an integer k, does G have a clique of size k?

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.
- Problem: a generic computational question that can be stated without any data specificied.
- Examples:
 - CLIQUE: Given a graph G = (V, E) and an integer k, does G have a clique of size k?
- An instance of a problem is a particular specification of the data.

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.
- Problem: a generic computational question that can be stated without any data specificied.
- Examples:
 - CLIQUE: Given a graph G = (V, E) and an integer k, does G have a clique of size k?
- An instance of a problem is a particular specification of the data.
- Examples:

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.
- Problem: a generic computational question that can be stated without any data specificied.
- Examples:
 - CLIQUE: Given a graph G = (V, E) and an integer k, does G have a clique of size k?
- An instance of a problem is a particular specification of the data.
- Examples:

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.
- Problem: a generic computational question that can be stated without any data specificied.
- Examples:
 - CLIQUE: Given a graph G = (V, E) and an integer k, does G have a clique of size k?
- An instance of a problem is a particular specification of the data.
- Examples:
 - Does the Peterson graph have a clique of size 4?

Algorithms

• An algorithm is a finite set of instructions for performing basic operations on an input to produce an output.

Algorithms

- An algorithm is a finite set of instructions for performing basic operations on an input to produce an output.
- An algorithm A solves a problem P if given a representation of each instance I as input it supplies as output the solution of instance I.

Algorithms

- An algorithm is a finite set of instructions for performing basic operations on an input to produce an output.
- An algorithm A solves a problem P if given a representation of each instance I as input it supplies as output the solution of instance I.
- Instances can have more than one representation.

Algorithms

- An algorithm is a finite set of instructions for performing basic operations on an input to produce an output.
- An algorithm A solves a problem P if given a representation of each instance I as input it supplies as output the solution of instance I.
- Instances can have more than one representation.
 - A graph G = (V, E) can be represented as a adjacency matrix, incidence matrix, adjacency list, etc.

Crash Course on Combinatorial Convexity A Catalogue of famous and useful polytopes Crash Course on Computational Complexity

• Question: How to measure the efficiency of an algorithm A?

- Question: How to measure the efficiency of an algorithm A?
- Answer: Running time count of the number of elementary operations needed to run the algorithm.

- Question: How to measure the efficiency of an algorithm A?
- Answer: Running time count of the number of elementary operations needed to run the algorithm.
- Key insight: the number of operations depends on the difficulty of the instance and the size of the input.

- Question: How to measure the efficiency of an algorithm A?
- Answer: Running time count of the number of elementary operations needed to run the algorithm.
- Key insight: the number of operations depends on the difficulty of the instance and the size of the input.
 - Worst case difficulty: consider run times of "hard" instances.

- Question: How to measure the efficiency of an algorithm A?
- Answer: Running time count of the number of elementary operations needed to run the algorithm.
- Key insight: the number of operations depends on the difficulty of the instance and the size of the input.
 - Worst case difficulty: consider run times of "hard" instances.
 - Express run time as a function of the amount of "memory" needed to represent the instance!

Crash Course on Combinatorial Convexity A Catalogue of famous and useful polytopes Crash Course on Computational Complexity

• The size of an instance depends on its representation.

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.
- Some examples of binary encoding sizes:
 - **11** n = 118.

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.
- Some examples of binary encoding sizes:

11
$$n = 118$$
.

$$n = 64 + 32 + 16 + 4 + 2$$

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.
- Some examples of binary encoding sizes:

1
$$n = 118$$
.

$$n = 64 + 32 + 16 + 4 + 2$$

= 110110 (in binary)

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.
- Some examples of binary encoding sizes:

11
$$n = 118$$
.

$$n = 64 + 32 + 16 + 4 + 2$$

= 110110 (in binary)

That is,
$$|n| = 7$$
 bits

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.
- Some examples of binary encoding sizes:
 - **11** n = 118.

$$n = 64 + 32 + 16 + 4 + 2$$

= 110110 (in binary)

That is, |n|=7 bits More generally, $n\in\mathbb{Z}$ can be encoded in around $\log_2 n$ bits.

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.
- Some examples of binary encoding sizes:
 - **11** n = 118.

$$n = 64 + 32 + 16 + 4 + 2$$

= 110110 (in binary)

That is, |n| = 7 bits More generally, $n \in \mathbb{Z}$ can be encoded in around $\log_2 n$ bits.

② The set $S = \{0, ..., n\}$ can also be encoded in around $\log_2 n$ bits.

 If the running time of an algorithm is bounded by a polynomial function of the input size, then we say the algorithm runs in polynomial time.

 If the running time of an algorithm is bounded by a polynomial function of the input size, then we say the algorithm runs in polynomial time.

For example: ordering a finite list \mathcal{L} of numbers

• Input size of the normal form representation of \mathcal{L} is the size n.

If the running time of an algorithm is bounded by a
polynomial function of the input size, then we say the
algorithm runs in polynomial time.

For example: ordering a finite list \mathcal{L} of numbers

- Input size of the normal form representation of \mathcal{L} is the size n.
- Silly algorithm requires around $\binom{n}{2}$ comparisons and re-ordering of the lists.

P vs NP: What you need to know

What do you mean is HARD TO COMPUTE X ??

Figure: I tried to compute X, I can't do it, therefore it must be hard!

Figure: I can't compute X, but if I could do it, the problems of all these people would be solved too! therefore it must be hard!

#P-complete problems is a family of COUNTING problems, if one finds a fast solution for one, you find it for all the members of the

Many of the problems we care about require LISTING all the elements of a set: e.g., list all facets, all vertices. There are no uniformly accepted complexity notions for LISTING algorithms, and the output size can be LARGE.

- An algorithm is output sensitive if it runs in TIME polynomial in both the input size and the output size.
- An algorithm is compact if it runs in SPACE polynomial in the input size ONLY.
 - An ideal listing algorithm is a compact output-sensitive algorithm. Hard to find!!!

Crash Course on Combinatorial Convexity A Catalogue of famous and useful polytopes Crash Course on Computational Complexity

Thank you