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Is there any solution of Ax ≥ b?

we say that the system of inequalities Ax ≥ b is feasible if
there is at least one x that satisfies all the inequalities. We
wish to know when and certify the feasibility/infeasibility of
polyhedra.

Analogously, in linear algebra,
Fredholm’s Lemma: {x : Ax = b} is non-empty if and only
if {y : yT A = 0, yT b = −1} is empty.
Such a vector y is a mathematical proof that Ax = b has no
solution. We will prove today
Farkas Lemma: A polyhedron {x : Ax ≤ b} is non-empty if
and only if there is no solution
{y : yT A = 0, yT b < 0, y ≥ 0}.
We will give an (inefficient) algorithmic proof of Farkas lemma
using an algorithm that decides whether a polyhedron is
feasible: Fourier-Motzkin’ algorithm.
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Fourier-Motzkin Algorithm

INPUT: Polyhedron P = {x : Ax ≤ b}
OUTPUT: Yes/No depending whether P is empty or not.

Else we eliminate leading variable (x1). Re-write the
inequalities to be regrouped in 3 groups:

x1+(a′i )
T x ′ ≤ b′i , (if coefficient of ai1 is positive) (TYPE I)

−x1+(a′j)
T x ′ ≤ b′j , (if coefficient of aj1 is negative) (TYPE II)

(a′k)T x ′ ≤ b′k , (if coefficient of ak1 is zero) (TYPE III)

Here x ′ = (x2, x3, . . . , xn).
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Fourier-Motzkin continued

Add all possible pairs of inequalities of (TYPE I) and (TYPE II).
Create new system (∗) with fewer variables:

(a′j + a′i )
T x ′ ≤ (bj + bi ) for i of type I and j of type II

Keep equations of type III (a′k)T x ′ ≤ b′k

Original system of inequalities has a solution if and only if the
system (∗) is feasible WHY?

Clearly new system

(∗) is equivalent to (a′j)
T x−b′j ≤ b′i−(a′i )

T x ′, and (a′k)T x ′ ≤ b′k

Thus, if we manage to find x2, x3, . . . , xn satisfying (∗), then
we find x1 (squeezed in between).

max((a′j)
T x − b′j) ≤ x1 ≤ min(b′i − (a′i )

T x ′).

Process ends when we have no variables left. System is
feasible if and only if the right-hand sides b’ are all
non-negative.
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Proof of Farkas Lemma

Indeed, if we reduce until we have no variables. New system
becomes 

0

0

...

0

 ≤


b′1

b′2

...

b′n


Polyhedron {x : Ax ≤ b} infeasible ⇐⇒ b′i < 0 for some i .
Rewriting and addition steps correspond to row operations on
the original matrix A. This is done by matrix multiplication.

0 = MAx ≥ Mb = b′, with matrix M with non-negative entries

Set yT = (ei )
T M, with ei standard i-th unit vector then

0 = yT A, yT b < 0, and y ≥ 0.
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More on Farkas I

Here is another form of Farkas lemma:

Corollary:
{x : Ax = b, x ≥ 0} = ∅ ⇐⇒ {y : yT A ≥ 0, yT b < 0} 6= ∅.

proof {x : Ax = b, x ≥ 0} 6= ∅ ⇐⇒ {x : Ax ≤ b, −Ax ≤
−b, −Ix ≤ 0} 6= ∅.
By previous version of Farkas, this happens if and only if no
solution exists of yT = [y1 y2 y3]T with

[y1 y2 y3]T


A

−A

−I

 = 0, [y1 y2 y3]T


b

−b

0

 < 0, yT ≥ 0

The vector y1 − y2 has the desired property.
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More on Farkas II

Here is another form of Farkas lemma:

Corollary:
{x : Ax ≤ b, x ≥ 0} 6= ∅ ⇐⇒ When yT A ≥ 0, then yT b ≥ 0

proof Necessity: We know x ≥ 0, Ax = b, if in addition
yT A ≥ 0 then yT b = yT Ax ≥ 0.
Sufficiency: Suppose if yT A ≥ 0, then yT b ≥ 0 but assume
6 ∃x ≥ 0 with Ax = b. From the previous corollary, ∃y with
yT A ≥ 0, yT b < 0. Therefore 0 ≤ yT b < 0 which is a
contradiction.

There are many more consequences and variations of Farkas
lemma (ALL theory of Linear Optimization based on it!!!).
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Weyl-Minkowski

Theorem: [Weyl-Minkowski] Every polytope is a polyhedron.
Every bounded polyhedron is a polytope.

This allows us to represent all polytopes in two ways inside a
computer!! Either as a list of vertices, or as system of
inequalities.
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Weyl-Minkowski in Steroids

Theorem: (Weyl-Minkowski’s Theorem): For a polyhedral
subset P of Rd the following statements are equivalent:

P is an H-polyhedron, i.e., P is given by a system of linear
inequalities P = {x : Ax ≥ b}.
P is a V-polyhedron, i.e., For finitely many vectors v1, . . . , vn

and r1, . . . , rs we can write

P = conv(v1, v2, . . . , vn) + cone(r1, r2, . . . , rs)

Here R + S denotes the Minkowski sum of two sets,
R + S = {r + s : r ∈ R, s ∈ S}.
We need to design an efficient algorithm for the conversion
between the H-polyhedron and V-polyhedron!

NOTE: Cone can be decomposed into a pointed cone plus a
linear space.
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Polyhedral Cones

A set C ⊆ Rn is a cone if it is closed under addition and
multiplication by a positive constant.

A set C ⊆ Rn is a inequality constrained cone if
C = {x ∈ Rn : Ax ≥ 0} for some matrix A.
A set C ⊆ Rn is a finitely generated cone if
C = {λB : λ ∈ Rk

+} for some matrix B.

Theorem (Minkowski-Weyl)

A cone C ⊆ Rn is finitely constrained if and only if it is finitely
generated.

The set of extreme rays of the cone is the minimal set of
generators of a cone.

FUNDAMENTAL QUESTION: how do we convert between the two representations?
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Example 1

Consider the following cone C and its two representations:

2

3

1

4

0
2 31 40

2x

x1

C = {x ∈ R2 : 3x1 − 2x2 ≥ 0,−x1 + 2x2 ≥ 0}.
C = {λ1(2, 1) + λ2(2, 3) : λ1, λ2 ∈ R+}.
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Example2: Magic Squares

A magic square is a square grid of non-negative real numbers such
that the rows, columns, and diagonals all add up to the same value.

0 2 1

2 1 0

1 0 2

Magic Squares are closed under non-negative linear combinations

3×
0 2 1

2 1 0

1 0 2

=

0 6 3

6 3 0

3 0 6

0 2 1

2 1 0

1 0 2

+

1 2 0

0 1 2

2 0 1

=

1 4 1

2 2 2

3 0 3
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Question: Is there a finite set of n × n magic squares so that we
can express every other possible magic square as a linear
non-negative combination?

YES!

There are four such 3× 3 magic squares:

0 2 1

2 1 0

1 0 2

2 0 1

0 1 2

1 2 0

1 2 0

0 1 2

2 0 1

1 0 2

2 1 0

0 2 1

IMPORTANT: There is an algorithm for computing a minimal
such set of magic squares for n × n magic squares. These magic
squares are the extreme rays of the cone of magic squares.
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HOMOGENIZE: Weyl-Minkowski reduces to the case of
Cones!!

We can reduce this problem to problem of transforming
between the two representations of a cone. From an
H-polyhedron construct a cone from the polytope as follows:

t

t=1

Observe: If the original polytope was given by inequalities
Ax ≥ b then the cone is given by inequalities Āy ≥ 0, where
Ā is the extended matrix [A,−b] and y = (x , t).
Enough to solve Weyl-Minkowski’s Theorem for cones:
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Proof of Weyl-Minkowski

The following are equivalent

P is an H-cone, i.e., P is given by a system of linear
inequalities P = {x : Ax ≥ 0}.
P is a V-cone, i.e., For finitely many vectors r1, . . . , rs we can
write

P = cone(r1, r2, . . . , rs)

This is equivalent to (Matrix form!!):
The following are equivalent

P is an H-cone, i.e., ∃ matrix A such that P = {x : Ax ≥ 0}.
P is a V-cone, i.e., ∃ matrix R such that
P = {x : x = Ry , y ≥ 0}

We say the pair (A,R) is a double description pair (DD-pair).
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Polar Cones

Definition: Let K be a convex cone the polar of K is the set

K ∗ = {x ∈ Rn :< x , y >≤ 0 for all y ∈ K}

pause

Lemma: If K is a cone then K ∗ is a cone. In fact,
K = cone({a1, a2, ..., am}), i.e. K is generated by vectors
then K ∗ is given by inequalities:

K ∗ = {x :< x , ai >≤ 0, i = 1, . . . ,m}.

Lemma: (K ∗)∗ = K .
PUNCH LINE: It is enough to prove Weyl-Minkowski ONE of
the implications, the other one follows by polar cone
construction!!
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PUNCH LINE: It is enough to prove Weyl-Minkowski ONE of
the implications, the other one follows by polar cone
construction!!
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Minkowski-Weyl Algorithmic version

LEMMA For any pair of matrices A,R, (A,R) is a DD-pair of
cone C if and only if (RT ,AT ) is a double description pair of
the polar cone of C .

Proof: (EXERCISE) Use Farkas lemma.
An (algorithmic) proof of Minkowski-Weyl’s theorem:
Let R be a matrix defining a V-cone, C , thus

C = {x : x = Ry , y ≥ 0}.
By Fourier-Motzkin we can eliminate all variables y from
above system.
The resulting system of inequalities is written as Ax ≥ 0
(since Fourier-Motzkin respects the direction of inequalities).
This proves that every V-cone can be written as an H-cone.
By previous lemma we are done to prove the converse.
WARNING: Not an efficient algorithm.
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The Double Description
Method (Motzkin-Raiffa-

Thompson-Thrall
1953)
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The Double description Method I

Suppose A is an m × d matrix, defines cone
C = {x : Ax ≥ 0}.
Let AK denote the submatrix of A given by rows in index set
K .

Suppose we found already a matrix R which is DD pair with
AK . From a new row index i /∈ K construct new DD pair
(AK∪{i},R

′) (but HOW?):

Partition the column index set J of R into three parts:

J+ = {j ∈ J : Ai rj > 0}
J0 = {j ∈ J : Ai rj = 0}
J− = {j ∈ J : Ai rj < 0}

We recover the new R ′ from the following lemma:
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The Double description Method II

Lemma: The pair (AK∪{i},R
′) is a DD pair, when the matrix

R ′ is given by the d × J ′ matrix such that

the index set is J ′ = J+ ∪ J0 ∪ (J+ × J−), and
the new columns are rjj′ = (Ai rj)rj′ − (Ai rj′)rj for each
(j , j ′) ∈ J+ × J−.

Proof: Let C (AK∪{i}) = {x : AK∪{i}x ≥ 0} and
C (R ′) = {x : x = R ′y , y ≥ 0}. We wish C (AK∪{i}) = C (R ′).

Clearly C (R ′) ⊂ C (AK∪{i}) because rjj ′ ∈ C (AK∪{i}).

Take x ∈ C (AK∪{i}). Then

x =
∑
j∈J

λj rj , with λj ≥ 0

If there is no λk > 0 for k ∈ J− then x ∈ C (R ′) already. Thus
assume such λk exists.
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The Double description Method III

Therefore since Aix ≥ 0 there must also be λh > 0 with
h ∈ J+.

Substract a suitable multiple of rkh = (Ai rh)rk − (Ai rk)rh from
x =

∑
j∈J λj rj

We are left with a new expression of x with smaller non-zero
coefficients. This process can be repeated as long as λk > 0
with k ∈ J− exists.

So in finitely many steps we must get rid of all such λ at
which point we have x ∈ C (R ′).



Fourier-Motzkin Elimination
Weyl-Minkowski theorem and Listing extreme points and Facets

The Double Description Algorithm
The Ellipsoid Method

The Double description Method III

Therefore since Aix ≥ 0 there must also be λh > 0 with
h ∈ J+.

Substract a suitable multiple of rkh = (Ai rh)rk − (Ai rk)rh from
x =

∑
j∈J λj rj

We are left with a new expression of x with smaller non-zero
coefficients. This process can be repeated as long as λk > 0
with k ∈ J− exists.

So in finitely many steps we must get rid of all such λ at
which point we have x ∈ C (R ′).



Fourier-Motzkin Elimination
Weyl-Minkowski theorem and Listing extreme points and Facets

The Double Description Algorithm
The Ellipsoid Method

The Double description Method III

Therefore since Aix ≥ 0 there must also be λh > 0 with
h ∈ J+.

Substract a suitable multiple of rkh = (Ai rh)rk − (Ai rk)rh from
x =

∑
j∈J λj rj

We are left with a new expression of x with smaller non-zero
coefficients. This process can be repeated as long as λk > 0
with k ∈ J− exists.

So in finitely many steps we must get rid of all such λ at
which point we have x ∈ C (R ′).



Fourier-Motzkin Elimination
Weyl-Minkowski theorem and Listing extreme points and Facets

The Double Description Algorithm
The Ellipsoid Method

The Double description Method IV

We can refine the above construction, finding a matrix R ′

which has no redundant columns!!
We say rj is a extreme ray if it cannot be written as a
non-negative combination of two other rays.
Thus all we need to do is throw away columns of the matrix
which are not extreme rays. How to tell???
Lemma: Let Z (x) be the set of indices of inequalities such
that Aix = 0. A ray r is an extreme ray of the cone
{x : x ∈ Rd , Ax ≥ 0} ⇐⇒ the rank of the submatrix
AZ(r) = d − 1.
How to do the initial DD pair?? Select a maximal submatrix
AK with linearly independent rows of A.
Initial matrix R is the solution to AK R = I . WHY?
rank(A) = d then AK must be square then R = A−1

K . Then
(AK ,R) is DD pair since AK x ≥ 0 ⇐⇒ A−1

K y , y ≥ 0.
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The Double description Method V

The double description method has a dual version called the
Beneath-Beyond method.

DD is practical for low dimensions (see CDD).

The size of intermediate polytopes can be very very sensitive
to the order in which the subspaces are introduced.

D. Bremner (1999) showed a family of polytopes for which
the double description method is exponential.
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The Ellipsoid Method
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The Algorithm

Given: A set S is a polyhedron (bounded and convex) with
vol(S) > 0, an ellipsoid EM,z such that S ⊆ EM,z .
Want: s ∈ S .

1 k = 0; Mk = M; zk = z ;

2 If zk ∈ S : STOP; otherwise

3 Find a nonzero vector a such that aT x ≤ aT zk , ∀ x ∈ S ;
(separating hyperplane)

4 Construct the smaller volume ellipsoid that contains

EM,z ∩ {x ∈ Rn | aT (x − zk) ≤ 0}.

Let this ellipsoid have matrix Mk+1 and center zk+1.

5 k = k + 1;

6 Go back to Step 2.
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The case of n = 2:

S



Fourier-Motzkin Elimination
Weyl-Minkowski theorem and Listing extreme points and Facets

The Double Description Algorithm
The Ellipsoid Method

The Algorithm

The case of n = 2:

S



Fourier-Motzkin Elimination
Weyl-Minkowski theorem and Listing extreme points and Facets

The Double Description Algorithm
The Ellipsoid Method

The Algorithm

The case of n = 2:

S



Fourier-Motzkin Elimination
Weyl-Minkowski theorem and Listing extreme points and Facets

The Double Description Algorithm
The Ellipsoid Method

The Algorithm

The case of n = 2:

S



Fourier-Motzkin Elimination
Weyl-Minkowski theorem and Listing extreme points and Facets

The Double Description Algorithm
The Ellipsoid Method

The Algorithm

The case of n = 2:

S



Fourier-Motzkin Elimination
Weyl-Minkowski theorem and Listing extreme points and Facets

The Double Description Algorithm
The Ellipsoid Method

The Algorithm

in 1979 Kachiyan developed his idea from an original version
(non-polynomial) method by Shor, Judin and Nemirovskii who
described it as an iterative method for minimizing convex
functions.

The k-th ellipsoid Ek has volume less than e−
n
2 vol(Ek−1), so

the process ends after a polynomial number of steps for
polyhedra!!!

Technical point: How to compute successive ellipsoids. Each
ellipsoid is given by a positive definite matrix Ak and a center
xk namely

Ek = {x : (x − xk)T A−1
k (x − xk) ≤ 1}

From this and the separating hyperplane we can write a
(complicated) formula for the new ellipsoid Ek+1.
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The Algorithm

Kachiyan’s ellipsoid method is the first-ever polynomial time
algorithm for answering the feasibility question (and also the
linear programming problem). Interior point methods are also
proven to be polynomial time.

It runs in polynomial bound that depends on the dimension of
the problem and on the size of the data, but not on the
number of inequalities!! The algorithm need NOT know all
the inequalities at one time! All we need is an oracle that
gives the “separation”.
Inefficient in practice!! But its theoretical importance is quite
impressive!! Extremely important in Combinatorics!!
There are many many polytopes that encode combinatorial
information on their vertices: Matching polytopes, Traveling
salesman polytopes, matroid polytopes, etc.
Theorem (Gröstchel, Lovász, Schrijver) If given a polyhedron
P and a point x /∈ P you can SEPARATE them in polynomial
time, then you can OPTIMIZE any linear functional over P in
polynomial time.
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Thank you
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