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How to compute the dimension?

Recall: A polyhedron P has dimension k if the maximum
number of affinely independent points in P is k + 1
(i .e.dim(P) = k + 1). How do we compute dimension?

An inequality a′x ≥ b′ from Ax ≤ b is an implicit equality if
a′x = b′ for all {x | Ax ≤ b}.
Theorem If P = {x | Ax ≤ b} 6= ∅ and P ⊂ Rn then
dim(P) = n − rank(A=,b=) where A=x ≤ b= is the set of
implicit equalities.
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Example

What is the dimension of the following polytope?

(1) x1 + x2 + x3 ≥ 2

(2) x1 + x2 ≤ 1

(3) x3 ≤ 1

(4) x1 ≤ 1
2

(5) x1, x2, x3 ≥ 0

We have x1 + x2 + x3 = 2 (one implied equality)
⇒ dim(P) = n − rank(A=, b=).
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How to compute FACES? Eliminate REDUNDACY,
FACETS

Given a polyhedron P = {x | Ax ≤ b} the inequality a′x ≤ b′

is valid for P if it is satisfied by all points in P.

Let v′x ≤ g be a valid inequality for P and let
F = {x ∈ P | v′x = g}. Then F is a face of P. A face is
proper is F 6= ∅, P.

A face of P represented by v′x ≥ g is a facet if
dim(F ) = dim(P)− 1. This is a facet defining inequality.

Theorem For each facet F of P, at least one inequality
representing F is necessary in any description of P. If an
inequality represents a face of smaller dimension that
dim(P)− 1, then it can be dropped (IRREDUNDANT
SYSTEM).
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How to compute FACES? LOW DIMENSION

Theorem Let P = {x : Ax ≤ b}. Then a nonempty subset F
of P is a face of P if and only if F is represented as the set of
solutions to an inequality system obtained from Ax ≤ b by
setting some of the inequalities to equalities in an irredundant
system of P.

Corollary Every minimal nonempty face of P is an affine
subspace of form {x : A1x = b1} where A1x = b1 is a
subsystem of Ax = b.

Corollary There are finitely many faces!
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Optimization=Feasibility

We have been looking at the problem: Is there a point x such
that Ax ≤ b?. This is the Feasibility problem.
There is another problem, the Optimization problem:
Maximize/Minimize linear functional cT x subject to Ax ≤ b.

Surprise: From the point of view theory if you know how to
solve one problem, you know how to solve the other? Of
course, in practice they may perform differently, but I do not
have time to make the distinction!!
Recall Farkas:{x | Ax ≤ b} is non-empty ⇔ there is no
solution {y | y ≥ 0, yTA = 0, yb < 0}. It has
OPTIMIZATION VERSION TOO!!
Theorem: If a finite optimum for max{cx | Ax ≤ b} exists
then min{yb | y ≥ 0, yA = c} has a finite optimum too!!
Optimum is at a vector y ≥ 0 whose positive components
correspond to the linearly independent rows of A!!!
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Basic Idea: Search or traverse the graph of a polytope OR a
hyperplane arrangement by pivoting operations that move us from
one vertex to the next. That way we can generate them all.
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The Simplex Method
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Is there any solution of Ax ≥ b?

We again want to solve the system of inequalities Ax ≥ b.
But we want to make it look more like what you are used to
in linear algebra.

lemma Given any system of inequalities Ax ≤ b, Cx ≥ d, then
it can be transformed into a new system of the form

Dx̄ = f , x̄ ≥ 0

with the property that one system has a solution ⇔ the other
system has a solution.
proof The inequality

∑n
j=1 aijxj ≤ bi can be turned into an

equation:
Add the variable si →

∑n
j=1 aijxj + si = bi with si ≥ 0

Similarly,
∑n

j=1 cijxj ≥ di →
∑n

j=1 cijxj − ti = di

Finally, note that a variable xj unrestricted can be replaced by
two nonnegative variables: xj = x+

j − x−j



A few Zen Moments
Pivoting Philosophy

The Simplex Method
Hyperplane arrangements

Voronoi Diagrams

Is there any solution of Ax ≥ b?

We again want to solve the system of inequalities Ax ≥ b.
But we want to make it look more like what you are used to
in linear algebra.
lemma Given any system of inequalities Ax ≤ b, Cx ≥ d, then
it can be transformed into a new system of the form

Dx̄ = f , x̄ ≥ 0

with the property that one system has a solution ⇔ the other
system has a solution.

proof The inequality
∑n

j=1 aijxj ≤ bi can be turned into an
equation:
Add the variable si →

∑n
j=1 aijxj + si = bi with si ≥ 0

Similarly,
∑n

j=1 cijxj ≥ di →
∑n

j=1 cijxj − ti = di

Finally, note that a variable xj unrestricted can be replaced by
two nonnegative variables: xj = x+

j − x−j



A few Zen Moments
Pivoting Philosophy

The Simplex Method
Hyperplane arrangements

Voronoi Diagrams

Is there any solution of Ax ≥ b?

We again want to solve the system of inequalities Ax ≥ b.
But we want to make it look more like what you are used to
in linear algebra.
lemma Given any system of inequalities Ax ≤ b, Cx ≥ d, then
it can be transformed into a new system of the form

Dx̄ = f , x̄ ≥ 0

with the property that one system has a solution ⇔ the other
system has a solution.
proof The inequality

∑n
j=1 aijxj ≤ bi can be turned into an

equation:
Add the variable si →

∑n
j=1 aijxj + si = bi with si ≥ 0

Similarly,
∑n

j=1 cijxj ≥ di →
∑n

j=1 cijxj − ti = di

Finally, note that a variable xj unrestricted can be replaced by
two nonnegative variables: xj = x+

j − x−j



A few Zen Moments
Pivoting Philosophy

The Simplex Method
Hyperplane arrangements

Voronoi Diagrams

Example: From Inequalities to Equations

Solve the system of inequalities:
7x + 3y - 20z ≤ -2
4x - 3y + 9z ≤ 3
-x + 2y - z ≥ 4
11x - 2y + 2z ≥ 11

Using the previous lemma, we can now modify the system:

7x+ − 7x− + 3y+ − 3y− + 20z+ − 20z− + s1 = −2
4x+ − 4x− − 3y+ + 3y− + 9z+ − 9z− + s2 = 3
−x+ + x− + 2y+ − 2y− − z+ + z− − t1 = 4
11x+ − 11x− − 2y+ + 2y− − 2z+ + 2z− − t2 = 11

where x±, y±, z±, t1, t2, S1, s2 ≥ 0

but how can solve it???
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The Simplex Method “Expresso” version

We will use a simple easy-to-understand version of the
SIMPLEX method.

The key idea was introduced by Robert Bland (1970’s) and
developed in this form by Avis and Kaluzny.
Algorithm: B-Rule Algorithm (aka Simplex method)

input: A ∈ Qm×n of full row rank and b ∈ Qm.

output: Either a nonnegative vector x with Ax = b or a
vector y certifying infeasibility.

Step 1: Find an invertible m ×m submatrix B of A.
Rewrite the system Ax = b leaving the variables associated to
B in the left
Step 2: Set all the non-basic variables to zero. Find the
smallest index of a basic variable with negative solution.
If there is none, we have found a feasible solution x . Stop!.
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Else, select the equation corresponding to that basic variable
continue to Step 3.

Step 3: Find the non-basic variable in the equation chosen in
Step 2, that has smallest index and a positive coefficient.

If there is none, then the problem is infeasible, stop!
Else, solve this equation for the non-basic variable and
substitute the result in all other equations.
This variable becomes now basic, the former basic variable
becomes non-basic. Go to Step 2.

NOTE: This last switch of variables is called a PIVOT.
NOTE: The simplex algorithm in general will have different
PIVOT RULE to choose which variable leaves which variable enters
the set of basic variables.
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Example 1

Solve the next system for xi ≥ 0, i = 1, 2, ..., 7.

2x1 + x2 + 3x3 + x4 + x5 = 8
2x1 + 3x2 + 4x4 + x6 = 12
3x1 + 2x2 + 2x3 + x7 = 18.

Step 1 of the B-Rule Algorithm: find a basis in the matrix
A,.
We choose the easiest basis, which is given by the 5th, 6th
and 7th columns of A.
Denote the basis by B = {5, 6, 7} and the set of the
remaining vectors by NB = {1, 2, 3, 4}.
Next we solve the equation Ax = b for the basic variables
XB = {x5, x6, x7}.
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XB = B−1b − B−1CXNB =

 8
12
18

−
 2 1 3 1

2 3 0 4
3 2 2 0




x1

x2

x3

x4


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Example1 Continued

Step 2 in the B-Rule Algorithm: Set all non-basic variables
equal to zero. We obtain the non-negative values x5 = 8,
x6 = 12, x7 = 18.

Therefore, this problem is feasible, and its solution is given by
x1 = x2 = x3 = x4 = 0, x5 = 8, x6 = 12 and x7 = 18.

Suppose we choose a different basis from the above, say
B ′ = (1, 4, 7), and solve the problem keeping this election.
It is not difficult to obtain solution x1 = 10/3, x2 = x3 = 0,
x4 = 10/3, x5 = x6 = 0, x7 = 8.

We observe that the two solutions are completely different. In
general, the solution always depends on the election of the
basis.
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Example 2

Next we solve the system Ax = b for xi ≥ 0, i = 1, 2, ..., 6., where
A and b are given by

A =

 −1 −2 1 1 0 0
1 −3 −1 0 1 0
−1 −2 2 0 0 1

 b =

 −1
2
−2


Step 1 Choose a basis from A, say B = {4, 5, 6}. Next we
solve the system for the basic variables XB = {x4, x5, x6}.

x4

x5

x6

= −1 + x1 + 2x2 − x3

= 2− x1 + 3x2 + x3

= −2 + x1 + 2x2 − 2x3

Step 2: Setting all non-basic variables equal to zero, we get
x4 = −1, x5 = 2 and x6 = −2. Note that x4 and x6 are basic
variables with negative solution. Choose that one with
smallest index!!
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Example 2, Continued

Choose the equation that corresponds to x4 in the equation
above.
Next, we must find the non-basic variable in the equation that
has smallest index and a positive coefficient, in this case x1 is
such a variable.
Step 3 Solve the first equation for that non-basic variable,
taking from now x1 as basic variable and go back to Step 2 of
the algorithm.

x1

x5

x6

= 1− 2x2 + x3 + x4

= 2− (1− 2x2 + x3 + x4) + 3x2 + x3

= −2 + (1− 2x2 + x3 + x4) + 2x2 − 2x3

= 1− 2x2 + x3 + x4

= 1 + 5x2 − x4

= −1− x3 + x4

Set non-basic variables equal to zero, we obtain x1 = 1,
x5 = 1 and x6 = −1. We see x6 has negative solution so we
choose the corresponding equation. Find non-basic variable in
equation with smallest index and a positive coefficient.
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Example 2, Continued

The non-basic variable selected is x4. Solve that equation for
x4 and rewrite the system as follow.

x1

x4

x5

= 1− 2x2 + x3 + (1 + x3 + x6)
= 1 + x3 + x6

= 1 + 5x2 − (1 + x3 + x6)

= 2− 2x2 + 2x3 + x6

= 1 + x3 + x6

= 0 + 5x2 − x3 − x6

Back again to Step 2: now with x1, x4 and x5 as basic
variables, we set all non-basic variables equal to zero obtaining
non-negative solutions for the basic variables.

So we have found that one solution to the problem is x1 = 2,
x2 = x3 = 0 x4 = 1 and x5 = x6 = 0.
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Example 3

Solve the system Ax = b for xi ≥ 0, i = 1, ...6, where A and b are
given as follow.

A =

 −1 2 1 1 0 0
3 −2 1 0 1 0
−1 −6 23 0 0 1

 b =

 3
−17

19


First choose a basis from A, say B = {4, 5, 6}, and solve the
system for the basic variables x4, x5 and x6.
We obtain...
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Example 3, Continued

x4

x5

x6

= 3 + x1 − 2x2 − x3

= −17− 3x1 + 2x2 − x3

= 19 + x1 + 6x2 + 23x3

Set all non-basic variables equal to zero. We obtain x4 = 3,
x5 = −17 and x6 = 19. Since x5 has negative solution we
have to find the non-basic variable in the second equation
that has smallest index and a positive coefficient.

The variable selected for the pivot is x2.
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Example 3, Continued

Solve that equation for x2 and after substitute the variable x5 by
the variable x2 in the basis.

x2

x4

x5

= 17/2 + 3/2x1 + 1/2x3 + 1/2x5

= 3 + x1 − 2(17/2 + 3/2x1 + 1/2x3 + 1/2x5)− x3

= 19 + x1 + 6(17/2 + 3/2x1 + 1/2x3 + 1/2x5) + 23x3

then

x2 = 17/2 + 3/2x1 + 1/2x3 + 1/2x5

x4 = −14− 2x1 − 2x3 − x5

x5 = 70 + 10x1 + 26x3 + 3x5

We are in step two again. Set all non-basic variables equal to
zero. The only solution negative is x4 = −14, so we must
choose the corresponding equation to x4.
We realize that all coefficients in that equation are negative,
therefore, according to step three, the problem is infeasible!!
There is not solution to the problem! Why?
Suppose there exists such a solution xi ≥ 0, ∀i such
that2x1 + 0x2 + 2x3 + x4 + x5 = −14. Clearly this is a
contradiction, because a positive number cannot be equal to a
negative number.
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The algorithm works!!

Note that by construction of the algorithm gives the desired
answer IF the algorithm ever terminates!!!
Lemma If xn is the last variable, during the B-rule iterations, xn

cannot enter the basic variables and then leave OR leave and then
enter.

(proof of lemma)

When xn is chosen to enter the basic variables among the
equations of the dictionary one finds

xi = bi +
∑
j /∈B

aijxj + ainxn

where aij ≤ 0, bi < 0 and ain > 0.
Therefore, any solution of the whole system with xl ≥ 0 for
l 6= n must necessarily have xn > 0, otherwise a contradiction
occurs!
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When xn is chosen to leave the basic variables we have

xi = b′i +
∑
j∈N

a′ijxj (i ∈ B \ {n})

xn = b′n +
∑
j∈N

a′njxj

This shows b′n < 0 while b′i ≥ 0 for all others indices. Setting
the non-basic variables to zero shows there is a solution with
x1, . . . , xn−1 ≥ 0 but xn < 0.

Thus leaving and entering or entering and leaving are
incompatible situations.
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Theorem The B-Rule Algorithm terminates
(proof of Theorem): By contradiction.

Suppose there is a matrix A and a vector b for which the
algorithm does not terminate. Let us assume that A is an
example with smallest number of rows plus columns.

Since there is a finite number of bases, in fact no more than(n
m

)
, then if the algorithm does not terminate one can find a

cycle of bases in the iterations. One starts at one basis B1,
then moves to B2, B3, . . . , and after say k iterations one
returns to B1.
By the lemma, during this cycle of bases, the last variable xn

is either in all Bi or in none of them.
If xn is a basic variable discard the associated equation, it did
not affect the choice of variables entering or leaving the basis.
We have a smaller counterexample (fewer rows!)
If xn is always non-basic then delete xn. A counterexample
(fewer columns).
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A word about Avis-Fukuda Reverse-Search

This is a very general procedure to LIST combinatorial objects
connected by PIVOTS (=directed edges) inside a graph.

Examples of such situations are the graphs of polytopes (with
an objective function to orient the edges), hyperplane
arrangements.

It is called the reverse-search method because it reverses the
simplex method: It goes from the optimal vertex in unique
paths toward all possible other vertices, recovering a spanning
tree of the polytope.

For simple polytopes reverse-search is an output-sensitive
algorithm.
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Application 1: Hyperplane
arrangements
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Central arrangements=Zonotopes

Given a central arrangement of hyperplanes represented by a
d ×m matrix A, i.e, hi = x : Aix = 0 Look at the cut section
of the arrangement with the unit (d − 1)-sphere Sd−1

Each hyperplane cuts a (d − 2)-sphere. Each is an
arrangement of spheres (or great-circles), giving a spherical
polytope!!!
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Theorem The face lattice of this spherical polytope is the
dual to the zonotope generated as the Minkowski sum of the
line segments [−Ai , Ai ].

Theorem: For a hyperplane arrangement with in Rd and m
hyperplanes, there is an efficient implementation of Reverse
Search that lists all the regions of an arrangement
(equivalently the vertices of a zonotope) with time complexity
O(md(#regions)) and space complexity O(md). Similarly
the vertices of the arrangement can be listed efficiently
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Application 2: Voronoi
Diagrams
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Question: How to properly assign regions of vigilance to AAA
repair shops or Fire stations??

Given a finite set of point in space Rd . The Voronoi diagram
of S is a decomposition of space into regions associated to
each of the points p ∈ S :

near(p) = {x ∈ Rd : dist(x , p) ≤ dist(x , q) for all q ∈ S − p}

Each region is a polyhedral cell, a Voronoi cell. Finding those
cells has many applications.
IDEA: Voronoi cells can be computed are the projections of
the facets of certain nice polytope!!!
HOW? Lift the points of S to the paraboloid
xd+1 = x2

1 + x2
2 + · · ·+ x2

d . The consider the polyhedron
whose inequalities are precisely the tangent planes at the lifted
points.
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Replace each equation with inequality ≥ for each p ∈ S to
obtain a polyhedron PS given by inequalities∑d

j=1 p2
j − 2pjxj + xd+1 ≥ 0

Theorem The Voronoi diagram of S is the orthogonal
projection of each facet of PS back into the original space.
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Thank you
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