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Outline of the talk

1. Triangulations of polytopes. (A brief overview).

2. Triangulations and algebraic geometry:
Bernstein's [ heorem: Viro's T heorem;

3. Triangulations and optimization: parametric
linear programming; Sperner’'s lemma and fixed
points.
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1. Triangulations



Polytopes

A polytope is the convex hull of finitely many
points

conv(pi, ..., Pn) 1= {Z&ipﬂ' a; >0V =1,... ._,'H_,Z-ﬂ'z' =

A finite point set
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Polytopes

A polytope is the convex hull of finitely many
points

conv(pi, ..., Pn) 1= {Zﬂ'ﬂﬂz‘ oy 2 0V = 1,...,:-*1,2'&3- =

lts convex hull
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Triangulations

A triangulation i1s a partition of the convex hull
into simplices such that

The union of all these simplices equals conv(A).

(Union Property.)

Any pair of them intersects in a (possibly empty)
common face. (Intersec. Prop.)

A triangulation of P
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Triangulations

The following are not triangulations:

The union is not the whole convex hull
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Triangulations

The following are not triangulations:

-,

The intersection is not okay
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Triangulations

Recall that a simplex is the convex hull of any set
of affinely independent points. Equivalently, it is
any polytope of dimension d with d + 1 vertices.

*, ,f’“t., .',"x
N P 1,
‘xx - I | H‘x
- ", '::__ i I|I Y
- T . | .
B e
O-simplex  1-simplex 2-simplex 3-simplex

The simplest simplices

A d-simplex has exactly (fj_'ll) faces of dimension
i, (1= —1,0,...,d), which are themselves i-simplices.
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Triangulations of a point configuration

A point configuration is a finite set of points in
R4, possibly with repetitions.

1 e e 4 a,;=(-1,2)
a,=(-1,-1
.5 _ “3:{2:_1}
a,=(2,2)
2 ® 3
a =(0,0)

A point set with 5 elements
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Triangulations of a point configuration

A triangulation of a point set A is a triangulation
of conv A with vertex set contained in 4. Remark:
Don't need to use all points

1 4 1 4
L ]
2 3 2 )
124, 234 123, 134
1 4 1 4

5 3 NN

125, 145, 325, 345 125, 235, 135, 134
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Example: Triangulations of a convex
n-gon

1. Triangulations
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Example: Triangulations of a convex
n-gon

To triangulate the n-gon, you just need to insert
n — 3 non-crossing diagonals:

A triangulation of the 12-gon
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Example: Triangulations of a convex
n-gon

To triangulate the n-gon, you just need to insert
n — 3 non-crossing diagonals:

Another triangulation of the 12-gon, obtained by
flipping an edge
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1. Triangulations

The Graph of flips for a hexagon
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Some obvious properties of
triangulations and flips of an n-gon

e [he graph is regular of degree n — 3.

e [he graph has dihedral symmetry.
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Some non-obvious properties of
triangulations and flips of an n-gon

e |t is the graph of a polytope of dimension n — 3,
called the associahedron [Stasheff 1963, Haiman
1984, Lee 1989].

e [he graph has diameter equal to 2n — 10 for all
n > 12 [Sleator-Tarjan-Thurston, 1988].

e [here are exactly ﬁ(%:__;‘) triangulations.
That i1s to say, the Catalan number C,,_5:

Joj1]2]3]4]5]6
| 1

1 2ny _ T
o=l e T2 (5 [ [ 2 | 132

n
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The Catalan number ), not only counts the
triangulations of a n 4 2-gon:

It also counts. . .
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1. Binary trees on n-nodes.

VAN

1. Triangulations
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1. Binary trees on n-nodes.

2. Monotone lower-diagonal lattice

from (0,0) to (n,n).
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(integer) paths
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. Binary trees on n-nodes.

. Monotone lower-diagonal lattice (integer) paths

from (0,0) to (n,n).

3. Sequences of 2n signs with exactly n of each and
with more +'s than —'s in every initial segment.

+—+—+- +4+——4- +—++-

+—+—+—- +++-—--
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1. Binary trees on n-nodes.

2. Monotone lower-diagonal lattice (integer) paths

from (0,0) to (n,n).

3. Sequences of 2n signs with exactly n of each and
with more +'s than —'s in every initial segment.

... and some other 60 combinatorial
structures,

according to Exercise 6.19 in

R. Stanley, Enumerative combinatorics, Cambridge
University Press, 1999,
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Regular triangulations

let A = {a ...,a,} C R? be a vector
configuration. Let h = (hq,..., h,) € R™ be a vector.

n.-

Consider the lifted vector configuration A =

W Gl - pd+l The lower envelope of
hy - h,

cone(A) (projected down to R? forms a polyhedral
subdivision of A. If h is “sufficiently generic” then it
forms a triangulation.

Remark: Different h's may provide different
triangulations. But, for some A's, not all
triangulations can be obtained in this way.

24
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Regular triangulations

let A = {a ...,a,} C R? be a vector
configuration. Let h = (hq,..., h,) € R™ be a vector.

n.-

Consider the lifted vector configuration A =

W Gl - pd+l The lower envelope of
hy - h,

cone(A) (projected down to R forms a polyhedral

subdivision of A. If h is “sufficiently generic” then it
forms a triangulation.

Remark: Different h's may provide different
triangulations. But, for some A's, not all
triangulations can be obtained in this way.

The triangulations that can be obtained like this
are called regular.
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Regular triangulations
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Regular triangulations
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1. Triangulations

Regular triangulations
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Regular triangulations

Example:
R = ( 0 0 0, =5, -4, —3),
4 0 0 2 1 17

0 4 0 1 2 1
004 1 1 2

1. Triangulations

A
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The triangulation associated with the lifting vector .
T his shows a two-dimensional slice of the 3d-cone.
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Another example:
h = (7, 7, 7, 7, [ 7), A =

=

L

(

(8)°

A triangulation not associated with any lifting vector
h. That is to say, a non-regular triangulation.

1. Triangulations 31



The secondary polytope

Theorem [Gelfand-Kapranov-Zelevinskii, 1990]

The poset (partially ordered set) of regular polyhedral
subdivisions of a point set (or acyclic vector
configuration) A equals the face poset of a certain
polytope of dimension n — & (n = number of points,
k = rank = dimension +1).

This is called the secondary polytope of A.
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The poset of subdivisions of a pentagon
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Secondary polytope of a polygon (associahedron)
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Secondary polytope of a 1-dimensional configuration

(a cube)
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Bistellar flips

They are the "minimal possible changes” among
triangulations.  They correspond to edges in the
secondary polytope.

Definition 1: In the poset of polyhedral
subdivisions of a point set A, the minimal elements
are the triangulations. It is a fact that if a subdivision
is only refined by triangulations then it is refined by
exactly two of them. We say these two triangulations
differ by a flip.

That is to say, flips correspond to next to minimal
elements in the poset of polyhedral subdivisions of A

1. Triangulations E13]



Bistellar flips

They are the "minimal possible changes” among
triangulations.  They correspond to edges in the
secondary polytope.

Definition 2: A circuit is a  minimally
(affinely/linearly) dependent set of (points/vectors).
It I1s a fact that a circuit has exactly two triangulations.
If a triangulation T of A contains one of the two
triangulations of a circuit ', a flip on C consists
on changing that part of T to become the other
triangulation of C.

1. Triangulations 37
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Triangulated circuits and their flips, in dimensions 2
and 3
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Flips between regular triangulations of a point set
(i.e., secondary polytope

1. Triangulations

39



... and flips between all the triangulations of the same
point set

1. Triangulations 40



The number of flips of a triangulation

Flips between regular triangulations correspond
exactly to edges in the secondary polytope.

1. Triangulations 41



The number of flips of a triangulation

Flips between regular triangulations correspond
exactly to edges in the secondary polytope. Hence,

Theorem: For every point set A, the graph of flips
between regular triangulations is n — d — 1-connected
(in particular, every triangulation has at least n —d — 1

flips).

1. Triangulations 42



The number of flips of a triangulation

Flips between regular triangulations correspond
exactly to edges in the secondary polytope. Hence,

Theorem: For every point set A, the graph of flips
between regular triangulations is n — d — 1-connected
(in particular, every triangulation has at least n —d — 1

flips).

The same happens for non-regular triangulations if
d or n are "small”:

If d = 2, then the graph is connceted [Lawson
1977] and every triangulation has at least n — 3 flips
|de Loera-Santos-Urrutia, 1997] (but it is not known if
the graph is n — 3-connected).
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The number of flips of a triangulation

Flips between regular triangulations correspond
exactly to edges in the secondary polytope. Hence,

Theorem: For every point set A, the graph of flips
between regular triangulations is n — d — 1-connected
(in particular, every triangulation has at least n —d — 1

flips).

The same happens for non-regular triangulations if
d or n are "small”:

If d = 3 and the points are in convex position,
then every triangulation has at least n — 4 flips [de
Loera-Santos-Urrutia, 1997] (but it is not known if the
graph is even connected).
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The number of flips of a triangulation

Flips between regular triangulations correspond
exactly to edges in the secondary polytope. Hence,

Theorem: For every point set A, the graph of flips
between regular triangulations is n — d — 1-connected
(in particular, every triangulation has at least n —d — 1

flips).

The same happens for non-regular triangulations if
d or n are "small”:

If n < d + 4, then every triangulation has at least

3 flips and the graph is 3-connected [Azaola-Santos,
2001].
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The number of flips of a triangulation

But:

1. In dimension 3, there are triangulations with
arbitrarily large n and only O(y/n) flips [Santos,
1999].

2. In dimension 4, there are triangulations with
arbitrarily large n and only O(1) flips [Santos, 1999].

3. In dimension 5, there are point sets with a
disconnected graph of triangulations [Santos, 2004].

4. In dimension 6, there are triangulations with
arbitrarily large n and no flips [Santos, 2000].

1. Triangulations 4n



3. Triangulations
and algebraic
geometry

1. Bernstein's Theorem

2. Viro's Theorem



Bernstein's Theorem

Eernstein



Counting solutions of sparse polynomial
systems

Let f and g be two polynomials in two unknowns,
of degrees d and d’. Bezout's Theorem says that
if the number of (complex, projective) solutions of
flz,y) = glz,y) = 0 is finite, then it is bounded
above by dd’.

Question: Can we get better bounds if we know
that most of the possible monomials in f and ¢ have
zero coefficient? Observe that in one dimension:

e [ he number of distinct roots of a polynomial is at
most equal to twice the number of monomials minus

one (Descartes rule of signs)

¢ [he number of non-zero roots, counted with
multiplicity, cannot exceed the difference between the

highest and lowest degree monomials in the polynomial
(as follows from “Bezout in one dimension™).

Eernstein 44



What we want 1s a generalization of the second
statement. For this:

e To every possible monomial z'y’ we associate
its corresponding integer point (i,7) (as in Viro's
Theorem).

e To a polynomial f(z,y) = 5 ¢; jz°y’ we associate
the corresponding integer point set. lts convex hull is
the Newton polytope of f, N(f).

The Newton polytope for the polynomial z2 + zy +
w3y + xty + 2243 + 243

Eernstein 1l



What we want 1s a generalization of the second
statement. For this:

e To every possible monomial z'y’ we associate
its corresponding integer point (i,7) (as in Viro's
Theorem).

e To a polynomial f(z,y) = 5 ¢; jz°y’ we associate
the corresponding integer point set. lts convex hull is
the Newton polytope of f, N(f).

The question then is:

Can we bound the number of common zeroes
of f and g, counted with multiplicities, in terms
of N(f) and N(g)? (For example, in terms of their
areas...)

Eernstein Rl



What we want 1s a generalization of the second
statement. For this:

e To every possible monomial z'y’ we associate
its corresponding integer point (i,7) (as in Viro's
Theorem).

e To a polynomial f(z,y) = 5 ¢; jz°y’ we associate
the corresponding integer point set. lts convex hull is
the Newton polytope of f, N(f).

The question then is:

Can we bound the number of common zeroes
of f and g, counted with multiplicities, in terms

of N(f) and N(g)? (For example, in terms of their
areas...)

Remark: sparse polynomial ~ polynomial with a fixed
set of allowed monomials.

Eernstein h2



Eernstein

YES !
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YES !

Theorem (Bernstein, 1975) The number of common
zeroes of f and g in (R*)? (that is, out of the
coordinate axes) is bounded above by the mixed area

of the two polygons N(f) and N(g).

-

Mixed area of a triangle and a rectangle.

54
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YES !

Theorem (Bernstein, 1975) The number of common
zeroes of f and g in (R*)? (that is, out of the
coordinate axes) is bounded above by the mixed area

of the two polygons N(f) and N(g).

-

Mixed area of a triangle and a rectangle.
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YES !

Theorem (Bernstein, 1975) The number of common
zeroes of f and g in (R*)? (that is, out of the
coordinate axes) is bounded above by the mixed area

of the two polygons N(f) and N(g).

-

Mixed area of a triangle and a rectangle.
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YES !

Theorem (Bernstein, 1975) The number of common
zeroes of f and g in (R*)? (that is, out of the
coordinate axes) is bounded above I::ry' the mixed area

of the two polygons N(f) and N{(g

) ;

Mixed area of a triangle and a rectangle.

57
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YES !

Theorem (Bernstein, 1975) The number of common
zeroes of f and g in (R*)? (that is, out of the
coordinate axes) is bounded above by the mixed area
of the two polygons N(f) and N(g) and it equals
the mixed area for sufficiently generic choices of the
coefficients.

Eernstein RE



YES !

Theorem (Bernstein, 1975) The number of common
zeroes of f and g in (R*)? (that is, out of the
coordinate axes) is bounded above by the mixed area
of the two polygons N(f) and N(g) and it equals
the mixed area for sufficiently generic choices of the
coefficients.

The theorem is valid for n polynomials fi...., fn
in 1 variables, except we have to define their mixed
volume.
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Mixed volume

Definition 1: Let )1.Q9,....Q, be n polytopes
in R™. Their mixed volume p(@Q4,...,@Q, ) equals

> plfivel|{ Yo,

Ic{1,2,...,n} =2

Eernstein Al



Mixed volume

Definition 2: Let )1.Q9,....Q, be n polytopes
in R™. Their mixed volume p(@Q4,...,@Q, ) equals

the coefficient of xixo---x,, Iin the homogeneous
polynomial vol(z1Q1 + - -+ + x,Q4).

Eernstein Al



Mixed volume

Definition 3: Let )1.Q9,....Q, be n polytopes
in R™. Their mixed volume p(@Q4,...,@Q, ) equals

the sum of the volumes of the mixed cells in any (fine)

mixed subdivision of Q1 + -+ + Q..

Eernstein A2



Mixed volume

Definition 3: Let )1.Q9,....Q, be n polytopes
in R™. Their mixed volume p(@Q4,...,@Q, ) equals

the sum of the volumes of the mixed cells in any (fine)

mixed subdivision of Q1 + -+ + Q..

In particular, to compute the number of zeroes of a
sparse system of polynomials fy..... f,, one only needs
to compute a “(fine) mixed subdivision” of N(f1) +

e N(f)

63
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A cooking recipe for fine mixed subdivisions:

— \

-1 /3 0

Choose sufficiently generic (e.g. random) numbers
w, € K, one for each a in each of the );'s

Eernstein



A cooking recipe for fine mixed subdivisions:

0 0
0 0
1/ 9 0
0
N =
/o 0 —1/3
~1/3 0
0

~29 —-1/3 /9
Use the numbers to lift the points of ()1 4 --- 4+ @,
and compute the lower envelope of the lifted point
configuration.

Eernstein Ah



A cooking recipe for fine mixed subdivisions:

0 ~1
0 -1 _1
0 0
N =
0 0 10/9
10/9 0

10/9 1079 0 0

Use the numbers to lift the points of ()1 4 --- 4+ @,
and compute the lower envelope of the lifted point
configuration.

Eernstein Ah



A cooking recipe for fine mixed subdivisions:

e [he procedure is, clearly, a generalization of the
notion of regular triangulation.

Eernstein AT



A cooking recipe for fine mixed subdivisions:

e [he procedure is, clearly, a generalization of the
notion of regular triangulation.

e ...actually it is a regular subdivision.
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A cooking recipe for fine mixed subdivisions:

e [he procedure is, clearly, a generalization of the
notion of regular triangulation.

e ...actually it is a regular subdivision.

e But, moreover, for every family of polytopes
Q1,...,Q, in R? there is another polytope
C(Q1,...,Qn) In R™*t4—=1 giych that

mixed subdivisions of Q)q,...,Q,, <+ subdivisions of C(Q)y,...,Q,,)

ne mixed subdivisions of @)y, ..., Q,, < triangulations of C(Q1,...,Q,

(This is the polyhedral Cayley Trick).

Eernstein A



A cooking recipe for fine mixed subdivisions:

e [he procedure is, clearly, a generalization of the
notion of regular triangulation.

e ...actually it is a regular subdivision.

e But, moreover, for every family of polytopes
Q1,...,Q, in BR? there is another polytope
C(Q1,...,Q,) in R"T4=1 sych that

mixed subdivisions of Q)q,...,Q,, <+ subdivisions of C(Q)y,...,Q,,)

ne mixed subdivisions of (Q1,.... ), < triangulations of C((1,...,0,
(This is the polyhedral Cayley Trick).

That is to say, the number of roots of a
sparse system of polynomials can be computed

via triangulations.

Eernstein [l



How to compute the roots

From (the proof of) Bernstein's theorem one not
only gets the number of roots, but also a germ at ¢ =0
of an algebraic curve (x(%), y(t)) such that (z(1),y(1))
is a root (roots are in bijection to the mixed cells in
the mixed subdivision, counted with their volume: the
germs are given by the slopes of mixed cells in the lifting
that was used to construct the mixed subdivision).

Using the germ, one can follow the curve
numerically until reaching the solution.

These are the so-called homotopy methods or
numerical continuation methods.

Recently, [Verschelde et al.] have extended this
method to positive-dimensional sparse systems of
polynomials.

Eernstein Fi!
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Viro's Theorem
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Hilbert’'s sixteenth problem (1900)

“What are the possible (topological) types of non-
singular real algebraic curves of a given degree d?”

Observation: Each connected component is either
a pseudo-line or an oval. A curve contains one or zero
pseudo-lines depending in its parity.

s
r C
NI
7
A pseudoline. Its complement has one An oval. It
component, homeomorphic to an open is a (topologic
circle. The picture only shows the “affine part”; and its ext
think the two ends as meeting at infinity. Mabius
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Partial answers:

Bezout’'s Theorem: A curve of degree d cuts every
line in at most d points. In particular, there cannot be
nestings of depth greater than |d/2|

Harnack’s Theorem: A curve of degree d cannot have
more than (dgl) +1 connected components (recall that

(d; 1) — genus)

O

Two configurations are possible in degree 3

Wiro T4



Partial answers:

Bezout’'s Theorem: A curve of degree d cuts every
line in at most d points. In particular, there cannot be
nestings of depth greater than |d/2|

Harnack’s Theorem: A curve of degree d cannot have
more than (dgl) +1 connected components (recall that

(“3")= genus)
O
e

Six configurations are possible in degree 4. Only the
maximal ones are shown.
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Partial answers:

Bezout’'s Theorem: A curve of degree d cuts every
line in at most d points. In particular, there cannot be
nestings of depth greater than |d/2|

Harnack’s Theorem: A curve of degree d cannot have
more than (dgl) +1 connected components (recall that

(dgl): genus)
e
8/
O | o O

Eight configurations are possible in degree 5. Only
the maximal ones are shown.
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All that was known when Hilbert posed the problem,
but the classification of non-singular real algebraic
curves of degree six was not completed until the 1960's
|Gudkov]. There are 56 types degree six curves, three
with 11 ovals:

7o o) | 0o o
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What about dimension 7?7 |t was solved by Viro, in
1984 with a method that involves triangulations.

/h

£1 ™
AN
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74
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A curve of degree 6 constructed using Viro's method
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Viro's method:

For any given d, construct a topological model
of the projective plane by gluing the triangle
(0,0),(d,0),(0,d) and its symmetric copies in the
other quadrants:
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Viro's method:

Consider as point set all the integer points in your
rhombus (remark: those in a particular orthant are
related to the possible homogeneous monomials of
degree d in three variables).

Wiro &0



Viro's method:

SWiro

Triangulate the positive orthant arbitrarily . . .

81



Viro's method:

Triangulate the positive quadrant arbitrarily . . .
. .. and replicate the triangulation to the other three
quadrants by reflection on the axes.
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Viro's method:

Choose arbitrary signs for the points in the
first quadrant

Wiro 83



Viro's method:

Choose arbitrary signs for the points in the
first quadrant ... and replicate them to the other
three quadrants, taking parity of the corresponding
coordinate into account.

Wiro &4



Finally draw your curve in such a way that it
separates positive from negative points.



Viro's Theorem

Theorem (Viro, 1987) If the triangulation T chosen
for the first quadrant is regular then there is a real
algebraic non-singular projective curve f of degree d
realizing exactly that topology.

Wiro &6



Viro's Theorem

Theorem (Viro, 1987) If the triangulation T chosen
for the first quadrant is regular then there is a real
algebraic non-singular projective curve f of degree d
realizing exactly that topology.

More precisely, let w; ; (0 <i < i+ j < d) denote
“weights” («cost vector—:lifting function) producing
your triangulation and let ¢; ; be any real numbers of
the sign you've given to the point (i, 7).

Then, the polynomial
flz,y) = e jatyd 4 9elid)

for any positive and sufficiently small ¢ gives the curve
you re looking for.

Wiro a7



Viro's Theorem

e [he method works exactly the same in higher
dimension (and produces smooth real algebraic
projective hypersurfaces).

Wiro &8



Viro's Theorem

e [he method works exactly the same in higher
dimension (and produces smooth real algebraic
projective hypersurfaces).

e |t was used by I|. ltenberg in 1993 to disprove
Ragsdale’s conjecture, dating from 1906!
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Viro's Theorem

e [he method works exactly the same in higher
dimension (and produces smooth real algebraic
projective hypersurfaces).

e |t was used by I|. ltenberg in 1993 to disprove
Ragsdale’s conjecture, dating from 1906!

e What happens if we do the construction with a non-
regular triangulation?
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Viro's Theorem

e [he method works exactly the same in higher
dimension (and produces smooth real algebraic

projective hypersurfaces).

e |t was used by I|. ltenberg in 1993 to disprove
Ragsdale’s conjecture, dating from 1906!

e What happens if we do the construction with a non-
regular triangulation?

Well, then the formula in the theorem cannot be
applied (there is no possible choice of weights). But
there 1s no known example of a curve constructed via
Viro's method (with a non-regular triangulation) and
which is not isotopic to a real algebraic curve of the
corresponding degree. (There are examples of such
curves In toric varieties other than the projective plane

|Orevkov-Shustin, 2000]).
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Viro's Theorem

e [he method works exactly the same in higher
dimension (and produces smooth real algebraic
projective hypersurfaces).

e |t was used by I|. ltenberg in 1993 to disprove
Ragsdale’s conjecture, dating from 1906!

e What happens if we do the construction with a non-
regular triangulation?

Well, then the formula in the theorem cannot be
applied (there is no possible choice of weights).

e Still, the curves constructed with Viro's method (with
non-regular triangulations) can be realized as pseudo-
holomorphic curves in CPP? [Itenberg-Shustin, 2002].
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Ragsdale’s conjecture

Let d = 2k be even, so that a non-singular curve
of degree d consists only of ovals. An oval Is called
positive (or even) if it lies inside an even number of
other ovals, and negative (or odd) otherwise.

Harnack's inequality says that the total number of
ovals cannot exceed 2k? 4+ O(k). Virginia Ragsdale
conjectured in 1906 (based on empirical evidence) that
the numbers of positive ovals could not exceed 3k%/2+

O(k).

In the 1930's, Petrovskii proved that the difference
between the two numbers was bounded by

p—n<3(k*—k)/2+1,

which implies p < Tk?/4 4+ O(F).

In 1993, Itenberg (using Viro's method)
constructed curves having 13%4? /8+0(k) positive ovals.
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||||||
......

This was improved by B. Haas to 1042/6 + O(k).

SWiro
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Curiously enough, using non-regular triangulations,
one can construct Viro curves with 17k%/10 4+ O(k)
positive ovals [Santos, 1995].

Are these curves realizable algebraically?



SWiro

For comparison

Ragsdale’s conjecture: 180 A%/120 4+ O(k).
ltenberg construction: 195 k% /120 4+ O(k).
Haas construction: 200 k2/120 4+ O(k).
Santos construction: 204 £2/120 + O(k).
Petrovskii inequality: 210 &£2/120 4+ O(k).

Harnack inequality: 240 k?/120 4+ O(k).
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For comparison

Ragsdale’s conjecture: 180 A%/120 4+ O(k).
ltenberg construction: 195 k% /120 4+ O(k).
Haas construction: 200 k2/120 4+ O(k).
Santos construction: 204 £2/120 + O(k).
Petrovskii inequality: 210 &£2/120 4+ O(k).
Harnack inequality: 240 k?/120 4+ O(k).

Remark: Petrovskii inequality is valid for pseudo-
holomorphic curves (hence for Viro curves too)
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5. Triangulations
and optimization

1. Parametric linear programming

2. Sperner Lemma

g8
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Parametric linear programming
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Triangulations of vector sets

Let A = {aj,...,a,} be a finite set of real vectors
(a vector configuration).

The cone of A is cone(A) :={> Na; : a; =
0O.vVi=1,...,n}

Two vector configurations, and their cones

A simplicial cone is one generated by linearly
independent vectors.
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Triangulations of vector sets

A triangulation of a vector configuration A is
a partition of cone(A) into simplicial cones with
generators contained in A and such that:

(UP) The union of all these simplices equals conv(A).

(Union Property.)

(IP) Any pair of them intersects in a common face
(Intersection Property.)

The three triangulations of the first configuration

A cone is pointed if it is contained (except for
the origin) in an open half-space. If this happens for
cone(A), then A is called acyclic.
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Remark:  Triangulations of a {pointed/acyclic}
{cone/vector set} of dimension d are the same as the
triangulations of the {polytope/point} set of dimension
d — 1 obtained cutting by an affine hyperplane:
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Linear programming

Let A = (ay,...,a,) € R™™ be a matrix. Let
b € RY and ¢ € R*. To this data one associates the
linear programming problem LP, .(b) := min{c(z) :
Az =0b, =z = 0}:
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Linear programming

Let A = (ay,...,a,) € R™™ be a matrix. Let
b€ R? and ¢ € R". To this data one associates the
linear programming problem LP, .(b) := min{c(z) :
Az =b, =z = 0}:

“minimize the cost function ¢(x)

subject to Az = b and x > 0"

We say that the linear program LP, .(b) is feasible
if {r € R™: Ar = b} is not empty. It is bounded if ¢
has a lower bound in {z € R™ : Az = b}.
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Linear programming

0 3 1 G
Example: A = (2 ) D)’ b = (4)

Then,

Az =b < 2=(1,2,0)+ A(1,—2,6)

The linear program is feasible ((1,2.0) is a feasible
solution). It is bounded for every ¢, because big and
small values of A will make some coordinate of =

negative.
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Remarks:

e feasible

SWiro

7

b € cone(A) := cone({a,..

CGn ).
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Remarks:

o feasible <& b€ cone(A):=cone({ay,...,a,}).

e bounded for every c

—

&  cone(A) is pointed

(—1,...,—1).

SWiro

ker(A) N R, = {0}

<  bounded for ¢ =
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Remarks:

SWiro

feasible << b€ cone(A) :=cone({aj,....a,}).

bounded for every ¢ <  ker(A) NRZ, = {0}

& cone(A) is pointed <  bounded for ¢ =
(—1,...,—1).

if b and ¢ are generic, there is (at most) one optimal
solution. In this case, the optimal solution has d
non-zero coordinates and the corresponding columns
of A form a basis of cone(A). They are called the
optimal basis of LP4 .(b).
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Remarks:

SWiro

feasible << b€ cone(A) :=cone({aj,....a,}).

bounded for every ¢ & ker(A) N R, = {0}
< cone(A) is pointed <<  bounded for ¢ =
(—1,...,—1).

if b and ¢ are generic, there is (at most) one optimal
solution. In this case, the optimal solution has d
non-zero coordinates and the corresponding columns
of A form a basis of cone(A). They are called the
optimal basis of LP4 .(b).

if we knew the optimal basis o, we could find the

optimal solution by just solving a linear system of
equations:

Ax = b, and r; =0 Vié&o.
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Parametric linear programming

Let us study how the previous linear program
depends on the right hand side b. That is, study
the family of linear programs

LPy.={LPy.(b):bc cone(A)}

Question: How does the optimal basis depend on b7
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Parametric linear programming

Theorem (Walkup-Wets 1969) Let LP, .(b) denote

the linear program
min{czr : Ar = b,z = 0},

where ¢ and A are fixed.

Then, there exists a regular triangulation T of
cone(A) such that the optimal basis of LP,4 .(b) for
each b € cone(A) is precisely the (generators of) the
simplicial cone cone(a) with o € T and b € cone(a).

Idea of proof: Consider the lifted vector configuration

A= (&1 an) C Rt The triangulation of A

Cl " om o Cn
in question is the lower envelope of cone(A).
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Parametric linear programming

(0 3 1 (b
Example: A = (2 1 D)' h = (bg)’

C:(Cl Ca CS).

Ar=b & z==1x0+ A(l,—-2,6)

Then:

e if cy —2cy + Gcg = 0, then the optimal basis i1s
(*#,%,0) or (0,*,%), and this happens depending on
whether b € cone(ay,az) or b € cone(as, as)

e if cq —2cy + Gecg < 0, then the optimal basis i1s
(#,0, %) for every b € cone(ay, as, as)
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Parametric linear programming (cont.)

Let us get back to the linear programs LP, .(b),
for a fixed matrix A. But suppose that now ¢ varies,
too. By the previous theorem, each value of ¢ will
provide a different triangulation of cone(A).

Question: What values b, b’ € cone(A) are guaranteed
to provide the same optimal solution of LP,4 .(b) no
matter what c?

Answer: clearly, those which are contained in exactly
the same bases of A. That is to say, those in the same
chamber of the chamber complex of A.
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The chamber complex

The chamber complex of cone(A).

. . curiously enough:
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Theorem (Billera, Filliman, Sturmfels 1990) For
any vector configuration A there is another vector
configuration A* (its Gale transform) such that the
chambers of A correspond to regular triangulations of
A* and viceversa

3

4 ) 4
- 3
2
]
5 |
b regular triangulations 11 regular
triangulations

11 chambers b chambers

(The chamber complex of A is the normal fan of the
secondary polytope of A*).
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Sperner’s lemma and fixed points

116



Sperner’s lemma and fixed points

Lemma (Sperner) Let A be a point configuration
whose convex hull is a d-dimensional simplex A and
let T" be a triangulation of A. Let Ay,..., Ay denote
the d + 1 facets Aq,...,Ag41 in the simplex A.

Label all the vertices of T using the numbers

1.2,....d +1 in such a way that no vertex that lies
on the facet A, receives the label i.

Then there is a simplex in T" whose vertices carry

all the different d + 1 labels.

Wiro 117



Sperner’s lemma and fixed points

Proof By induction on the dimension: start with
a fully labeled simplex of one dimension less in the

boundary; then dive into the big simplex until you find
a fully labeled simplex in the triangulation.
3

—_
8
— ®
I~ i
L
I-a
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Sperner’s lemma and fixed points

Corollary (Brower’s fixed point theorem) If C is
a topological d-dimensional ball and f : C' — C is a
continuous map, then there is a point in C such that

f(z) = 2.

Proof: For any given triangulation T, Sperner Lemma
allows you to find a simplex in which the i-th
barycentric coordinate of the i-th vertex does does not
increase. Doing this for finer and finer triangulations,
converges to a fixed point.
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Sperner’s lemma and fixed points

The algorithmic performance of Sperner Lemma
depends heavily on the size (number of simplices) of
your triangulations. This raises the question of what is
the smallest size of a triangulation. Unfortunately, this
iIs a hard problem:

Theorem (Below, De Loera, Richter-Gebert,
2000) It is NP-complete to compute the smallest
size triangulation of a polytope, even in dimension 3.

Remark Even for the d dimensional cube I¢ the
smallest size triangulation has only been computed up
to d = 7, and the asymptotics of the minimum size of

a triangulations is not known.
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