# Basic Concepts in Convexity and Computation 

Jesús A. De Loera, UC Davis

July 15, 2009

## Combinatorial Convexity

## Convexity I

- Everything we do takes place inside Euclidean $d$-dimensional space $\mathbb{R}^{d}$.
- We have the traditional Euclidean inner-product, norm of vectors, and distance between two points $x, y$ defined by $\sqrt{\left(x_{1}-y_{1}\right)^{2}+\ldots\left(x_{2}-y_{2}\right)^{2}}$.
- The set of all points $[x, y]:=\{\alpha x+(1-\alpha) y: 0 \leq \alpha \leq 1\}$ is called the line segment between $x$ and $y$. The points $x$ and $y$ are the endpoints of the interval.
- A subset $S$ of $\mathbb{R}^{n}$ is called convex if for any two distinct points $x_{1}, x_{2}$ in $S$ the line segment joining $x_{1}, x_{2}$, lies completely in $S$.


## Convexity II

- A linear functional $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is given by a vector $c \in \mathbb{R}^{d}, c \neq 0$.
- For a number $\alpha \in \mathbb{R}$ we say that $H_{\alpha}=\left\{x \in \mathbb{R}^{d}: f(x)=\alpha\right\}$ is an affine hyperplane or hyperplane for short.
- The intersection of finitely many hyperplanes is an affine space. Affine spaces are convex, but always contain lines. The affine hull of a set $A$ is the smallest affine space containing $A$.
- Note that a hyperplane divides $\mathbb{R}^{d}$ into two halfspaces $H_{\alpha}^{+}=\left\{x \in \mathbb{R}^{d}: f(x) \geq \alpha\right\}$ and $H_{\alpha}^{-}=\left\{x \in \mathbb{R}^{d}: f(x) \leq \alpha\right\}$. Halfspaces are convex sets.


## Convexity III

- The intersection of finitely many half-spaces is a polyhedron
- Similarly: A polyhedron is then the set of solutions of a system of linear inequalities

$$
P=\left\{x \in \mathbb{R}^{d}:<c_{i}, x>\leq \beta_{i}\right\}
$$

for some non-zero vectors $c_{i}$ in $\mathbb{R}^{d}$ and some real numbers $\beta_{i}$.

- The intersection of convex sets is always convex. Let $A \subset \mathbb{R}^{d}$, the convex hull of $A$, denoted by $\operatorname{conv}(A)$, is the intersection of all the convex sets containing $A$.
- A polytope is the convex hull of a finite set of points in $\mathbb{R}^{d}$. It is the smallest convex set containing the points.
- The image of a convex set under a linear transformation is again a convex set.
- A polyhedron (polytope) is always a convex set. A linear image of a polyhedron (polytope) is always convex. How are they related?


## Convexity IV

- Definition: Given finitely many points $A:=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ we say the linear combination $\sum \gamma_{i} x_{i}$ is
- an affine combination if $\sum \gamma_{i}=1$.
- a convex combination if it is affine and $\gamma_{i} \geq 0$ for all $i$.
- Lemma: For a set of points $A$ in $\mathbb{R}^{d}$ we have that $\operatorname{conv}(A)$ equals all finite convex combinations of $A$ :

$$
\operatorname{conv}(A)=\left\{\sum_{x_{i} \in A} \gamma_{i} x_{i}: \gamma_{i} \geq 0 \text { and } \gamma_{1}+\ldots \gamma_{k}=1\right\}
$$

- We say a set of points $x_{1}, \ldots, x_{n}$ is affinely dependent if there is a linear combination $\sum a_{i} x_{i}=0$ with $\sum a_{i}=0$. Otherwise we say they are affinely independent.
- Lemma: A set of $d+2$ or more points in $\mathbb{R}^{d}$ is affinely dependent.
- Lemma: A set $B \in$ real $^{d}$ is affinely independent if and only if every point has a unique representation as an affine


## Convexity V

- Theorem: (Caratheodory's theorem): If $x \in \operatorname{conv}(S) \subset \mathbb{R}^{d}$, then $x$ is the convex combination of $d+1$ points.
- Theorem: (Radon's theorem): If a set $A$ with $d+2$ points in $\mathbb{R}^{d}$ then $A$ can be partitioned into two sets $X, Y$ such that $\operatorname{conv}(X) \cap \operatorname{conv}(Y) \neq \emptyset$.
- Theorem: (Helly's theorem): If $C$ is a collection of closed bounded convex sets in $\mathbb{R}^{d}$ such that each $d+1$ sets have nonempty intersection then the intersection of all sets in $C$ is non-empty.


## Convexity VI

- For a convex set $S$ in $\mathbb{R}^{d}$. A linear inequality $f(x) \leq \alpha$ is said to be valid on $S$ if every point in $P$ satisfies it.
- A set $F \subset S$ is a face of $P$ if and only there exists a linear inequality $f(x) \leq \alpha$ which is valid on $P$ and such that $F=\{x \in P: f(x)=\alpha\}$. Then the hyperplane defined by $f$ is a supporting hyperplane of $F$.
- The dimension of an affine set is the largest number of affinely independent points in the set minus one. The dimension of a set in $\mathbb{R}^{d}$ is the dimension of its affine hull
- A face of dimension 0 is called a vertex. A face of dimension 1 is called an edge, and a face of dimension $\operatorname{dim}(P)-1$ is called a facet. The empty set is defined to be a face of $P$ of dimension -1 . Faces that are not the empty set or $P$ itself are called proper.


## Convexity VII

- Lemma: Let $P=\operatorname{conv}\left(a_{1}, \ldots, a_{n}\right)$ be a polytope and $F \subset P$ a face of $P$. Then $F=\operatorname{conv}\left(a_{i}, a_{i} \in F\right)$.
- Corollary: A Polytope has a finite number of faces, in particular a finite number of vertices and facets.
- lemma Let $P$ be a $d$-polytope and $F \subset P$ be a face. Let $G \subset F$ be a face of $F$. Then $G$ is a face of $P$. Faces form a partially ordered set by containment face poset of a polytope.
- Theorem Let $Q=\{x: A x \leq b\}$ a polyhedron. A non-empty subset $F$ is a face of $P$ if and only if $F$ is the set of solutions of a system of inequalities and equalities obtained from the list $A x \leq b$ by changing some of the inequalities to equalities.
- Corollary: The set of of faces of a polyhedron forms also a poset by containment and it is finite.


## Convexity VIII

- Definition: Two polytopes are combinatorially isomorphic if their face posets are the same.
- It follows: two polytopes $P, Q$ are isomorphic if there is a one-to-one correspondence $p_{i}$ to $q_{i}$ between the vertices such that $\operatorname{conv}\left(p_{i}: i \in I\right)$ is a face of $P$ if and only if $\operatorname{conv}\left(q_{i}: i \in I\right)$ is a face of $Q$.
- Definition: The graph of a polytope (or polyhedron) is the graph given of 1-dimensional faces (edges) and the vertices (0-dimensional faces).
- Theorem: (Balinski's theorem) The graphs of $d$-dimensional polytopes are always $d$-connected.


## Convexity IX

- For $A \subset \mathbb{R}^{d}$ polar of $A$ is

$$
A^{o}=\left\{x \in \mathbb{R}^{d}:<x, a>\leq 1 \text { for every } a \in A\right\}
$$

- Another way of thinking of the polar is as the intersection of the halfspaces, one for each element $a \in A$, of the form

$$
\left\{x \in \mathbb{R}^{d}:<x, a>\leq 1\right\}
$$

- Example 1: Take $L$ a line in $\mathbb{R}^{2}$ passing through the origin, what is $L^{0}$ ? the perpendicular line that passes through the origin.
- Example 2: If the line $L$ does not pass through the origin then, $L^{0}$ is a clipped line orthogonal to the given line that passes through the origin.


## Convexity X

- Theorem For any polytope $P$, there is a polytope $P^{*}$, a dual polytope of $P$, whose face lattice is isomorphic to the reversed poset of the face lattice of $P$.
- idea of proof: Translate $P \subset \mathbb{R}^{d}$ to contain the origin as its interior point. For a non-empty face $F$ of $P$ define

$$
\hat{F}=\left\{x \in P^{o}:<x, y>=1 \text { for all } y \in F\right\}
$$

and for the empty face define ${ }^{\wedge}=P^{0}$.
The hat operation applied to faces of a $d$-polytope $P$ satisfies
(1) The set $\hat{F}$ is a face of $P^{\circ}$
(2) $\operatorname{dim}(F)+\operatorname{dim}(\hat{F})=d-1$.
(3) The hat operation is involutory: $\hat{\hat{F}}=F$.
(1) If $F, G \subset P$ are faces and $F \subset G \subset P$, then $\hat{G}, \hat{F}$ are faces of $P^{\circ}$ and $\hat{G} \subset \hat{F}$.

## Convexity XI

- For any $d$-polytope, denote by $f_{i}(P)$ the number of $i$-faces of $P$. The f -vector of $P$ is

$$
f(P)=\left(f_{0}(P), f_{1}(P), \ldots, f_{d-1}(P)\right)
$$

- Theorem (Euler-Poincaré formula) For any $d$-dimensional Polytope $P$, then

$$
\sum_{i=-1}^{d}(-1)^{i} f_{i}(P)=0
$$

- Theorem (Upper bound theorem) For any $d$-polytope $P$ with $n$ vertices has no

$$
f_{i}(P) \leq f_{i}(C(n, d))
$$

Where $C(n, d)$ is a special polytope, the cyclic polytope. In particular $f_{d-1}(P) \leq O\left(n^{\lfloor d / 2\rfloor}\right)$.

## Convexity XII

- Theorem: [Weyl-Minkowski] Every polytope is a polyhedron. Every bounded polyhedron is a polytope.
- This allows us to represent all polytopes in two ways inside a computer!! Either as a list of vertices, or as system of inequalities.



## Computational Complexity

## Computational Complexity

- We need a theory to measure how difficult is to compute!!!


## Computational Complexity

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.


## Computational Complexity

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.
- Problem: a generic computational question that can be stated without any data specificied.


## Computational Complexity

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.
- Problem: a generic computational question that can be stated without any data specificied.
- Examples:
- Clique: Given a graph $G=(V, E)$ and an integer $k$, does $G$ have a clique of size $k$ ?


## Computational Complexity

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.
- Problem: a generic computational question that can be stated without any data specificied.
- Examples:
- Clique: Given a graph $G=(V, E)$ and an integer $k$, does $G$ have a clique of size $k$ ?
- An instance of a problem is a particular specification of the data.


## Computational Complexity

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.
- Problem: a generic computational question that can be stated without any data specificied.
- Examples:
- Clique: Given a graph $G=(V, E)$ and an integer $k$, does $G$ have a clique of size $k$ ?
- An instance of a problem is a particular specification of the data.
- Examples:


## Computational Complexity

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.
- Problem: a generic computational question that can be stated without any data specificied.
- Examples:
- Clique: Given a graph $G=(V, E)$ and an integer $k$, does $G$ have a clique of size $k$ ?
- An instance of a problem is a particular specification of the data.
- Examples:


## Computational Complexity

- We need a theory to measure how difficult is to compute!!!
- The study of the efficiency of algorithms and the difficulty of problems.
- Problem: a generic computational question that can be stated without any data specificied.
- Examples:
- Clique: Given a graph $G=(V, E)$ and an integer $k$, does $G$ have a clique of size $k$ ?
- An instance of a problem is a particular specification of the data.
- Examples:
- Does the Peterson graph have a clique of size 4 ?


## Algorithms

- An algorithm is a finite set of instructions for performing basic operations on an input to produce an output.


## Algorithms

- An algorithm is a finite set of instructions for performing basic operations on an input to produce an output.
- An algorithm $A$ solves a problem P if given a representation of each instance $I$ as input it supplies as output the solution of instance $l$.


## Algorithms

- An algorithm is a finite set of instructions for performing basic operations on an input to produce an output.
- An algorithm $A$ solves a problem P if given a representation of each instance $I$ as input it supplies as output the solution of instance $l$.
- Instances can have more than one representation.


## Algorithms

- An algorithm is a finite set of instructions for performing basic operations on an input to produce an output.
- An algorithm $A$ solves a problem P if given a representation of each instance $I$ as input it supplies as output the solution of instance $l$.
- Instances can have more than one representation.
- A graph $G=(V, E)$ can be represented as a adjacency matrix, incidence matrix, adjacency list, etc.


## Running time

## Running time

- Question: How to measure the efficiency of an algorithm $A$ ?


## Running time

- Question: How to measure the efficiency of an algorithm $A$ ?
- Answer: Running time - count of the number of elementary operations needed to run the algorithm.


## Running time

- Question: How to measure the efficiency of an algorithm $A$ ?
- Answer: Running time - count of the number of elementary operations needed to run the algorithm.
- Key insight: the number of operations depends on the difficulty of the instance and the size of the input.


## Running time

- Question: How to measure the efficiency of an algorithm $A$ ?
- Answer: Running time - count of the number of elementary operations needed to run the algorithm.
- Key insight: the number of operations depends on the difficulty of the instance and the size of the input.
- Worst case difficulty: consider run times of "hard" instances.


## Running time

- Question: How to measure the efficiency of an algorithm $A$ ?
- Answer: Running time - count of the number of elementary operations needed to run the algorithm.
- Key insight: the number of operations depends on the difficulty of the instance and the size of the input.
- Worst case difficulty: consider run times of "hard" instances.
- Express run time as a function of the amount of "memory" needed to represent the instance!


## Binary encoding size of an instance

## Binary encoding size of an instance

- The size of an instance depends on its representation.


## Binary encoding size of an instance

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.


## Binary encoding size of an instance

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.
- Some examples of binary encoding sizes:
(1) $n=118$.


## Binary encoding size of an instance

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.
- Some examples of binary encoding sizes:
(1) $n=118$.

$$
n=64+32+16+4+2
$$

## Binary encoding size of an instance

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.
- Some examples of binary encoding sizes:
(1) $n=118$.

$$
\begin{aligned}
n & =64+32+16+4+2 \\
& =110110 \quad \text { (in binary) }
\end{aligned}
$$

## Binary encoding size of an instance

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.
- Some examples of binary encoding sizes:
(1) $n=118$.

$$
\begin{aligned}
n & =64+32+16+4+2 \\
& =110110 \quad \text { (in binary) }
\end{aligned}
$$

That is, $|n|=7$ bits

## Binary encoding size of an instance

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.
- Some examples of binary encoding sizes:
(1) $n=118$.

$$
\begin{aligned}
n & =64+32+16+4+2 \\
& =110110 \quad \text { (in binary) }
\end{aligned}
$$

That is, $|n|=7$ bits
More generally, $n \in \mathbb{Z}$ can be encoded in around $\log _{2} n$ bits.

## Binary encoding size of an instance

- The size of an instance depends on its representation.
- The encoding size of a representation is the number of binary digits (bits) needed to encode it into memory.
- Some examples of binary encoding sizes:
(1) $n=118$.

$$
\begin{aligned}
n & =64+32+16+4+2 \\
& =110110 \quad \text { (in binary) }
\end{aligned}
$$

That is, $|n|=7$ bits
More generally, $n \in \mathbb{Z}$ can be encoded in around $\log _{2} n$ bits.
(2) The set $S=\{0, \ldots, n\}$ can also be encoded in around $\log _{2} n$ bits.

## Polynomial time algorithms

## Polynomial time algorithms

- If the running time of an algorithm is bounded by a polynomial function of the input size, then we say the algorithm runs in polynomial time.


## Polynomial time algorithms

- If the running time of an algorithm is bounded by a polynomial function of the input size, then we say the algorithm runs in polynomial time.

For example: ordering a finite list $\mathcal{L}$ of numbers

- Input size of the normal form representation of $\mathcal{L}$ is the size $n$.


## Polynomial time algorithms

- If the running time of an algorithm is bounded by a polynomial function of the input size, then we say the algorithm runs in polynomial time.

For example: ordering a finite list $\mathcal{L}$ of numbers

- Input size of the normal form representation of $\mathcal{L}$ is the size $n$.
- Silly algorithm requires around $\binom{n}{2}$ comparisons and re-ordering of the lists.


## P vs NP: What you need to know

What do you mean is HARD TO COMPUTE $X$ ??


Figure: I tried to compute X , I can't do it, therefore it must be hard!


Figure: I can't compute X , but if I could do it, the problems of all these people would be solved too! therefore it must be hard!
\#P-complete problems is a family of COUNTING problems, if one finds a fast solution for one, you find it for all the members of the family!

## Thank you

