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Convexity I

Everything we do takes place inside Euclidean d-dimensional
space Rd .

We have the traditional Euclidean inner-product, norm of
vectors, and distance between two points x , y defined by√

(x1 − y1)2 + . . . (x2 − y2)2.

The set of all points [x , y ] := {αx + (1− α)y : 0 ≤ α ≤ 1} is
called the line segment between x and y . The points x and y
are the endpoints of the interval.

A subset S of Rn is called convex if for any two distinct points
x1, x2 in S the line segment joining x1, x2, lies completely in S .
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Convexity II

A linear functional f : Rd → R is given by a vector
c ∈ Rd , c 6= 0.

For a number α ∈ R we say that Hα = {x ∈ Rd : f (x) = α}
is an affine hyperplane or hyperplane for short.

The intersection of finitely many hyperplanes is an affine
space. Affine spaces are convex, but always contain lines. The
affine hull of a set A is the smallest affine space containing A.

Note that a hyperplane divides Rd into two halfspaces
H+
α = {x ∈ Rd : f (x) ≥ α} and H−α = {x ∈ Rd : f (x) ≤ α}.

Halfspaces are convex sets.
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Convexity III

The intersection of finitely many half-spaces is a polyhedron
Similarly: A polyhedron is then the set of solutions of a
system of linear inequalities

P = {x ∈ Rd :< ci , x >≤ βi},
for some non-zero vectors ci in Rd and some real numbers βi .
The intersection of convex sets is always convex. Let A ⊂ Rd ,
the convex hull of A, denoted by conv(A), is the intersection
of all the convex sets containing A.
A polytope is the convex hull of a finite set of points in Rd . It
is the smallest convex set containing the points.
The image of a convex set under a linear transformation is
again a convex set.
A polyhedron (polytope) is always a convex set. A linear
image of a polyhedron (polytope) is always convex. How are
they related?
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Convexity IV

Definition: Given finitely many points A := {x1, x2, . . . , xn}
we say the linear combination

∑
γixi is

an affine combination if
∑
γi = 1.

a convex combination if it is affine and γi ≥ 0 for all i .

Lemma: For a set of points A in Rd we have that conv(A)
equals all finite convex combinations of A:

conv(A) = {
∑
xi∈A

γixi : γi ≥ 0 and γ1 + . . . γk = 1}

We say a set of points x1, . . . , xn is affinely dependent if there
is a linear combination

∑
aixi = 0 with

∑
ai = 0. Otherwise

we say they are affinely independent.
Lemma: A set of d + 2 or more points in Rd is affinely
dependent.
Lemma: A set B ∈ reald is affinely independent if and only if
every point has a unique representation as an affine
combination of points in B.



Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Convexity V

Theorem: (Caratheodory’s theorem): If x ∈ conv(S) ⊂ Rd ,
then x is the convex combination of d + 1 points.

Theorem: (Radon’s theorem): If a set A with d + 2 points in
Rd then A can be partitioned into two sets X ,Y such that
conv(X ) ∩ conv(Y ) 6= ∅.
Theorem: (Helly’s theorem): If C is a collection of closed
bounded convex sets in Rd such that each d + 1 sets have
nonempty intersection then the intersection of all sets in C is
non-empty.
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Convexity VI

For a convex set S in Rd . A linear inequality f (x) ≤ α is said
to be valid on S if every point in P satisfies it.

A set F ⊂ S is a face of P if and only there exists a linear
inequality f (x) ≤ α which is valid on P and such that
F = {x ∈ P : f (x) = α}. Then the hyperplane defined by f is
a supporting hyperplane of F .

The dimension of an affine set is the largest number of
affinely independent points in the set minus one. The
dimension of a set in Rd is the dimension of its affine hull

A face of dimension 0 is called a vertex. A face of dimension 1
is called an edge, and a face of dimension dim(P)− 1 is called
a facet. The empty set is defined to be a face of P of
dimension −1. Faces that are not the empty set or P itself are
called proper.
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Convexity VII

Lemma: Let P = conv(a1, . . . , an) be a polytope and F ⊂ P
a face of P. Then F = conv(ai , ai ∈ F ).

Corollary: A Polytope has a finite number of faces, in
particular a finite number of vertices and facets.

lemma Let P be a d-polytope and F ⊂ P be a face. Let
G ⊂ F be a face of F . Then G is a face of P. Faces form a
partially ordered set by containment face poset of a polytope.

Theorem Let Q = {x : Ax ≤ b} a polyhedron. A non-empty
subset F is a face of P if and only if F is the set of solutions
of a system of inequalities and equalities obtained from the
list Ax ≤ b by changing some of the inequalities to equalities.

Corollary: The set of of faces of a polyhedron forms also a
poset by containment and it is finite.
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Convexity VIII

Definition: Two polytopes are combinatorially isomorphic if
their face posets are the same.

It follows: two polytopes P,Q are isomorphic if there is a
one-to-one correspondence pi to qi between the vertices such
that conv(pi : i ∈ I ) is a face of P if and only if
conv(qi : i ∈ I ) is a face of Q.

Definition: The graph of a polytope (or polyhedron) is the
graph given of 1-dimensional faces (edges) and the vertices
(0-dimensional faces).

Theorem: (Balinski’s theorem) The graphs of d-dimensional
polytopes are always d-connected.
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Convexity IX

For A ⊂ Rd polar of A is

Ao = {x ∈ Rd :< x , a >≤ 1 for every a ∈ A}

Another way of thinking of the polar is as the intersection of
the halfspaces, one for each element a ∈ A, of the form

{x ∈ Rd :< x , a >≤ 1}

Example 1: Take L a line in R2 passing through the origin,
what is L0?
the perpendicular line that passes through the origin.

Example 2: If the line L does not pass through the origin
then, L0 is a clipped line orthogonal to the given line that
passes through the origin.
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Convexity X

Theorem For any polytope P, there is a polytope P∗, a dual
polytope of P, whose face lattice is isomorphic to the reversed
poset of the face lattice of P.

idea of proof: Translate P ⊂ Rd to contain the origin as its
interior point. For a non-empty face F of P define

F̂ = {x ∈ Po :< x , y >= 1for all y ∈ F}

and for the empty face defineˆ= P0.
The hat operation applied to faces of a d-polytope P satisfies

1 The set F̂ is a face of Po

2 dim(F ) + dim(F̂ ) = d − 1.

3 The hat operation is involutory: ˆ̂F = F .
4 If F ,G ⊂ P are faces and F ⊂ G ⊂ P, then Ĝ , F̂ are faces of

Po and Ĝ ⊂ F̂ .
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Convexity XI

For any d-polytope, denote by fi (P) the number of i-faces of
P. The f-vector of P is

f (P) = (f0(P), f1(P), . . . , fd−1(P)).

Theorem (Euler-Poincaré formula) For any d-dimensional
Polytope P, then

d∑
i=−1

(−1)i fi (P) = 0

Theorem (Upper bound theorem) For any d-polytope P with
n vertices has no

fi (P) ≤ fi (C (n, d))

Where C (n, d) is a special polytope, the cyclic polytope. In
particular fd−1(P) ≤ O(nbd/2c).
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Convexity XII

Theorem: [Weyl-Minkowski] Every polytope is a polyhedron.
Every bounded polyhedron is a polytope.

This allows us to represent all polytopes in two ways inside a
computer!! Either as a list of vertices, or as system of
inequalities.
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Computational Complexity
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Computational Complexity

We need a theory to measure how difficult is to compute!!!

The study of the efficiency of algorithms and the difficulty of
problems.

Problem: a generic computational question that can be
stated without any data specificied.

Examples:

Clique: Given a graph G = (V ,E ) and an integer k, does G
have a clique of size k?

An instance of a problem is a particular specification of the
data.

Examples:

Does the Peterson graph have a clique of size 4?
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Algorithms

An algorithm is a finite set of instructions for performing basic
operations on an input to produce an output.

An algorithm A solves a problem P if given a representation
of each instance I as input it supplies as output the solution
of instance I .

Instances can have more than one representation.

A graph G = (V ,E ) can be represented as a adjacency matrix,
incidence matrix, adjacency list, etc.
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Running time

Question: How to measure the efficiency of an algorithm A?

Answer: Running time - count of the number of elementary
operations needed to run the algorithm.

Key insight: the number of operations depends on the
difficulty of the instance and the size of the input.

Worst case difficulty: consider run times of “hard” instances.
Express run time as a function of the amount of “memory”
needed to represent the instance!
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Binary encoding size of an instance

The size of an instance depends on its representation.

The encoding size of a representation is the number of binary
digits (bits) needed to encode it into memory.

Some examples of binary encoding sizes:

1 n = 118.

n = 64 + 32 + 16 + 4 + 2

= 110110 (in binary)

That is, |n| = 7 bits
More generally, n ∈ Z can be encoded in around log2 n bits.

2 The set S = {0, . . . , n} can also be encoded in around log2 n
bits.
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Polynomial time algorithms

If the running time of an algorithm is bounded by a
polynomial function of the input size, then we say the
algorithm runs in polynomial time.

For example: ordering a finite list L of numbers

Input size of the normal form representation of L is the size n.

Silly algorithm requires around
(n
2

)
comparisons and

re-ordering of the lists.
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P vs NP: What you need to know

What do you mean is HARD TO COMPUTE X ??

Figure: I tried to compute X, I can’t do it, therefore it must be hard!



Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Figure: I can’t compute X, but if I could do it, the problems of all these
people would be solved too! therefore it must be hard!

#P-complete problems is a family of COUNTING problems, if one
finds a fast solution for one, you find it for all the members of the
family!
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Thank you


	Crash Course on Combinatorial Convexity
	Crash Course on Computational Complexity

