
Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Basic Concepts in Convexity and Computation

Jesús A. De Loera, UC Davis

July 15, 2009

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Combinatorial Convexity

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Convexity I

Everything we do takes place inside Euclidean d-dimensional
space Rd .

We have the traditional Euclidean inner-product, norm of
vectors, and distance between two points x , y defined by√

(x1 − y1)2 + . . . (x2 − y2)2.

The set of all points [x , y] := {αx + (1− α)y : 0 ≤ α ≤ 1} is
called the line segment between x and y . The points x and y
are the endpoints of the interval.

A subset S of Rn is called convex if for any two distinct points
x1, x2 in S the line segment joining x1, x2, lies completely in S .

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Convexity II

A linear functional f : Rd → R is given by a vector
c ∈ Rd , c 6= 0.

For a number α ∈ R we say that Hα = {x ∈ Rd : f (x) = α}
is an affine hyperplane or hyperplane for short.

The intersection of finitely many hyperplanes is an affine
space. Affine spaces are convex, but always contain lines. The
affine hull of a set A is the smallest affine space containing A.

Note that a hyperplane divides Rd into two halfspaces
H+
α = {x ∈ Rd : f (x) ≥ α} and H−α = {x ∈ Rd : f (x) ≤ α}.

Halfspaces are convex sets.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Convexity III

The intersection of finitely many half-spaces is a polyhedron
Similarly: A polyhedron is then the set of solutions of a
system of linear inequalities

P = {x ∈ Rd :< ci , x >≤ βi},
for some non-zero vectors ci in Rd and some real numbers βi .
The intersection of convex sets is always convex. Let A ⊂ Rd ,
the convex hull of A, denoted by conv(A), is the intersection
of all the convex sets containing A.
A polytope is the convex hull of a finite set of points in Rd . It
is the smallest convex set containing the points.
The image of a convex set under a linear transformation is
again a convex set.
A polyhedron (polytope) is always a convex set. A linear
image of a polyhedron (polytope) is always convex. How are
they related?

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Convexity IV

Definition: Given finitely many points A := {x1, x2, . . . , xn}
we say the linear combination

∑
γixi is

an affine combination if
∑
γi = 1.

a convex combination if it is affine and γi ≥ 0 for all i .

Lemma: For a set of points A in Rd we have that conv(A)
equals all finite convex combinations of A:

conv(A) = {
∑
xi∈A

γixi : γi ≥ 0 and γ1 + . . . γk = 1}

We say a set of points x1, . . . , xn is affinely dependent if there
is a linear combination

∑
aixi = 0 with

∑
ai = 0. Otherwise

we say they are affinely independent.
Lemma: A set of d + 2 or more points in Rd is affinely
dependent.
Lemma: A set B ∈ reald is affinely independent if and only if
every point has a unique representation as an affine
combination of points in B.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Convexity V

Theorem: (Caratheodory’s theorem): If x ∈ conv(S) ⊂ Rd ,
then x is the convex combination of d + 1 points.

Theorem: (Radon’s theorem): If a set A with d + 2 points in
Rd then A can be partitioned into two sets X ,Y such that
conv(X) ∩ conv(Y) 6= ∅.
Theorem: (Helly’s theorem): If C is a collection of closed
bounded convex sets in Rd such that each d + 1 sets have
nonempty intersection then the intersection of all sets in C is
non-empty.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Convexity VI

For a convex set S in Rd . A linear inequality f (x) ≤ α is said
to be valid on S if every point in P satisfies it.

A set F ⊂ S is a face of P if and only there exists a linear
inequality f (x) ≤ α which is valid on P and such that
F = {x ∈ P : f (x) = α}. Then the hyperplane defined by f is
a supporting hyperplane of F .

The dimension of an affine set is the largest number of
affinely independent points in the set minus one. The
dimension of a set in Rd is the dimension of its affine hull

A face of dimension 0 is called a vertex. A face of dimension 1
is called an edge, and a face of dimension dim(P)− 1 is called
a facet. The empty set is defined to be a face of P of
dimension −1. Faces that are not the empty set or P itself are
called proper.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Convexity VII

Lemma: Let P = conv(a1, . . . , an) be a polytope and F ⊂ P
a face of P. Then F = conv(ai , ai ∈ F).

Corollary: A Polytope has a finite number of faces, in
particular a finite number of vertices and facets.

lemma Let P be a d-polytope and F ⊂ P be a face. Let
G ⊂ F be a face of F . Then G is a face of P. Faces form a
partially ordered set by containment face poset of a polytope.

Theorem Let Q = {x : Ax ≤ b} a polyhedron. A non-empty
subset F is a face of P if and only if F is the set of solutions
of a system of inequalities and equalities obtained from the
list Ax ≤ b by changing some of the inequalities to equalities.

Corollary: The set of of faces of a polyhedron forms also a
poset by containment and it is finite.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Convexity VIII

Definition: Two polytopes are combinatorially isomorphic if
their face posets are the same.

It follows: two polytopes P,Q are isomorphic if there is a
one-to-one correspondence pi to qi between the vertices such
that conv(pi : i ∈ I) is a face of P if and only if
conv(qi : i ∈ I) is a face of Q.

Definition: The graph of a polytope (or polyhedron) is the
graph given of 1-dimensional faces (edges) and the vertices
(0-dimensional faces).

Theorem: (Balinski’s theorem) The graphs of d-dimensional
polytopes are always d-connected.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Convexity IX

For A ⊂ Rd polar of A is

Ao = {x ∈ Rd :< x , a >≤ 1 for every a ∈ A}

Another way of thinking of the polar is as the intersection of
the halfspaces, one for each element a ∈ A, of the form

{x ∈ Rd :< x , a >≤ 1}

Example 1: Take L a line in R2 passing through the origin,
what is L0?
the perpendicular line that passes through the origin.

Example 2: If the line L does not pass through the origin
then, L0 is a clipped line orthogonal to the given line that
passes through the origin.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Convexity X

Theorem For any polytope P, there is a polytope P∗, a dual
polytope of P, whose face lattice is isomorphic to the reversed
poset of the face lattice of P.

idea of proof: Translate P ⊂ Rd to contain the origin as its
interior point. For a non-empty face F of P define

F̂ = {x ∈ Po :< x , y >= 1for all y ∈ F}

and for the empty face defineˆ= P0.
The hat operation applied to faces of a d-polytope P satisfies

1 The set F̂ is a face of Po

2 dim(F) + dim(F̂) = d − 1.

3 The hat operation is involutory: ˆ̂F = F .
4 If F ,G ⊂ P are faces and F ⊂ G ⊂ P, then Ĝ , F̂ are faces of

Po and Ĝ ⊂ F̂ .

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Convexity XI

For any d-polytope, denote by fi (P) the number of i-faces of
P. The f-vector of P is

f (P) = (f0(P), f1(P), . . . , fd−1(P)).

Theorem (Euler-Poincaré formula) For any d-dimensional
Polytope P, then

d∑
i=−1

(−1)i fi (P) = 0

Theorem (Upper bound theorem) For any d-polytope P with
n vertices has no

fi (P) ≤ fi (C (n, d))

Where C (n, d) is a special polytope, the cyclic polytope. In
particular fd−1(P) ≤ O(nbd/2c).

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Convexity XII

Theorem: [Weyl-Minkowski] Every polytope is a polyhedron.
Every bounded polyhedron is a polytope.

This allows us to represent all polytopes in two ways inside a
computer!! Either as a list of vertices, or as system of
inequalities.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Computational Complexity

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Computational Complexity

We need a theory to measure how difficult is to compute!!!

The study of the efficiency of algorithms and the difficulty of
problems.

Problem: a generic computational question that can be
stated without any data specificied.

Examples:

Clique: Given a graph G = (V ,E) and an integer k, does G
have a clique of size k?

An instance of a problem is a particular specification of the
data.

Examples:

Does the Peterson graph have a clique of size 4?

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Computational Complexity

We need a theory to measure how difficult is to compute!!!

The study of the efficiency of algorithms and the difficulty of
problems.

Problem: a generic computational question that can be
stated without any data specificied.

Examples:

Clique: Given a graph G = (V ,E) and an integer k, does G
have a clique of size k?

An instance of a problem is a particular specification of the
data.

Examples:

Does the Peterson graph have a clique of size 4?

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Computational Complexity

We need a theory to measure how difficult is to compute!!!

The study of the efficiency of algorithms and the difficulty of
problems.

Problem: a generic computational question that can be
stated without any data specificied.

Examples:

Clique: Given a graph G = (V ,E) and an integer k, does G
have a clique of size k?

An instance of a problem is a particular specification of the
data.

Examples:

Does the Peterson graph have a clique of size 4?

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Computational Complexity

We need a theory to measure how difficult is to compute!!!

The study of the efficiency of algorithms and the difficulty of
problems.

Problem: a generic computational question that can be
stated without any data specificied.

Examples:
Clique: Given a graph G = (V ,E) and an integer k, does G
have a clique of size k?

An instance of a problem is a particular specification of the
data.

Examples:

Does the Peterson graph have a clique of size 4?

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Computational Complexity

We need a theory to measure how difficult is to compute!!!

The study of the efficiency of algorithms and the difficulty of
problems.

Problem: a generic computational question that can be
stated without any data specificied.

Examples:
Clique: Given a graph G = (V ,E) and an integer k, does G
have a clique of size k?

An instance of a problem is a particular specification of the
data.

Examples:

Does the Peterson graph have a clique of size 4?

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Computational Complexity

We need a theory to measure how difficult is to compute!!!

The study of the efficiency of algorithms and the difficulty of
problems.

Problem: a generic computational question that can be
stated without any data specificied.

Examples:
Clique: Given a graph G = (V ,E) and an integer k, does G
have a clique of size k?

An instance of a problem is a particular specification of the
data.

Examples:

Does the Peterson graph have a clique of size 4?

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Computational Complexity

We need a theory to measure how difficult is to compute!!!

The study of the efficiency of algorithms and the difficulty of
problems.

Problem: a generic computational question that can be
stated without any data specificied.

Examples:
Clique: Given a graph G = (V ,E) and an integer k, does G
have a clique of size k?

An instance of a problem is a particular specification of the
data.

Examples:

Does the Peterson graph have a clique of size 4?

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Computational Complexity

We need a theory to measure how difficult is to compute!!!

The study of the efficiency of algorithms and the difficulty of
problems.

Problem: a generic computational question that can be
stated without any data specificied.

Examples:
Clique: Given a graph G = (V ,E) and an integer k, does G
have a clique of size k?

An instance of a problem is a particular specification of the
data.

Examples:
Does the Peterson graph have a clique of size 4?

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Algorithms

An algorithm is a finite set of instructions for performing basic
operations on an input to produce an output.

An algorithm A solves a problem P if given a representation
of each instance I as input it supplies as output the solution
of instance I .

Instances can have more than one representation.

A graph G = (V ,E) can be represented as a adjacency matrix,
incidence matrix, adjacency list, etc.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Algorithms

An algorithm is a finite set of instructions for performing basic
operations on an input to produce an output.

An algorithm A solves a problem P if given a representation
of each instance I as input it supplies as output the solution
of instance I .

Instances can have more than one representation.

A graph G = (V ,E) can be represented as a adjacency matrix,
incidence matrix, adjacency list, etc.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Algorithms

An algorithm is a finite set of instructions for performing basic
operations on an input to produce an output.

An algorithm A solves a problem P if given a representation
of each instance I as input it supplies as output the solution
of instance I .

Instances can have more than one representation.

A graph G = (V ,E) can be represented as a adjacency matrix,
incidence matrix, adjacency list, etc.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Algorithms

An algorithm is a finite set of instructions for performing basic
operations on an input to produce an output.

An algorithm A solves a problem P if given a representation
of each instance I as input it supplies as output the solution
of instance I .

Instances can have more than one representation.

A graph G = (V ,E) can be represented as a adjacency matrix,
incidence matrix, adjacency list, etc.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Running time

Question: How to measure the efficiency of an algorithm A?

Answer: Running time - count of the number of elementary
operations needed to run the algorithm.

Key insight: the number of operations depends on the
difficulty of the instance and the size of the input.

Worst case difficulty: consider run times of “hard” instances.
Express run time as a function of the amount of “memory”
needed to represent the instance!

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Running time

Question: How to measure the efficiency of an algorithm A?

Answer: Running time - count of the number of elementary
operations needed to run the algorithm.

Key insight: the number of operations depends on the
difficulty of the instance and the size of the input.

Worst case difficulty: consider run times of “hard” instances.
Express run time as a function of the amount of “memory”
needed to represent the instance!

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Running time

Question: How to measure the efficiency of an algorithm A?

Answer: Running time - count of the number of elementary
operations needed to run the algorithm.

Key insight: the number of operations depends on the
difficulty of the instance and the size of the input.

Worst case difficulty: consider run times of “hard” instances.
Express run time as a function of the amount of “memory”
needed to represent the instance!

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Running time

Question: How to measure the efficiency of an algorithm A?

Answer: Running time - count of the number of elementary
operations needed to run the algorithm.

Key insight: the number of operations depends on the
difficulty of the instance and the size of the input.

Worst case difficulty: consider run times of “hard” instances.
Express run time as a function of the amount of “memory”
needed to represent the instance!

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Running time

Question: How to measure the efficiency of an algorithm A?

Answer: Running time - count of the number of elementary
operations needed to run the algorithm.

Key insight: the number of operations depends on the
difficulty of the instance and the size of the input.

Worst case difficulty: consider run times of “hard” instances.

Express run time as a function of the amount of “memory”
needed to represent the instance!

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Running time

Question: How to measure the efficiency of an algorithm A?

Answer: Running time - count of the number of elementary
operations needed to run the algorithm.

Key insight: the number of operations depends on the
difficulty of the instance and the size of the input.

Worst case difficulty: consider run times of “hard” instances.
Express run time as a function of the amount of “memory”
needed to represent the instance!

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Binary encoding size of an instance

The size of an instance depends on its representation.

The encoding size of a representation is the number of binary
digits (bits) needed to encode it into memory.

Some examples of binary encoding sizes:

1 n = 118.

n = 64 + 32 + 16 + 4 + 2

= 110110 (in binary)

That is, |n| = 7 bits
More generally, n ∈ Z can be encoded in around log2 n bits.

2 The set S = {0, . . . , n} can also be encoded in around log2 n
bits.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Binary encoding size of an instance

The size of an instance depends on its representation.

The encoding size of a representation is the number of binary
digits (bits) needed to encode it into memory.

Some examples of binary encoding sizes:

1 n = 118.

n = 64 + 32 + 16 + 4 + 2

= 110110 (in binary)

That is, |n| = 7 bits
More generally, n ∈ Z can be encoded in around log2 n bits.

2 The set S = {0, . . . , n} can also be encoded in around log2 n
bits.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Binary encoding size of an instance

The size of an instance depends on its representation.

The encoding size of a representation is the number of binary
digits (bits) needed to encode it into memory.

Some examples of binary encoding sizes:

1 n = 118.

n = 64 + 32 + 16 + 4 + 2

= 110110 (in binary)

That is, |n| = 7 bits
More generally, n ∈ Z can be encoded in around log2 n bits.

2 The set S = {0, . . . , n} can also be encoded in around log2 n
bits.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Binary encoding size of an instance

The size of an instance depends on its representation.

The encoding size of a representation is the number of binary
digits (bits) needed to encode it into memory.

Some examples of binary encoding sizes:
1 n = 118.

n = 64 + 32 + 16 + 4 + 2

= 110110 (in binary)

That is, |n| = 7 bits
More generally, n ∈ Z can be encoded in around log2 n bits.

2 The set S = {0, . . . , n} can also be encoded in around log2 n
bits.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Binary encoding size of an instance

The size of an instance depends on its representation.

The encoding size of a representation is the number of binary
digits (bits) needed to encode it into memory.

Some examples of binary encoding sizes:
1 n = 118.

n = 64 + 32 + 16 + 4 + 2

= 110110 (in binary)

That is, |n| = 7 bits
More generally, n ∈ Z can be encoded in around log2 n bits.

2 The set S = {0, . . . , n} can also be encoded in around log2 n
bits.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Binary encoding size of an instance

The size of an instance depends on its representation.

The encoding size of a representation is the number of binary
digits (bits) needed to encode it into memory.

Some examples of binary encoding sizes:
1 n = 118.

n = 64 + 32 + 16 + 4 + 2

= 110110 (in binary)

That is, |n| = 7 bits
More generally, n ∈ Z can be encoded in around log2 n bits.

2 The set S = {0, . . . , n} can also be encoded in around log2 n
bits.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Binary encoding size of an instance

The size of an instance depends on its representation.

The encoding size of a representation is the number of binary
digits (bits) needed to encode it into memory.

Some examples of binary encoding sizes:
1 n = 118.

n = 64 + 32 + 16 + 4 + 2

= 110110 (in binary)

That is, |n| = 7 bits

More generally, n ∈ Z can be encoded in around log2 n bits.
2 The set S = {0, . . . , n} can also be encoded in around log2 n

bits.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Binary encoding size of an instance

The size of an instance depends on its representation.

The encoding size of a representation is the number of binary
digits (bits) needed to encode it into memory.

Some examples of binary encoding sizes:
1 n = 118.

n = 64 + 32 + 16 + 4 + 2

= 110110 (in binary)

That is, |n| = 7 bits
More generally, n ∈ Z can be encoded in around log2 n bits.

2 The set S = {0, . . . , n} can also be encoded in around log2 n
bits.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Binary encoding size of an instance

The size of an instance depends on its representation.

The encoding size of a representation is the number of binary
digits (bits) needed to encode it into memory.

Some examples of binary encoding sizes:
1 n = 118.

n = 64 + 32 + 16 + 4 + 2

= 110110 (in binary)

That is, |n| = 7 bits
More generally, n ∈ Z can be encoded in around log2 n bits.

2 The set S = {0, . . . , n} can also be encoded in around log2 n
bits.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Polynomial time algorithms

If the running time of an algorithm is bounded by a
polynomial function of the input size, then we say the
algorithm runs in polynomial time.

For example: ordering a finite list L of numbers

Input size of the normal form representation of L is the size n.

Silly algorithm requires around
(n
2

)
comparisons and

re-ordering of the lists.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Polynomial time algorithms

If the running time of an algorithm is bounded by a
polynomial function of the input size, then we say the
algorithm runs in polynomial time.

For example: ordering a finite list L of numbers

Input size of the normal form representation of L is the size n.

Silly algorithm requires around
(n
2

)
comparisons and

re-ordering of the lists.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Polynomial time algorithms

If the running time of an algorithm is bounded by a
polynomial function of the input size, then we say the
algorithm runs in polynomial time.

For example: ordering a finite list L of numbers

Input size of the normal form representation of L is the size n.

Silly algorithm requires around
(n
2

)
comparisons and

re-ordering of the lists.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Polynomial time algorithms

If the running time of an algorithm is bounded by a
polynomial function of the input size, then we say the
algorithm runs in polynomial time.

For example: ordering a finite list L of numbers

Input size of the normal form representation of L is the size n.

Silly algorithm requires around
(n
2

)
comparisons and

re-ordering of the lists.

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

P vs NP: What you need to know

What do you mean is HARD TO COMPUTE X ??

Figure: I tried to compute X, I can’t do it, therefore it must be hard!

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Figure: I can’t compute X, but if I could do it, the problems of all these
people would be solved too! therefore it must be hard!

#P-complete problems is a family of COUNTING problems, if one
finds a fast solution for one, you find it for all the members of the
family!

Crash Course on Combinatorial Convexity
Crash Course on Computational Complexity

Thank you

	Crash Course on Combinatorial Convexity
	Crash Course on Computational Complexity

