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Feasibility

Is there any solution of Ax > b?

@ we say that the system of inequalities Ax > b is feasible if
there is at least one x that satisfies all the inequalities. We
wish to know when and certify the feasibility/infeasibility of
polyhedra.

@ Analogously, in linear algebra,

Fredholm’s Lemma: {x : Ax = b} is non-empty if and only
if {y:yTA=0,y"b= —1} is empty.

Such a vector y is a mathematical proof that Ax = b has no
solution.

e We will prove today
Farkas Lemma: A polyhedron {x : Ax < b} is non-empty if
and only if there is no solution {y : yTA=0,y®> <0,y > 0}.

e We will give an (inefficient) algorithmic proof of Farkas lemma
using an algorithm that decides whether a polyhedron is
feasible: Fourier-Motzkin’ algorithm



Feasibility

Fourier-Motzkin Algorithm

INPUT: Polyhedron P = {x : Ax < b}
OUTPUT: Yes/No depending whether P is empty or not.

o If P is described in a single variable x, P is feasible if
max(b,-/a,- : b;/a,- < 0) < min(bj/aj : bj/aj > 0)

o Else we eliminate leading variable (x1). Re-write the
inequalities to be regrouped in 3 groups:

xi+(al)Tx' < bl, (if coefficient of a;; is positive) (TYPE I)
x1+(aj)Tx' < b}, (if coefficient of aj1 is negative) (TYPE I1)

(af)Tx' < b, (if coefficient of aj; is zero) (TYPE IlI)

Here x' = (x2,x3,...,Xs).



Feasibility

Fourier-Motzkin continued

Add all possible pairs of inequalities of (TYPE I) and (TYPE II).
Create new system (with fewer variables):

(3 +a;)"x' < (b + b;) for i of type | and j of type II

Keep equations of type I11(a})"x' < b],

@ Original system of inequalities has a solution if and only if the
system (k) is feasible WHY?

(x) is equivalent to (a})"x—b; < bi—(a})"x', and (a})"x' < b}

If we find x2, x3, ..., x, satisfying (x), find

max((a})"x — bj) < x1 < min(b; — (a}) " X").

@ Process ends when we have a single variable.



Feasibility

Proof of Farkas Lemma

@ Reduce one more time until we have no variables. New system

becomes - -~ _
0 b
0 b,
<
0 b,

Polyhedron {x : Ax < b} infeasible <= if b. < 0 for some i.
@ Rewriting and addition steps correspond to row operations on
the original matrix A.

0 = MAx > Mb = b, with matrix M with non-negative entries
o Set y™ = (e;)7 M, with e; standard i-th unit vector then
0=y"A, yTb<0, and y > 0.



Feasibility
More on Farkas |

Here is another form of Farkas lemma:

e Corollary:
{x:Ax=bx>0}=0 < {y:y"TA>0,y"b< 0} #0.
o proof {x : Ax=b,x>0}#0 < {x:Ax< b, —Ax <
—b, —Ix <0} # (. By previous version of Farkas, this
happens if and only if no solution exists of y7 = [y1 yo y3]”
with

A b

iyawsl" | —A | =0, yays]” | =b | <0, y" >0
—1 0

@ The vector y; — y» has the desired property.



Feasibility
More on Farkas I

Here is another form of Farkas lemma:

e Corollary:
{x:Ax < b,x>0}#0 <= Wheny"A>0, theny’ b >0
o proof Necessity: We know x > 0, Ax = b, if in addition
yTA>0then yTb=yTAx > 0.
Sufficiency: Suppose if yTA >0, then y b > 0 but assume
Ax > 0 with Ax = b. From the previous corollary, dy with
yTA>0,y"b < 0. Therefore 0 < y"bh < 0 which is a
contradiction.

@ There are many more consequences and variations of Farkas
lemma (ALL theory of Linear Optimization based on it!!!).



Listing extreme points and Facets
Motivation: Magic Squares

A magic square is a square grid of non-negative real numbers such
that the rows, columns, and diagonals all add up to the same value.
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Magic Squares are closed under non-negative linear combinations
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Listing extreme points and Facets

Question: |s there a finite set of n x n magic squares so that we
can express every other possible magic square as a linear

non-negative combination?
YES!

There are four such 3 x 3 magic squares:

—
o
=
N
o
—
N
—
o

IMPORTANT: There is an algorithm for computing a minimal
such set of magic squares for n x n magic squares. These magic
squares are the extreme rays of the cone of magic squares.



Listing extreme points and Facets
Polyhedral Cones

A set C CR"is a cone if it is closed under addition and
multiplication by a positive constant.
@ A set C C R" is a inequality constrained cone if
C = {x € R": Ax > 0} for some matrix A.
o A set C C R" is a finitely generated cone if
C ={AB: X € RX} for some matrix B.

Theorem (Minkowski-Weyl)

A cone C C R" is finitely constrained if and only if it is finitely
generated.

@ The set of extreme rays of the cone is the minimal set of
generators of a cone.

’ FUNDAMENTAL QUESTION: how do we convert between the two repr
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Example

Consider the following cone C and its two representations:

le \

0 C={x€R?:3x; — 2xp > 0, —x1 + 2x, > 0}.
o C= {)\1(2, 1) + )\2(2,3) AL A € R+}.



Listing extreme points and Facets

Another great reason to solve this question

e Theorem: (Weyl-Minkowski's Theorem): For a convex subset
P of RY the following statements are equivalent:

e P is an H-polyhedron, i.e., P is given by a system of linear
inequalities P = {x : Ax > b}.

e P is a V-polyhedron, i.e., For finitely many vectors vy, ..., v,
and ri,...,rs we can write
P = conv(vy, va,...,V,) + cone(ri, ray ..., rs)

Here R + S denotes the Minkowski sum of two sets,
R+S={r+s:reR,seS}.

@ We need to design an efficient algorithm for the conversion
between the H-polyhedron and V-polyhedron!



Listing extreme points and Facets

Reduction to the case of Cones!!

@ We can reduce this problem to problem of transforming
between the two representations of a cone. From an
H-polyhedron construct a cone from the polytope as follows:

@ Observe: If the original polytope was given by inequalities
Ax > b then the cone is given by inequalities Ay > 0, where
A is the extended matrix [A, —b] and y = (x, t).

@ Enough to solve Weyl-Minkowski's Theorem for cones:
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The Double Description Method

(Motzkin-Raiffa-Thompson-Thrall 1953)

For a convex subset P of R? is a cone if any of the following
occurs:
@ P is an H-cone, i.e., P is given by a system of linear
inequalities P = {x : Ax > 0}.
@ P is a V-cone, i.e., For finitely many vectors ry, ..., rs we can
write
P = cone(r,ra,...,rs)
This is equivalent to (Matrix form!!):
For a convex subset P of R? is a cone if any of the following
occurs:
@ P is an H-cone, i.e., 3 matrix A such that P = {x : Ax > 0}.
@ P is a V-cone, i.e., 3 matrix R such that
P={x:x=Ry, y >0}
We say the pair (A, R) is a double description pair (DD-pair).
I



Listing extreme points and Facets

Minkowski-Weyl Algorithmic version

e Proposition: For any pair of matrices A, R, (A, R) is a
DD-pair of cone C if and only if (RT,AT) is a double
description pair (of the polar cone of C).

Proof: Use Farkas lemma.

@ A first algorithm proof of Minkowski-Weyl’s theorem:

Let R be a matrix defining a V-cone, C, thus

C={x:x=Ry, y>0}.

By Fourier-Motzkin we can eliminate all variables y from
above system.

The resulting system of inequalities is written as Ax > 0
(since Fourier-Motzkin respects the direction of inequalities).
This proves that every V-cone can be written as an H-cone.
By previous lemma we are done to prove the converse.
WARNING: Not an efficient algorithm.
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The Double description Method |

@ Suppose A is an m x d matrix, defines cone
C ={x:Ax>0}.

o Let Ak denote the submatrix of A given by rows in index set
K.

@ Suppose we found already a matrix R which is DD pair with
Ak. From a new row index i ¢ K construct new DD pair
(AKU{i}a R/) (but HOW7)

o Partition the column index set J of R into three parts:

o JF={jeJ:Ar>0}
o 0={jeJ: A =0}
o J-={jeJ A <0}
We recover the new R’ from the following lemma:
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The Double description Method Il

o Lemma: The pair (Axy(i}, R') is a DD pair, when the matrix
R’ is given by the d x J' matrix such that
o the index setis J/ = JT U JSOU (JT x J7), and
o the new columns are rjy; = (A;r;)ryy — (Ajrj)r; for each
G,j)eJtxJ.
o Proof: Let C(Axugiy) = {x : Akugiyx > 0} and
C(R)={x:x=Ry, y >0}. We wish C(Axu(i;) = C(R').
o Clearly C(R') C C(Akuqiy) because rjy € C(Akugir)-
o Take x € C(Akugiy)- Then

X = Z)\J-rj, with \; >0
Jjed
o If there is no Ay > 0 for k € J~ then x € C(R’) already. Thus
assume such \j exists.
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The Double description Method Il|

@ Therefore since Ajx > 0 there must also be A, > 0 with
heJt.

@ Substract a suitable multiple of rxp, = (Airn)rk — (Airk)rn from
X =2 jes Aty

@ We are left with a new expression of x with smaller non-zero
coefficients. This process can be repeated as long as Ay > 0
with k € J~ exists.

@ So in finitely many steps we must get read of all such A at
which point we have x € C(R’).
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The Double description Method IV

@ We can refine the above construction, finding a matrix R’
which has no redundant columns!!

e We say r; is a extreme ray if it cannot be written as a
non-negative combination of two other rays.
Thus all we need to do is throw away columns of the matrix
which are not extreme rays. How to tell?77

e Lemma: Let Z(x) be the set of indices of inequalities such
that Ajx = 0. A ray r is an extreme ray of the cone
{x:x€RI Ax >0} <= the rank of the submatrix
Azin=d -1

@ How to do the initial DD pair?? Select a maximal submatrix
Ak with linearly independent rows of A.

@ Initial matrix R is the solution to AxR = [. WHY?
rank(A) = d then Ak must be square then R = A, ', Then
(Ak, R) is DD pair since Axkx >0 <— A;ly,y > 0.
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The Double description Method V

@ The double description method has a dual version called the
Beneath-Beyond method.

e DD is practical for low dimensions (see CDD).

@ The size of intermediate polytopes can be very very sensitive
to the order in which the subspaces are introduced.

e D. Bremner (1999) showed a family of polytopes for which
the double description method is exponential.
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Thank you
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