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Is there any solution of Ax ≥ b?

we say that the system of inequalities Ax ≥ b is feasible if
there is at least one x that satisfies all the inequalities. We
wish to know when and certify the feasibility/infeasibility of
polyhedra.

Analogously, in linear algebra,
Fredholm’s Lemma: {x : Ax = b} is non-empty if and only
if {y : yT A = 0, yT b = −1} is empty.
Such a vector y is a mathematical proof that Ax = b has no
solution.

We will prove today
Farkas Lemma: A polyhedron {x : Ax ≤ b} is non-empty if
and only if there is no solution {y : yT A = 0, yb < 0, y ≥ 0}.
We will give an (inefficient) algorithmic proof of Farkas lemma
using an algorithm that decides whether a polyhedron is
feasible: Fourier-Motzkin’ algorithm
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Fourier-Motzkin Algorithm

INPUT: Polyhedron P = {x : Ax ≤ b}
OUTPUT: Yes/No depending whether P is empty or not.

If P is described in a single variable x , P is feasible if

max(bi/ai : bi/ai < 0) ≤ min(bj/aj : bj/aj > 0)

Else we eliminate leading variable (x1). Re-write the
inequalities to be regrouped in 3 groups:

x1+(a′i )
T x ′ ≤ b′i , (if coefficient of ai1 is positive) (TYPE I)

x1+(a′j)
T x ′ ≤ b′j , (if coefficient of aj1 is negative) (TYPE II)

(a′k)T x ′ ≤ b′k , (if coefficient of ak1 is zero) (TYPE III)

Here x ′ = (x2, x3, . . . , xn).
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Fourier-Motzkin continued

Add all possible pairs of inequalities of (TYPE I) and (TYPE II).
Create new system (with fewer variables):

(a′j + a′i )
T x ′ ≤ (bj + bi ) for i of type I and j of type II

Keep equations of type III(a′k)T x ′ ≤ b′k

Original system of inequalities has a solution if and only if the
system (∗) is feasible WHY?

(∗) is equivalent to (a′j)
T x−bj ≤ bi−(a′i )

T x ′, and (a′k)T x ′ ≤ b′k

If we find x2, x3, . . . , xn satisfying (∗), find

max((a′j)
T x − bj) ≤ x1 ≤ min(bi − (a′i )

T x ′).

Process ends when we have a single variable.
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Proof of Farkas Lemma

Reduce one more time until we have no variables. New system
becomes 

0

0

...

0

 ≤


b′1

b′2

...

b′n


Polyhedron {x : Ax ≤ b} infeasible ⇐⇒ if b′i < 0 for some i .

Rewriting and addition steps correspond to row operations on
the original matrix A.

0 = MAx ≥ Mb = b′, with matrix M with non-negative entries

Set yT = (ei )
T M, with ei standard i-th unit vector then

0 = yT A, yT b < 0, and y ≥ 0.
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More on Farkas I

Here is another form of Farkas lemma:

Corollary:
{x : Ax = b, x ≥ 0} = ∅ ⇐⇒ {y : yT A ≥ 0, yT b < 0} 6= ∅.
proof {x : Ax = b, x ≥ 0} 6= ∅ ⇐⇒ {x : Ax ≤ b, −Ax ≤
−b, −Ix ≤ 0} 6= ∅. By previous version of Farkas, this
happens if and only if no solution exists of yT = [y1 y2 y3]T

with

[y1 y2 y3]T


A

−A

−I

 = 0, [y1 y2 y3]T


b

−b

0

 < 0, yT ≥ 0

The vector y1 − y2 has the desired property.
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More on Farkas II

Here is another form of Farkas lemma:

Corollary:
{x : Ax ≤ b, x ≥ 0} 6= ∅ ⇐⇒ When yT A ≥ 0, then yT b ≥ 0

proof Necessity: We know x ≥ 0, Ax = b, if in addition
yT A ≥ 0 then yT b = yT Ax ≥ 0.
Sufficiency: Suppose if yT A ≥ 0, then yT b ≥ 0 but assume
6 ∃x ≥ 0 with Ax = b. From the previous corollary, ∃y with
yT A ≥ 0, yT b < 0. Therefore 0 ≤ yT b < 0 which is a
contradiction.

There are many more consequences and variations of Farkas
lemma (ALL theory of Linear Optimization based on it!!!).
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Motivation: Magic Squares

A magic square is a square grid of non-negative real numbers such
that the rows, columns, and diagonals all add up to the same value.

0 2 1

2 1 0

1 0 2

Magic Squares are closed under non-negative linear combinations

3×
0 2 1

2 1 0

1 0 2

=

0 6 3

6 3 0

3 0 6

0 2 1

2 1 0

1 0 2

+

1 2 0

0 1 2

2 0 1

=

1 4 1

2 2 2

3 0 3
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Question: Is there a finite set of n × n magic squares so that we
can express every other possible magic square as a linear
non-negative combination?

YES!

There are four such 3× 3 magic squares:

0 2 1

2 1 0

1 0 2

2 0 1

0 1 2

1 2 0

1 2 0

0 1 2

2 0 1

1 0 2

2 1 0

0 2 1

IMPORTANT: There is an algorithm for computing a minimal
such set of magic squares for n × n magic squares. These magic
squares are the extreme rays of the cone of magic squares.
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Polyhedral Cones

A set C ⊆ Rn is a cone if it is closed under addition and
multiplication by a positive constant.

A set C ⊆ Rn is a inequality constrained cone if
C = {x ∈ Rn : Ax ≥ 0} for some matrix A.
A set C ⊆ Rn is a finitely generated cone if
C = {λB : λ ∈ Rk

+} for some matrix B.

Theorem (Minkowski-Weyl)

A cone C ⊆ Rn is finitely constrained if and only if it is finitely
generated.

The set of extreme rays of the cone is the minimal set of
generators of a cone.

FUNDAMENTAL QUESTION: how do we convert between the two representations?
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Example

Consider the following cone C and its two representations:

2

3

1

4

0
2 31 40

2x

x1

C = {x ∈ R2 : 3x1 − 2x2 ≥ 0,−x1 + 2x2 ≥ 0}.
C = {λ1(2, 1) + λ2(2, 3) : λ1, λ2 ∈ R+}.
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Another great reason to solve this question

Theorem: (Weyl-Minkowski’s Theorem): For a convex subset
P of Rd the following statements are equivalent:

P is an H-polyhedron, i.e., P is given by a system of linear
inequalities P = {x : Ax ≥ b}.
P is a V-polyhedron, i.e., For finitely many vectors v1, . . . , vn

and r1, . . . , rs we can write

P = conv(v1, v2, . . . , vn) + cone(r1, r2, . . . , rs)

Here R + S denotes the Minkowski sum of two sets,
R + S = {r + s : r ∈ R, s ∈ S}.
We need to design an efficient algorithm for the conversion
between the H-polyhedron and V-polyhedron!
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Reduction to the case of Cones!!

We can reduce this problem to problem of transforming
between the two representations of a cone. From an
H-polyhedron construct a cone from the polytope as follows:

t

t=1

Observe: If the original polytope was given by inequalities
Ax ≥ b then the cone is given by inequalities Āy ≥ 0, where
Ā is the extended matrix [A,−b] and y = (x , t).

Enough to solve Weyl-Minkowski’s Theorem for cones:
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The Double Description Method
(Motzkin-Raiffa-Thompson-Thrall 1953)

For a convex subset P of Rd is a cone if any of the following
occurs:

P is an H-cone, i.e., P is given by a system of linear
inequalities P = {x : Ax ≥ 0}.
P is a V-cone, i.e., For finitely many vectors r1, . . . , rs we can
write

P = cone(r1, r2, . . . , rs)

This is equivalent to (Matrix form!!):
For a convex subset P of Rd is a cone if any of the following
occurs:

P is an H-cone, i.e., ∃ matrix A such that P = {x : Ax ≥ 0}.
P is a V-cone, i.e., ∃ matrix R such that
P = {x : x = Ry , y ≥ 0}

We say the pair (A,R) is a double description pair (DD-pair).
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Minkowski-Weyl Algorithmic version

Proposition: For any pair of matrices A,R, (A,R) is a
DD-pair of cone C if and only if (RT ,AT ) is a double
description pair (of the polar cone of C ).
Proof: Use Farkas lemma.

A first algorithm proof of Minkowski-Weyl’s theorem:
Let R be a matrix defining a V-cone, C , thus

C = {x : x = Ry , y ≥ 0}.

By Fourier-Motzkin we can eliminate all variables y from
above system.
The resulting system of inequalities is written as Ax ≥ 0
(since Fourier-Motzkin respects the direction of inequalities).
This proves that every V-cone can be written as an H-cone.
By previous lemma we are done to prove the converse.
WARNING: Not an efficient algorithm.
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The Double description Method I

Suppose A is an m × d matrix, defines cone
C = {x : Ax ≥ 0}.
Let AK denote the submatrix of A given by rows in index set
K .

Suppose we found already a matrix R which is DD pair with
AK . From a new row index i /∈ K construct new DD pair
(AK∪{i},R

′) (but HOW?):

Partition the column index set J of R into three parts:

J+ = {j ∈ J : Ai rj > 0}
J0 = {j ∈ J : Ai rj = 0}
J− = {j ∈ J : Ai rj < 0}

We recover the new R ′ from the following lemma:
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The Double description Method II

Lemma: The pair (AK∪{i},R
′) is a DD pair, when the matrix

R ′ is given by the d × J ′ matrix such that

the index set is J ′ = J+ ∪ J0 ∪ (J+ × J−), and
the new columns are rjj′ = (Ai rj)rj′ − (Ai rj′)rj for each
(j , j ′) ∈ J+ × J−.

Proof: Let C (AK∪{i}) = {x : AK∪{i}x ≥ 0} and
C (R ′) = {x : x = R ′y , y ≥ 0}. We wish C (AK∪{i}) = C (R ′).

Clearly C (R ′) ⊂ C (AK∪{i}) because rjj ′ ∈ C (AK∪{i}).

Take x ∈ C (AK∪{i}). Then

x =
∑
j∈J

λj rj , with λj ≥ 0

If there is no λk > 0 for k ∈ J− then x ∈ C (R ′) already. Thus
assume such λk exists.
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The Double description Method III

Therefore since Aix ≥ 0 there must also be λh > 0 with
h ∈ J+.

Substract a suitable multiple of rkh = (Ai rh)rk − (Ai rk)rh from
x =

∑
j∈J λj rj

We are left with a new expression of x with smaller non-zero
coefficients. This process can be repeated as long as λk > 0
with k ∈ J− exists.

So in finitely many steps we must get read of all such λ at
which point we have x ∈ C (R ′).
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The Double description Method IV

We can refine the above construction, finding a matrix R ′

which has no redundant columns!!

We say rj is a extreme ray if it cannot be written as a
non-negative combination of two other rays.
Thus all we need to do is throw away columns of the matrix
which are not extreme rays. How to tell???

Lemma: Let Z (x) be the set of indices of inequalities such
that Aix = 0. A ray r is an extreme ray of the cone
{x : x ∈ Rd , Ax ≥ 0} ⇐⇒ the rank of the submatrix
AZ(r) = d − 1.

How to do the initial DD pair?? Select a maximal submatrix
AK with linearly independent rows of A.

Initial matrix R is the solution to AK R = I . WHY?
rank(A) = d then AK must be square then R = A−1

K . Then
(AK ,R) is DD pair since AK x ≥ 0 ⇐⇒ A−1

K y , y ≥ 0.
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The Double description Method V

The double description method has a dual version called the
Beneath-Beyond method.

DD is practical for low dimensions (see CDD).

The size of intermediate polytopes can be very very sensitive
to the order in which the subspaces are introduced.

D. Bremner (1999) showed a family of polytopes for which
the double description method is exponential.
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Thank you
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