Feasibility and Representability of Polytopes

Jesús A. De Loera, UC Davis

July 15, 2009

Is there any solution of $A x \geq b$?

- we say that the system of inequalities $A x \geq b$ is feasible if there is at least one x that satisfies all the inequalities. We wish to know when and certify the feasibility/infeasibility of polyhedra.
- Analogously, in linear algebra,

Fredholm's Lemma: $\{x: A x=b\}$ is non-empty if and only if $\left\{y: y^{\top} A=0, y^{\top} b=-1\right\}$ is empty.
Such a vector y is a mathematical proof that $A x=b$ has no solution.

- We will prove today

Farkas Lemma: A polyhedron $\{x: A x \leq b\}$ is non-empty if and only if there is no solution $\left\{y: y^{T} A=0, y^{b}<0, y \geq 0\right\}$.

- We will give an (inefficient) algorithmic proof of Farkas lemma using an algorithm that decides whether a polyhedron is feasible: Fourier-Motzkin' algorithm

Fourier-Motzkin Algorithm

INPUT: Polyhedron $P=\{x: A x \leq b\}$
OUTPUT: Yes/No depending whether P is empty or not.

- If P is described in a single variable x, P is feasible if

$$
\max \left(b_{i} / a_{i}: b_{i} / a_{i}<0\right) \leq \min \left(b_{j} / a_{j}: b_{j} / a_{j}>0\right)
$$

- Else we eliminate leading variable (x_{1}). Re-write the inequalities to be regrouped in 3 groups:
$x_{1}+\left(a_{i}^{\prime}\right)^{T} x^{\prime} \leq b_{i}^{\prime}, \quad$ (if coefficient of $a_{i 1}$ is positive) (TYPE I)
$x_{1}+\left(a_{j}^{\prime}\right)^{T} x^{\prime} \leq b_{j}^{\prime}, \quad$ (if coefficient of $a_{j 1}$ is negative) (TYPE II)

$$
\left(a_{k}^{\prime}\right)^{T} x^{\prime} \leq b_{k}^{\prime}, \quad \text { (if coefficient of } a_{k 1} \text { is zero) (TYPE III) }
$$

Here $x^{\prime}=\left(x_{2}, x_{3}, \ldots, x_{n}\right)$.

Fourier-Motzkin continued

Add all possible pairs of inequalities of (TYPE I) and (TYPE II). Create new system (with fewer variables):
-

$$
\left(a_{j}^{\prime}+a_{i}^{\prime}\right)^{T} x^{\prime} \leq\left(b_{j}+b_{i}\right) \text { for } i \text { of type } \mathbf{I} \text { and } j \text { of type II }
$$

Keep equations of type $\operatorname{III}\left(a_{k}^{\prime}\right)^{T} x^{\prime} \leq b_{k}^{\prime}$

- Original system of inequalities has a solution if and only if the system (*) is feasible WHY?
$(*)$ is equivalent to $\left(a_{j}^{\prime}\right)^{T} x-b_{j} \leq b_{i}-\left(a_{i}^{\prime}\right)^{T} x^{\prime}$, and $\left(a_{k}^{\prime}\right)^{T} x^{\prime} \leq b_{k}^{\prime}$ If we find $x_{2}, x_{3}, \ldots, x_{n}$ satisfying $(*)$, find

$$
\max \left(\left(a_{j}^{\prime}\right)^{T} x-b_{j}\right) \leq x_{1} \leq \min \left(b_{i}-\left(a_{i}^{\prime}\right)^{T} x^{\prime}\right)
$$

- Process ends when we have a single variable.

Proof of Farkas Lemma

- Reduce one more time until we have no variables. New system becomes

$$
\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right] \leq\left[\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
\vdots \\
b_{n}^{\prime}
\end{array}\right]
$$

Polyhedron $\{x: A x \leq b\}$ infeasible \Longleftrightarrow if $b_{i}^{\prime}<0$ for some i.

- Rewriting and addition steps correspond to row operations on the original matrix A.
$0=M A x \geq M b=b^{\prime}$, with matrix M with non-negative entries
- Set $y^{T}=\left(e_{i}\right)^{T} M$, with e_{i} standard i-th unit vector then

$$
0=y^{T} A, y^{T} b<0, \text { and } y \geq 0
$$

More on Farkas I

Here is another form of Farkas lemma:

- Corollary:

$$
\{x: A x=b, x \geq 0\}=\emptyset \Longleftrightarrow\left\{y: y^{\top} A \geq 0, y^{\top} b<0\right\} \neq \emptyset .
$$

- proof $\{x: A x=b, x \geq 0\} \neq \emptyset \Longleftrightarrow\{x: A x \leq b,-A x \leq$ $-b,-I x \leq 0\} \neq \emptyset$. By previous version of Farkas, this happens if and only if no solution exists of $y^{T}=\left[\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right]^{T}$ with

$$
\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]^{T}\left[\begin{array}{c}
A \\
-A \\
-I
\end{array}\right]=0,\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]^{T}\left[\begin{array}{c}
b \\
-b \\
0
\end{array}\right]<0, y^{T} \geq 0
$$

- The vector $y_{1}-y_{2}$ has the desired property.

More on Farkas II

Here is another form of Farkas lemma:

- Corollary:
$\{x: A x \leq b, x \geq 0\} \neq \emptyset \Longleftrightarrow$ When $y^{\top} A \geq 0$, then $y^{\top} b \geq 0$
- proof Necessity: We know $x \geq 0, A x=b$, if in addition $y^{\top} A \geq 0$ then $y^{\top} b=y^{\top} A x \geq 0$.
Sufficiency: Suppose if $y^{\top} A \geq 0$, then $y^{\top} b \geq 0$ but assume $\nexists x \geq 0$ with $A x=b$. From the previous corollary, $\exists y$ with $y^{\top} A \geq 0, y^{\top} b<0$. Therefore $0 \leq y^{\top} b<0$ which is a contradiction.
- There are many more consequences and variations of Farkas lemma (ALL theory of Linear Optimization based on it!!!).

Motivation: Magic Squares

A magic square is a square grid of non-negative real numbers such that the rows, columns, and diagonals all add up to the same value.

0	2	1
2	1	0
1	0	2

Magic Squares are closed under non-negative linear combinations

$3 \times$| 0 | 2 | 1 |
| :--- | :--- | :--- |
| 2 | 1 | 0 |
| 1 | 0 | 2 |$=$| 0 | 6 | 3 |
| :--- | :--- | :--- |
| 6 | 3 | 0 |
| 3 | 0 | 6 |

0	2	1				
2	1	0				
1	0	2	$+$	1	2	0
:---	:---	:---				
0	1	2				
2	0	1	$=$	1	4	1
:---	:---	:---				
2	2	2				
3	0	3				

Question: Is there a finite set of $n \times n$ magic squares so that we can express every other possible magic square as a linear non-negative combination?

YES!

There are four such 3×3 magic squares:

0	2	1
2	1	0
1	0	2

2	0	1
0	1	2
1	2	0

1	2	0
0	1	2
2	0	1

1	0	2
2	1	0
0	2	1

IMPORTANT: There is an algorithm for computing a minimal such set of magic squares for $n \times n$ magic squares. These magic squares are the extreme rays of the cone of magic squares.

Polyhedral Cones

A set $\mathcal{C} \subseteq \mathbb{R}^{n}$ is a cone if it is closed under addition and multiplication by a positive constant.

- A set $\mathcal{C} \subseteq \mathbb{R}^{n}$ is a inequality constrained cone if $\mathcal{C}=\left\{x \in \mathbb{R}^{n}: A x \geq 0\right\}$ for some matrix A.
- A set $\mathcal{C} \subseteq \mathbb{R}^{n}$ is a finitely generated cone if $\mathcal{C}=\left\{\lambda B: \lambda \in \mathbb{R}_{+}^{k}\right\}$ for some matrix B.

Theorem (Minkowski-Weyl)

A cone $\mathcal{C} \subseteq \mathbb{R}^{n}$ is finitely constrained if and only if it is finitely generated.

- The set of extreme rays of the cone is the minimal set of generators of a cone.

FUNDAMENTAL QUESTION: how do we convert between the two repr

Example

Consider the following cone \mathcal{C} and its two representations:

- $\mathcal{C}=\left\{x \in \mathbb{R}^{2}: 3 x_{1}-2 x_{2} \geq 0,-x_{1}+2 x_{2} \geq 0\right\}$.
- $\mathcal{C}=\left\{\lambda_{1}(2,1)+\lambda_{2}(2,3): \lambda_{1}, \lambda_{2} \in \mathbb{R}_{+}\right\}$.

Another great reason to solve this question

- Theorem: (Weyl-Minkowski's Theorem): For a convex subset P of \mathbb{R}^{d} the following statements are equivalent:
- P is an \mathbf{H}-polyhedron, i.e., P is given by a system of linear inequalities $P=\{x: A x \geq b\}$.
- P is a V-polyhedron, i.e., For finitely many vectors v_{1}, \ldots, v_{n} and r_{1}, \ldots, r_{s} we can write

$$
P=\operatorname{conv}\left(v_{1}, v_{2}, \ldots, v_{n}\right)+\operatorname{cone}\left(r_{1}, r_{2}, \ldots, r_{s}\right)
$$

Here $R+S$ denotes the Minkowski sum of two sets, $R+S=\{r+s: r \in R, s \in S\}$.

- We need to design an efficient algorithm for the conversion between the H -polyhedron and V -polyhedron!

Reduction to the case of Cones!!

- We can reduce this problem to problem of transforming between the two representations of a cone. From an H-polyhedron construct a cone from the polytope as follows:

- Observe: If the original polytope was given by inequalities $A x \geq b$ then the cone is given by inequalities $\bar{A} y \geq 0$, where \bar{A} is the extended matrix $[A,-b]$ and $y=(x, t)$.
- Enough to solve Weyl-Minkowski's Theorem for cones:

The Double Description Method (Motzkin-Raiffa-Thompson-Thrall 1953)

For a convex subset P of \mathbb{R}^{d} is a cone if any of the following occurs:

- P is an \mathbf{H}-cone, i.e., P is given by a system of linear inequalities $P=\{x: A x \geq 0\}$.
- P is a V-cone, i.e., For finitely many vectors r_{1}, \ldots, r_{s} we can write

$$
P=\operatorname{cone}\left(r_{1}, r_{2}, \ldots, r_{s}\right)
$$

This is equivalent to (Matrix form!!):
For a convex subset P of \mathbb{R}^{d} is a cone if any of the following occurs:

- P is an H-cone, i.e., \exists matrix A such that $P=\{x: A x \geq 0\}$.
- P is a V-cone, i.e., \exists matrix R such that

$$
P=\{x: x=R y, y \geq 0\}
$$

We say the pair (A, R) is a double description pair (DD-pair).

Minkowski-Weyl Algorithmic version

- Proposition: For any pair of matrices $A, R,(A, R)$ is a DD-pair of cone C if and only if $\left(R^{T}, A^{T}\right)$ is a double description pair (of the polar cone of C). Proof: Use Farkas lemma.
- A first algorithm proof of Minkowski-Weyl's theorem: Let R be a matrix defining a V-cone, C, thus

$$
C=\{x: x=R y, y \geq 0\} .
$$

By Fourier-Motzkin we can eliminate all variables y from above system.
The resulting system of inequalities is written as $A x \geq 0$ (since Fourier-Motzkin respects the direction of inequalities).
This proves that every V-cone can be written as an H-cone.
By previous lemma we are done to prove the converse. WARNING: Not an efficient algorithm.

The Double description Method I

- Suppose A is an $m \times d$ matrix, defines cone $C=\{x: A x \geq 0\}$.
- Let A_{K} denote the submatrix of A given by rows in index set K.
- Suppose we found already a matrix R which is DD pair with A_{K}. From a new row index $i \notin K$ construct new DD pair ($A_{K \cup\{i\}}, R^{\prime}$) (but HOW?):
- Partition the column index set J of R into three parts:
- $J^{+}=\left\{j \in J: A_{i} r_{j}>0\right\}$
- $J^{0}=\left\{j \in J: A_{i} r_{j}=0\right\}$
- $J^{-}=\left\{j \in J: A_{i} r_{j}<0\right\}$

We recover the new R^{\prime} from the following lemma:

The Double description Method II

- Lemma: The pair $\left(A_{K \cup\{i\}}, R^{\prime}\right)$ is a DD pair, when the matrix R^{\prime} is given by the $d \times J^{\prime}$ matrix such that
- the index set is $J^{\prime}=J^{+} \cup J^{0} \cup\left(J^{+} \times J^{-}\right)$, and
- the new columns are $r_{j j^{\prime}}=\left(A_{i} r_{j}\right) r_{j^{\prime}}-\left(A_{i} r_{j^{\prime}}\right) r_{j}$ for each $\left(j, j^{\prime}\right) \in J^{+} \times J^{-}$.
- Proof: Let $C\left(A_{K \cup\{i\}}\right)=\left\{x: A_{K \cup\{i\}} x \geq 0\right\}$ and $C\left(R^{\prime}\right)=\left\{x: x=R^{\prime} y, y \geq 0\right\}$. We wish $C\left(A_{K \cup\{i\}}\right)=C\left(R^{\prime}\right)$.
- Clearly $C\left(R^{\prime}\right) \subset C\left(A_{K \cup\{i\}}\right)$ because $r_{j j^{\prime}} \in C\left(A_{K \cup\{i\}}\right)$.
- Take $x \in C\left(A_{K \cup\{i\}}\right)$. Then

$$
x=\sum_{j \in J} \lambda_{j} r_{j}, \quad \text { with } \lambda_{j} \geq 0
$$

- If there is no $\lambda_{k}>0$ for $k \in J^{-}$then $x \in C\left(R^{\prime}\right)$ already. Thus assume such λ_{k} exists.

The Double description Method III

- Therefore since $A_{i} x \geq 0$ there must also be $\lambda_{h}>0$ with $h \in J^{+}$.
- Substract a suitable multiple of $r_{k h}=\left(A_{i} r_{h}\right) r_{k}-\left(A_{i} r_{k}\right) r_{h}$ from $x=\sum_{j \in J} \lambda_{j} r_{j}$
- We are left with a new expression of x with smaller non-zero coefficients. This process can be repeated as long as $\lambda_{k}>0$ with $k \in J^{-}$exists.
- So in finitely many steps we must get read of all such λ at which point we have $x \in C\left(R^{\prime}\right)$.

The Double description Method IV

- We can refine the above construction, finding a matrix R^{\prime} which has no redundant columns!!
- We say r_{j} is a extreme ray if it cannot be written as a non-negative combination of two other rays.
Thus all we need to do is throw away columns of the matrix which are not extreme rays. How to tell???
- Lemma: Let $Z(x)$ be the set of indices of inequalities such that $A_{i} x=0$. A ray r is an extreme ray of the cone $\left\{x: x \in \mathbb{R}^{d}, A x \geq 0\right\} \Longleftrightarrow$ the rank of the submatrix $A_{Z(r)}=d-1$.
- How to do the initial DD pair?? Select a maximal submatrix A_{K} with linearly independent rows of A.
- Initial matrix R is the solution to $A_{K} R=I$. WHY? $\operatorname{rank}(A)=d$ then A_{K} must be square then $R=A_{K}^{-1}$. Then $\left(A_{K}, R\right)$ is DD pair since $A_{K} x \geq 0 \Longleftrightarrow A_{K}^{-1} y, y \geq 0$.

The Double description Method V

- The double description method has a dual version called the Beneath-Beyond method.
- DD is practical for low dimensions (see CDD).
- The size of intermediate polytopes can be very very sensitive to the order in which the subspaces are introduced.
- D. Bremner (1999) showed a family of polytopes for which the double description method is exponential.

Thank you

