Volumes of Polytopes: FAMILIAR AND USEFUL Volume of Polytopes: NOT AS EASY AS THEY MAY SEEM! But, How to compute the volumes anyway? How to Integrate a Polynomial over a Convex Polytope New Techniques for Integration over a Simplex Ideas to integrate fast and more

Volumes and Integrals over Polytopes

Jesús A. De Loera, UC Davis

July 16, 2009

Ideas to integrate fast and more

Meet Volume

The (Euclidean) **volume** V(R) of a region of space R is real non-negative number defined via the Riemann integral over the regions.

Ideas to integrate fast and more

Meet Volume's Cousins

- In the case when P is an n-dimensional lattice polytope (i.e., all vertices have integer coordinates) we can naturally define a **normalized volume** of P, NV(P) to be n!V(P).
- EXAMPLE: $P = \{(x, y) : 0 \le x \le 1, \ 0 \le y \le 1\}$

$$NV(P)=2!\cdot 1=2.$$

• Given polytopes $P_1, \ldots, P_k \subset \mathbb{R}^n$ and real numbers $t_1, \ldots, t_k \geq 0$ the Minkowski sum is the polytope

$$t_1P_1 + \cdots + t_kP_k := \{t_1v_1 + \cdots + t_kv_k : v_i \in P_i\}$$

.

EXAMPLE

• **Theorem**(H. Minkowski) There exist $MV(P_1^{a_1}, \dots, P_k^{a_k}) > 0$ (the mixed volumes) such that $V(t_1, P_1 + \dots + t_k, P_k) = 0$

$$V(t_1P_1 + \dots + t_kP_k) = \sum_{a_1 + \dots + a_k = n} \binom{n}{a_1, \dots, a_k} MV(P_1^{a_1}, \dots, P_k^{a_k}) t_1^{a_1} t_2^{a_2} \cdots t_k^{a_k}.$$

A few reasons to compute them

Ideas to integrate fast and more

- (for algebraic geometers) If P is an integral polytope, then the normalized volume of P is the degree of the toric variety associated to P.
- (for computational algebraic geometers) Let f_1, \ldots, f_n be polynomials in $\mathbb{C}[x_1, \ldots, x_n]$. Let $New(f_j)$ denote the Newton polytope of f_j , If f_1, \ldots, f_n are generic, then the number of solutions of the polynomial system of equations $f_1 = 0, \ldots, f_n = 0$ with no $x_i = 0$ is equal to the normalized mixed volume $n!MV(New(f_1), \ldots, New(f_n))$.
- (for Combinatorialists) Volumes count things! $CR_m = \{(a_{ij}) : \sum_i a_{ij} = 1, \sum_j a_{ij} = 1, \text{ with } a_{ij} \geq 0 \text{ but } a_{ij} = 0 \text{ when } j > i+1 \}$, then $NV(CR_m) = \text{product of first } (m-2) \text{ Catalan numbers. } (D. Zeilberger).$

But, How to compute the volumes anyway? How to Integrate a Polynomial over a Convex Polytope New Techniques for Integration over a Simplex Ideas to integrate fast and more

Do we need limits to define volumes of polytopes?

volume of egyptian pyramid = $\frac{1}{3}$ (area of base) × height

Computational Complexity of Volume

But, How to compute the volumes anyway? How to Integrate a Polynomial over a Convex Polytope New Techniques for Integration over a Simplex Ideas to integrate fast and more

Easy and pretty in some cases...

Computational Complexity of Volume

But, How to compute the volumes anyway? How to Integrate a Polynomial over a Convex Polytope New Techniques for Integration over a Simplex Ideas to integrate fast and more

In general, proofs seem to rely on an infinite process!

But not necessary in dimension two!

Ideas to integrate fast and more

New Techniques for Integration over a Simplex

Polygons of the same area are equidecomposable, i.e., one can be partitioned into pieces that can be reassembled into the other.

Volume of Polytopes: NOT AS EASY AS THEY MAY SEEM!
But, How to compute the volumes anyway?
How to Integrate a Polynomial over a Convex Polytope
New Techniques for Integration over a Simplex
Ideas to integrate fast and more

Volumes of Polytopes: FAMILIAR AND USEFUL

Hilbert's Third Problem

Are any two convex 3-dimensional polytopes of the same volume equidecomposable?

Volumes of Polytopes: FAMILIAR AND USEFUL Volume of Polytopes: NOT AS EASY AS THEY MAY SEEM!

But, How to compute the volumes anyway? How to Integrate a Polynomial over a Convex Polytope New Techniques for Integration over a Simplex Ideas to integrate fast and more

Computational Complexity of Volume

NOT always!!! We need calculus to define the volume of

Volumes of Polytopes: FAMILIAR AND USEFUL Volume of Polytopes: NOT AS EASY AS THEY MAY SEEM! But, How to compute the volumes anyway? How to Integrate a Polynomial over a Convex Polytope New Techniques for Integration over a Simplex Ideas to integrate fast and more

high-dimensional polytopes.

- It is hard to compute the volume of a vertex presented polytopes (Dyer and Frieze 1988, Khachiyan 1989).
- Number of digits necessary to write the volume of a rational polytope P cannot always be bounded by a polynomial on the input size. (J. Lawrence 1991).
- Theorem (Brightwell and Winkler 1992) It is #P-hard to compute the volume of a d-dimensional polytope P represented by its facets.
- We even know that it is hard to compute the volume of zonotopes (Dyer, Gritzmann 1998). Thus computing mixed volumes, even for Minkowski sums of line segments, is already hard!
- For convex bodies, deterministic approximation is already hard, but randomized approximation can be done efficiently (work by Barany Dyer Flekes Furedi Frieze Kannan

Ideas to integrate fast and more

simplices

- SIMPLICES are d-dimensional polytopes with d+1 vertices. E.g., triangles, tetrahedra, etc.
- The volume of a (Euclidean) simplex is given by a fast determinant calculation.
 - To compute the volume of a polytope: divide it as a disjoint union of simplices, calculate volume for each simplex and then add them up!

New Techniques for Integration over a Simplex

Ideas to integrate fast and more

Via Triangulations Via Rational Functions for Lattice Points

Triangulations: Enough to know how to do it for simplices!

Theorem: For all polytopes in fixed dimension d their whole volume can be computed in polynomial time.

Via Triangulations
Via Rational Functions for Lattice Points

The size of a triangulation changes!

New Techniques for Integration over a Simplex

Triangulations of a convex polyhedron come in different sizes! i.e. the number of simplices changes.

Counting lattice points to approximate volume

Ideas to integrate fast and more

- Lattice points are those points with integer coordinates: $\mathbb{Z}^n = \{(x_1, x_2, \dots, x_n) | x_i \text{ integer}\}$ We wish to count how many lie inside a given polytope!
- Let P be a convex polytope in \mathbb{R}^d . For each integer $n \geq 1$, let

$$nP = \{nq|q \in P\}$$

• For P a d-polytope, let

$$i(P, n) = \#(nP \cap \mathbb{Z}^d) = \#\{q \in P \mid nq \in \mathbb{Z}^d\}$$

• This is the number of lattice points in the dilation nP.

Volume of
$$P = limit_{n\to\infty} \frac{i(P, n)}{n^d}$$

At each dilation we can approximate the volume by placing a small unit cube centered at each lattice point:

Lawrence's Style Volume Formulas

Ideas to integrate fast and more

New Techniques for Integration over a Simplex

Theorem (J. Lawrence 1991) Let P be a simple d-polytope given by $\{x \in \mathbb{R}^d : b_i - a_i^t x \geq 0, \ i = 1 \dots m\}$. Suppose that c is a vector such that the dot produt of c with any edge of P is non-zero. Then the volume of P equals

$$vol(P) = \frac{1}{d!} \sum_{v \in V(P)} \frac{(\langle c, v \rangle)^d}{\delta_v \gamma_1 \gamma_2 \cdots \gamma_d}$$

where if indices of the constraints that are binding at v are i_1, \ldots, i_d then γ_i 's are such $c = \gamma_1 a_{i_1} + \gamma_2 a_{i_2} + \cdots + \gamma_n a_{i_d}$ and $\delta_v = |det([a_{i_1}, a_{i_2}, \ldots, a_{i_d}])|$.

Integration of polynomials:

Given P be a d-dimensional rational polytope inside \mathbb{R}^n and let $f \in \mathbb{Q}[x_1, \dots, x_n]$ be a polynomial with rational coefficients.

Compute the EXACT value of the integral $\int_P f \ dm$?

Example

If we integrate the monomial $x^{17}y^{111}z^{13}$ over the three-dimensional standard simplex Δ . Then $\int_{\Delta} x^{17}y^{111}z^{13}dxdydz$ equals exactly

1

317666399137306017655882907073489948282706281567360000

Why exact integration?

- Integrals over polytopes arise in probability, statistics, algebraic geometry, combinatorics, symplectic geometry.
 Already computing volumes is a very important subroutine.
- Despite the success of APPROXIMATE integration, still EXACT integration is necessary.
- **Example:** Computation of marginal likelihood integrals in model selection.
- **Example:** Statisticians used BIC, Laplace, Montecarlo approximations in concrete 6 variable problems. They say "Problems are too hard for exact methods". approximation leads to model answer.
- My point: Exact integration useful for calibration!!!

TECHNICAL DETAILS...

- The input simplex Δ : encoding of Δ is given by the number of the dimension d, and the largest binary encoding size of the coordinates among vertices.
- For simplicity assume the polytope P is full dimension n, in \mathbb{R}^n $\mathfrak{d}m$ is the standard Lebesgue measure, which gives volume 1 to the fundamental domain of the lattice \mathbb{Z}^n .
- For this $\mathfrak{d}m$, every integral of a polynomial function with rational coefficients will be a *rational number*.

How to represent a polynomial in a computer?

- The input polynomial: requires that one specifies concrete data structures for reading the input polynomial and to carry on the calculations. Three main possibilities:
- **dense representation:** polynomials are given by a list of the coefficients of all monomials up to a given total degree *M*.
- sparse representation: Polynomials are specified by a list of exponent vectors of monomials with non-zero coefficients, together with their coefficients.
- straight-line program Φ if polynomial is a finite sequence of polynomial functions of $\mathbb{Q}[x_1,\ldots,x_n]$, namely q_1,\ldots,q_k , such that each q_i is either a variable x_1,\ldots,x_n , an element of \mathbb{Q} , or either the sum or the product of two preceding polynomials in the sequence and such that $q_k = f$.

Best News: Fast Integration for powers of linear forms

Theorem: There exists a polynomial-time algorithm for the following problem.

Input:

- numbers $d, M \in \mathbb{N}$.
- affinely independent rational vectors $\mathbf{s}_1,\dots,\mathbf{s}_{d+1}\in\mathbb{Q}^d$ in binary encoding,
- a power of a linear form $\langle \ell, x \rangle^M$

Output:, in binary $\int_{\Delta} \langle \ell, \mathbf{x} \rangle^M \mathfrak{d} m$.

From fixed number of linear forms to fixed degree.

- We can also deal with arbitrary polynomials of fixed degree.
- Write a polynomial as a sum of powers of linear forms.
 Explicit formula with at most 2^M terms.

$$x_1^{m_1}x_2^{m_2}\cdots x_d^{m_d} = \frac{1}{|m|!}\sum_{0\leq p_i\leq m_i} (-1)^{|m|-|p|} {m_1\choose p_1}\cdots {m_d\choose p_d} (p_1x_1+\cdots+p_dx_d)^{|m|}.$$

Integration of arbitrary powers of quadratic forms is NP-hard

- The clique problem (does G contain a clique of size $\geq n$) is NP-complete. (Karp 1972).
- Theorem [Motzkin-Straus 1965] G a graph with clique number $\omega(G)$. $Q_G(x) := \frac{1}{2} \sum_{(i,j) \in E(G)} x_i x_j$. Function on standard simplex in $\mathbb{R}^{|V(G)|}$.
 - Then $||Q_G||_{\infty} = \frac{1}{2}(1 \frac{1}{\omega(G)}).$
- **Lemma** Let G a graph with d vertices. For $p \geq 4(e-1)d^3\ln(32d^2)$, the clique number $\omega(G)$ is equal to $\left\lceil \frac{1}{1-2\|Q_G\|_p} \right\rceil$. (L^p -norm, Holder inequality).

Valuations

A function S on polyhedra is a **valuation**. If it is a linear map from the vector space of characteristic functions $\chi(\mathfrak{p}_i)$ of any polyhedra into a field.

Thus if polyhedra \mathfrak{p}_i satisfy a linear relation $\sum_i r_i \chi(\mathfrak{p}_i) = 0$, then

$$\sum_{i} r_{i} S(\mathfrak{p}_{i}) = 0,$$

Example:

$$\chi(\mathfrak{p}_1 \cup p_2) + \chi(\mathfrak{p}_1 \cap p_2) - \chi(\mathfrak{p}_1) - \chi(\mathfrak{p}_2) = 0,$$

Two important valuations for polyhedra

 \mathfrak{p} (convex) polyhedron, rational (lattice Λ).

$$S(\mathfrak{p})(\xi) := \sum_{x \in \mathfrak{p} \cap \Lambda} e^{\langle \xi, x \rangle}$$

generating function for lattice points of \mathfrak{p} .

$$I(\mathfrak{p})(\xi) := \int_{\mathfrak{p}} e^{\langle \xi, \mathsf{x} \rangle} \ d\mathsf{m}.$$

when integral and series converge. If $\mathfrak p$ contains a line, then $S(\mathfrak p):=0$ and $I(\mathfrak p):=0$.

IMPORTANT FACT: When \mathfrak{p} is a simplicial cone easy to write.

Sums $S(\mathfrak{p})$ in dim 1

For the real line we have

$$\sum_{n>s} e^{n\xi} + \sum_{n
$$\sum_{n=-\infty}^{\infty} e^{n\xi} = 0$$$$

For the line segment [a, b] we have.

$$\chi([a,b]) = \chi([-\infty,b]) + \chi([a,+\infty]) - \chi(\mathbb{R})$$
$$\sum_{n=a}^{\infty} e^{n\xi} + \sum_{n=-\infty}^{b} e^{n\xi} = \frac{e^{a\xi}}{1 - e^{\xi}} + \frac{e^{b\xi}}{1 - e^{-\xi}} = \frac{e^{a\xi} - e^{(b+1)\xi}}{1 - e^{\xi}}$$

Case of a simplicial affine cone

 $s+\mathfrak{c}$ affine cone with vertex s and integral generators $v_1,\ldots,v_d\in$ lattice Λ . $\mathfrak{c}=\mathbb{R}_+v_1+\ldots\mathbb{R}_+v_d$.

$$I(s+\mathfrak{c})(\xi) = |\det_{\Lambda}(v_j)| \prod_j \frac{-e^{\langle \xi, s \rangle}}{\langle \xi, v_j \rangle}$$

$$S(s+\mathfrak{c})(\xi) = \left(\sum_{x \in (s+\mathfrak{b}) \cap \mathsf{\Lambda}} \mathrm{e}^{\langle \xi, x \rangle} \right) \prod_j rac{1}{1 - \mathrm{e}^{\langle \xi, v_j
angle}}$$

where $\mathfrak{b} = \sum_{j} [0, 1[v_j, semi-closed cell.]$

Polyhedron \equiv sum of its supporting cones at vertices

Theorem(Brion-Lawrence-Varchenko)

 \mathfrak{p} convex polyhedron, $s + \mathfrak{c}_s$ supporting cone at vertex s.

$$S(\mathfrak{p}) = \sum_{s \in \text{ vertices}} S(s + \mathfrak{c}_s), \quad I(\mathfrak{p}) = \sum_s I(s + \mathfrak{c}_s)$$

Example:

Let Δ be a simplex. Let ℓ be a linear form which is regular w.r.t. Δ , i.e., $\langle \ell, \mathbf{s}_i \rangle \neq \langle \ell, \mathbf{s}_j \rangle$ for any pair $i \neq j$. Then

$$\int_{\Delta} e^{\ell} \mathfrak{d} m = d! \operatorname{vol}(\Delta, \mathfrak{d} m) \sum_{i=1}^{d+1} \frac{e^{\langle \ell, \mathbf{s}_i \rangle}}{\prod_{j \neq i} \langle \ell, \mathbf{s}_i - \mathbf{s}_j \rangle}. \tag{1}$$

$$\int_{\Delta} \ell^{M} \mathfrak{d} m = d! \operatorname{vol}(\Delta, \mathfrak{d} m) \frac{M!}{(M+d)!} \Big(\sum_{i=1}^{d+1} \frac{\langle \ell, \mathbf{s}_{i} \rangle^{M+d}}{\prod_{j \neq i} \langle \ell, \mathbf{s}_{i} - \mathbf{s}_{j} \rangle} \Big). \quad (2)$$

Volumes of Polytopes: FAMILIAR AND USEFUL Volume of Polytopes: NOT AS EASY AS THEY MAY SEEM! But, How to compute the volumes anyway? How to Integrate a Polynomial over a Convex Polytope New Techniques for Integration over a Simplex Ideas to integrate fast and more

Summary

- Integration of arbitrary powers of linear forms can be done efficiently over simplices
- Not only over simplices! Also good over simple polytopes with polynomially many vertices, simplicial polytopes with polynomially many facets.
- Integration of polynomials of fixed degree is OK too.
- Integration of arbitrary powers of quadratic forms is already hard.
- Algorithms run nicely in practice. Have been useful to check results.

Volumes of Polytopes: FAMILIAR AND USEFUL Volume of Polytopes: NOT AS EASY AS THEY MAY SEEM! But, How to compute the volumes anyway? How to Integrate a Polynomial over a Convex Polytope New Techniques for Integration over a Simplex Ideas to integrate fast and more

Thank you