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Lattice Point Problems

Given a subset X of R?, there are a number of basic problems about lattice
points:

e Decide whether X NZ< is non empty.
e |f X is bounded, count how many lattice points are in X.

e Given a norm, such as the [, or [, norms, find the shortest lattice vector
of X.

e Given a linear functional ¢ - x we wish to optimize it over the lattice
points of X, i.e. find the lattice point in X that maximizes (minimizes)
cx.
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e Given a polynomial f(x) € Z[xy,...,z4], find y € X N Z¢ which
maximizes the value f(y).

e How to generate a lattice point in X uniformly at random?

e Find a Hilbert bases for a polyhedral cone X.

We present a non-traditional algebraic-analytic point of view:

GENERATING FUNCTIONS!!
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Consider the problem of counting first...
Given a polytope, P = {x|Axz =b, = > 0},

COUNT HOW MANY LATTICE POINTS are inside P.

y4

A=[3,5,17]

D

/

¢a(b) = #{(z,y,2)[3z + 5y + 172 =b, x > 0,y > 0,z > 0}
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More general...
Let

da(b) =#{x: Ar =b,x >0, x integral}.

It counts the number of lattice points inside convex polyhedra with
fix matrix A.

1. (APPLIED MATHEMATICIAN) Fast exact evaluation of ¢ 4(b) for fixed
values of b. or compute a “short” representation of ¢4(b).

2. (PURE MATHEMATICIAN) To compute explicit exact formulas in terms
of the parameters b;.
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EXAMPLE When A = [3,5,17], a short formula for ¢ 4(b) would be a
generating function!

1
Z¢A T At (1 =) (1—t3)

From that, you can see that ¢ 4(100) = 25, 4(1110) = 2471, etc...

Disclaimers: Whenever | say counting, | mean EXACT COUNTING.
There is a rich and exciting theory of estimation and approximation, but
that is not us!

We really care to get this rational functions In PRACTICE!!
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MOTIVATION
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Combinatorics
Many discrete structures can be counted this way: e.g. matchings on

graphs, Hamiltonian cycles, t-designs, linear extensions of posets, MAGIC
squares:

\\ | 12 0 S 7
<1-2te \-‘%v\-\ 1-- 7150 |1
v 5 1 7|12 o0

5

QUESTION:HOW MANY 4 x 4 magic squares with sum n are
there? Call this number My, 4(n).
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2?0?27 |24

20 22| 2|

20?0 2| 272 |24

20?7 7?7?24

24 24 24 24 24

The possible tables are non-negative integer solutions of the system of
equations: Four equations, one for each row sum and column sum. For
example,

T11 +X12 +T13 + T14 = 24, first row
13 + To3 + T33 + Ty3 = 24, third column
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Generating Function Formulas
The problem we have is equivalent to determining a short expression for
o0 n
Zn:O M4x4(n)t .

Because we are dilating a polytope, as we increase the magic sum n,
one can prove the following theorem:

Theorem The number of 4 X 4 magic squares with magic sum n has a toric

rational generating function:

8+ 4"+ 18t +361° +50t* +3613 + 1812 +4t+ 1
(—1+8)* (=1 + ¢2)*
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Optimization
Let G be a network with n nodes and m arcs, with integer-valued

capacity and excess functions ¢ : arcs(G) — Z>¢ and b : nodes(G) — Z.

A flow is a function f : arcs(G) — Z>¢ so that, for any node z, the
sum of flow values in outgoing arcs minus the sum of values in incoming
arcs equals b(z), and 0 < f(7,5) < c(i,]).

b,=0

C.~=5

Figure 1: A simple example

— Integer Optimization — 11



Jesus De Loera

How many Max-Flows are there?

From well-known theorems the max-flow value is 11, but how many
max-flows are there?

<L <Pl <
<L <L <
R

Figure 2: All max flows in the network.
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e Solving linear integer programming problems can be reduced to a counting
problem.

e [There are VERY hard “small’ instances, even commercial software
(CPLEX) could not solve them! New ideas are necessary. See

M. Cornuéjols et al. (1997,1998) and K. Aardal and A.K. Lenstra
(1999,2002).

For example:

{(x,y,z,w,v) € R‘j’r|12223x—|—12224y—|—36674z—|—61119w—|—8556921 = 89643481}.
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Compiler Design

How often is a certain instruction I of the computer code executed?
Example:

void proc(int N, int M)
{
int 1,3;
for (i=2N-M; i<= 4N+M-min(N,M), i++)
for(j=0; j<N-2%i; j++)
L

{(i,§) € Z*|i > 2N—M,i < AN+M —min(N,M), 7 >0,j—2i < N—1}
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Algebra and Number Theory

Number Theory Relations to the theory of partitions, Geometry of
Numbers. For example, Frobenius problem: Given relatively prime aq, ..., a,
what is the highest value of N for which a1z1 +---+a,x,, = N, x; > 0 is
integral INFEASIBLE.

Representation Theory: The calculation of multiplicities and tensor
product multiplicities for decomposition of representations into irreducible
representations are given by Gelf'and-Tsetlin polytopes, Hive Polytopes
(Knutson-Tao), Berenstein-Zelevinsky polytopes, Lattice-Path cones
(Littelmann). Kostant's partition function for simple Lie algebras can
be seen naturally as counting lattice points.

Commutative Algebra The Hilbert series of monomial algebras and
Grobner bases of toric ideals can be seen as problems of counting lattice
points in certains polytopes.
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EHRHART's THEORY
& THE DESCRIPTION OF

D 4(D)
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Dilations of Polyhedra
Let P be a convex polytope in R%. For each integer n > 1, let

nP = {nqlq € P}
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Ehrhart Counting function
For P a d-polytope, let

i(P,n) = #(nPNZL) =#{qe P |ng € 2%}

This is the number of lattice points in the dilation nP.

Similarly if P° denotes the interior of P.

i(P°,n) =#{qge P— 0P| nqgecZ%
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Example 1: Cubes

D S S S

i(Pn) = (n+ 1) i(P°n) = (n— 1)’
In general for a d-dimensional unit cube we have i(P,n) = (n + 1)¢
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Example 2

Let P be the tetrahedron

(1,1, 13)

Then

13 1
i(Pon) = Fn3+n2 — 6n+ 1

WARNING: The coefficients of Ehrhart polynomials can be negative!
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Example 3: MAGIC SQUARES polytopes

WARNING: The theory for polytopes with fractional vertices is more
complicated.

. o 2 :
We can consider the convex polytope inside R™ of magic n X n squares
of magic sum 1. For example, for n = 3 the vertices are

13| 0 |2/3 2/13 0|V3 0 (23113 1/3[2/3] O
2/3|1/3[0 0|13 2/3 2/3|1/31 0 0 |1/312/3

0 |2/3|1/3 1/32/30 13 0 |2/3 2/3[ 0 | 1/3

In this case the Ehrhart counting function is not a polynomial, it is a
quasipolynomial!

262 4 2541 if 3s
' _J 9 3 !
H{P ) { 0 otherwise,
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Ehrhart-Macdonald Theorem

Theorem (E. Ehrhart 1962, |I. Macdonald 1963)

Let P be a full dimensional rational polytope. Then i(P,n) is univariate
quasipolynomial, the Ehrhart quasipolynomial of P, in the dilation variable
n and of degree dim(P) whose leading term on each quasipolynomial piece
equals the volume of P.

Moreover, when the coordinates of the vertices of P are integers i( P, n)
is a polynomial.
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The Generating Function Encoding
Given K C R we WANT to compute the generating function

f(K) = Z 21 252 L 20,

acKNzd

Think of the lattice points as monomials!!!  EXAMPLE: (7,4,-3) is

7,4,—3
2{%9%3 °.

f(K) has inside all lattice points of K. But it is too long! In fact, this is
an infinite formal power series if K is not bounded, but if K is a polytope
it is a (Laurent) polynomial.

We need a SHORT REPRESENTATION!!!
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BARVINOK's ANSWER:

When K is a rational convex polyhedron, i.e. K = {x € R"|Ax =
b, Bx <}, where A, B are integral matrices and b, b’ are integral vectors,
The generating function f(K), and thus ALL the lattice points of the
polyhedron K, can be encoded in a “short” sum of rational functions!!!

EXAMPLE 1: Suppose my polyhedron is the infinite half-line P = {z|z >

0}

—

.—3-2-101 2 34 56 7

1

f(P):l—l—z—l—z2+z3—|—...:1 .
— 2
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Let P be the square with vertices V;

Example 2

(5000, 5000), and V4 = (0, 5000).

(0, 5000)

— (0,0), Va

(5000, 5000

(5000, 0)

(5000, 0), V3

The generating function f(P) has over 25,000,000 monomials, f(P)
1+ 21 4 20+ 2125 + 220 + - - - + 2200025000,

— Integer Optimization —
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But it has only four rational functions in its Barvinok’s encoding.

1 215000 225000 215000225000

I—)(-2) 0-aD(-2) 0-ml-2) 0-n -2
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Barvinok’s Original Algorithm (1993 Barvinok)

Assume the dimension d is fixed. Let P be a rational convex d-dimensional
polytope. Then, in polynomial time on the size of the input, we can write

the generating function f(P) = ) cpnza2”. as a polynomial-size sum of
rational functions of the form:

ZE’L' d - o (1)

where I is a polynomial-size indexing set, and where E; € {1,—1} and
Ui, Vij € 7 for all i and j.

We present an improved algorithm (2002 De Loera et al.)
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Enough to do it for CONES

Set your polytope P inside the hyperplane ¢ = 1. What we want is the
generating function of the lattice points in the cone.

=1

Y
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Enough to do it for SIMPLE CONES

By the INCLUSION-EXCLUSION principle, we can just add the
generating functions of the simplicial pieces!
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Simple Cones are Easy
For a simple cone K C R4

ZuEHﬂZd z*
(1 —2ze)(1 —z%2)...(1— z¢)

fK) =

IT is the half open parallelepiped {x|r = a1c1 + -+ 4+ ageq, 0 < o < 1}.

/
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Example
In this case, we have d = 2 and ¢; = (1,2), co = (4,—1). We have:

 mt izt A tantiat+aiti+a+l
(1—2123)(1 — 223 ") |

f(K)
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Barvinok’s cone decomposition lemma

Theorem [Barvinok| Fix the dimension d. Then there exists a polynomial
time algorithm which decomposes a rational polyhedral cone K C R? into
unimodular cones K; with numbers ¢; € {—1,1} such that

fK) = Zézf(Kz) ] < oo.

el

Main idea Triangulation is TOO expensive, allow simplicial cones’s rays to
be outside the original cone. Rays are short integer vectors inside a convex
body, apply Minkowski's theorem!
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Step 1

a = (det(U1l U2))%

— Integer Optimization —
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SUMMARY of Homogenized Barvinok Algorithm.

Input is a full-dimensional convex rational convex polytope P in R?
specified by linear inequalities and linear equations.

1. Place the polytope P into the hyperplane defined by 4,1 = 1 in R4t

Let K be the d + 1-dimensional cone over P, that is, K = cone({(p,1) :
p € P}).

2. We can triangulate K and reduce everything to simple cones

01,09,...,0.. Apply Barvinok's decomposition of o; into unimodular
cones. We get a signed unimodular cone decomposition of K.

3. Retrieve a signed sum of multivariate rational functions, one per cone,
. . a
which represents the series » ;- ~m 2.
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4. If we call the variable 411 = t then we obtain the expression of the
generating function of Y00 (3" .. prza2®) 17,

EXAMPLE

For the triangle o with vertices Vy = (—1,—-1), V4 = (2,—1), and
Vo = (—1,2) we have
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Counting Lattice Points FAST!

LEMMA: The number of lattice points in P is the limit when the vector
(1,...,2y,) goes to (1,1,...,1).

TROUBLE: The vector (1,1,...,1) is a pole in all the rational functions, a
singularity, because the Barvinok rational functions are

ZCL

[T, (1= 2p)
HOW TO COMPUTE THIS LIMIT??77
Shall | expand into monomials???

The singularity gets resolved that way...right?
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NO WAY!

Never fully expand the rational

functions into ALL monomials!

UME

RICAL COMPLEX ANALYSIS 101

_LUA

'E THE RATIONAL FUNCTIONS!
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Computation of Residues for rational functions

This reduces to computing a residue at a pole 2.

If f(2) = 02 an(z — 20)¥, the residue is defined as

Res(f(z9)) = a_1.

Given a rational function f(z) = 2(=)» and a pole z we use

THEOREM Henrici's Algorithm for the residue: If p(z),q(z) have degree
no more than d, then residue at zg can be computed in no more than 0(d?)
arithmetic operations.
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Algorithm
(CASE 1) If z is a simple pole is TRIVIAL, then Resf(zy) = &2

— q'(z0)"

(CASE 2) Else zj is a pole of order m > 1,
(A) Write f(z) p()

— G—20)"q1(2)°

(B) Expand p, g1 in powers of (z — zq)

p(z) = ag+ai(z — 20) +as(z — 20)° + ... q1(2) = bg+bi(z — z) +
b2(2—20)2—|—...

(C) The Taylor expansion of p(z)/q1(z) at zg is co+ c1(z — 20) + c2(2z —
20)% + c3(z — 29)° + ... where

a 1
co = 32, and ¢, = g-(ar — bick—1 — bacg—2 — - - — byco)

(D) OUTPUT Res(f(z0)) = ¢m—1.
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Monomial Substitution

Lemma: Let us fix k&, the number of binomials in the denominator of a
rational function. Given a rational function sum g of the form

where u;, v;; are integral d-dimensional vectors, and a monomial map
Yy : C* — C? given by the variable change z; — zi“zé” ... zkn whose
image does not lie entirely in the set of poles of g(x), then there exists a
polynomial time algorithm which, computes the function g(¢(z)) as a sum

of rational functions of the same shape as g(z).
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Corollary: Random Generation of Lattice Points

How to pick a random lattice point? Markov chain methods have been
around for some time, but they work on some “roundness” assumptions!!
Not working well for all polytopes! (work by Dver, Frieze, Kannan, Lovasz,
Simonovits and others)

THEOREM (Barvinok-Pak) Let P be a convex rational polytope in R
Then using O(d?log(size(P))) calls to Barvinok's counting algorithm, one
can in polynomial time can sample uniformly from set P N Z<.
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LattE

e Our goal was to implement and develop algebraic-analytic algorithms.
Members: J. De Loera, R. Hemmecke, R. Yoshida, D. Haws, P. Huggins,
J. Tauzer.

e First implementation of Barvinok's encoding algorithm.  Software
implemented in C++.

e \We used also libraries from CDD, NTL.

e We use BOTH geometric computing AND symbolic-algebraic
manipulations!!
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Integer Polynomial Optimization
in Fixed Dimension

EPISODE II
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Two Discrete Optimization Problems
Given the set X = P NZ% we care about:

e Given a linear functional ¢ - x we wish to optimize it over the lattice
points of X, i.e. find the lattice point in X that maximizes (minimizes)
cT.

e Given a polynomial f(x) € Z[xy,...,24], find y € X N Z% which
maximizes the value f(y).

We take the point of view: GENERATING FUNCTIONS.
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Recall: Barvinok’s Theorem

Assume the dimension d is fixed. Let P be a rational convex d-dimensional
polytope. Then, in polynomial time on the size of the input, we can write

the generating function f(P) = > cpnza2”. as a polynomial-size sum of
rational functions of the form:

S B (2)
el H (1 _ Z’Uij)

g=1

where I is a polynomial-size indexing set, and where E; € {1,—1} and
U, Vij € 7% for all i and j.
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ALGORITHM: Barvinok + Binary Search
Input: A€ Z™*4 beZ™, ceZ

Output: The optimal value of maximize {c¢ -z : Az < b,z > 0,z € Z}.

For fixed d, this algorithm runs in polynomial time (on the input size)
by using the polynomiality of Barvinok’s counting algorithm.
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Toward More Direct Algorithms:
Barvinok's algorithm computes the function f(P,z) = > _pnza 2, in the

s

form: f(P,z) = ZZEI Eil—[?zl(l—sz

100 C=(100, 90)
50
100
(0,0) 50
50 100 50 50
_ 1 1 Z2 Z1 %2
fP.2) = m=n==) T o o T aes ie T es s w)

— Integer Optimization —

51



Jesus De Loera

Changing Variables is IMPORTANT!!
f(P,z) =) cprza?®, in the form:

Z@HJ 1 1 . va)

el

If we make the substitutions z; — t¢, then we have z¢ — €<,

fPzy— 3 e

acPNZd

= t™ 4 (lower degree terms in t)

M is the optimal value of the integer linear programming problem!

— Integer Optimization —
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Example

100 C=(100, 90)

d

50

100

(0,0) 50

Z?O ZlOO Z?OZSO

_ 1 2
J(P,z) = A—=)(-2) T (1—2; 1) (1—22) T (1—27 1) (1—22) T (1—27 1 (1—27129)°

thO

Substitute 2z — and 2o — t%% then we have 900

lower degree terms in t.
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Monomial Substitution

Lemma: (Barvinok-Woods) Let us fix k, the number of binomials in the
denominator of a rational function. Given a rational function sum ¢ of the
form

g(ZC) — ZO"&' 2 xw ’
el H (1 — xvij)

g=1

where u;, v;; are integral d-dimensional vectors, and a monomial map

Y : C* — C9 given by the variable change z; — zi“zg” ... 2kn whose
image does not lie entirely in the set of poles of g(x), then there exists a
polynomial time algorithm which, computes the function g(¢(z)) as a sum

of rational functions of the same shape as g(z).
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A Reformulation of Integer Linear Programming:

GOAL: Given A € Z™*?4 b € Z™, ¢ € Z% and assume that number of
variables d is fixed. Wish to solve the integer programming problem

maximize (c¢-x) subject to =z € {z|Ax <b,x >0, x; € Z },

In our setting this is

DETECTING THE HIGHEST DEGREE COEFFICIENT OF A
POLYNOMIAL!

THE POLYNOMIAL IS GIVEN AS A SUM OF RATIONAL
FUNCTIONS.

Several different ways to do this!
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Digging Algorithm: Laurent Series Expansion
Input: A€ Z™*4 becZ™, ceZ
Output: The optimal value of maximize {c-z : Az < b,z > 0,z € Z4}.

(A) Using Barvinok's algorithm and monomial substitution compute the
rational function expression

1€ Wi

j{:za . (3)

el j 1( tC 'Uzj)

(B) Use the identity
1 e
1 . tc-vij 1 . t—c-vij
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as necessary to enforce that all v;; in (3) satisfy ¢ v;; < 0. So now the
terms of the series are given in decreasing order with respect to the degree
of ¢.

(3) For each of the rational functions in the sum compute a Laurent series
expansion of the form

d
Ei tc.ui H(l 4+ tc-vij i (tc-vij)Q 4. )
7j=1

multiply out the factors and add the terms, group together those of the
same degree in t. Thus we find a term expansion. Proceed in decreasing
order with respect to the degree of .

(4) Continue until a degree n of t is found such that for some the coefficient
Is non-zero in the expansion. Return n as the optimal value.
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Boolean operations on rational functions

Lemma: Let Si,5 be finite subsets of Z™ and let f(S1,z) and f(S2, )
be the corresponding generating functions, represented as short rational
functions with at most k& binomials in each denominator. Then there exist
a polynomial time algorithm, which, given f(S;, x), computes

Uyq

o (1 — xvis)

x
50805 = Ty

€1
with s < 2k and ~; rational numbers, u;, v;; nonzero integers.

Same with finite unions or complements!
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The Projection Lemma
Lemma Consider a rational polytope P C R™ and a linear map T :

Z"™ — 7ZF. There is a polynomial time algorithm which computes a short
representation of the generating function f(T(P NZ"), x)

zlz% + z?fz% + zfzg’ + z{’zg + zi:’z% projects to  z1 + z?f + zf + z{’
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Integer Polynomial Optimization

Problem: Let f,g; are d-variate polynomials with integral
coefficients.

maximize f(x1,...,xq) subject to g;(x1,...,2q) >0, x € Z%.

Also called Integer Semialgebraic Optimization.
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Question: What happens if we assume the number of
variables is fixed?

Positive Notes: problem contains Integer Linear Programming, Lenstra's
Algorithm guarantees is solvable in polynomial time for fixed dimension.
Also, Integer Semidefinite Programming runs in polynomial time in fixed
dimension by Khachiyan and Porkolab’s work.

Negative Notes: continuous polynomial optimization over polytopes,
without fixed dimension, is NP-hard and no FPTAS is possible! the max-cut

problem can be modeled as minimizing a quadratic form over the cube
[—1,1]%.
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The whole picture

Table 1: Computational complexity of polynomial integer problems in fixed

dimension.

Type of objective function

convex arbitrary
Type of constraints linear polynomial polynomial
Linear constraints, polytime (x) <= polytime () NP-hard (a)
f fr U
Convex semialgebraic constraints,  polytime (%) <= polytime (%) NP-hard (c)

Arbitrary polynomial constraints,

undecidable (b) = undecidable (d) = undecidable (e)

— Integer Optimization —
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Integer Polynomial Optimization over a Polytope

Problem: Let f be a d-variate polynomial with integral
coefficients. Now the g;(x) are linear inequalities.

maximize f(x1,...,xq) subject to g;(z1,...,24) >0, x € Z%.

Example: Consider this problem from MINLPLIB library

2
00 (Lva-(3a) ) «(3-)
max — o — | T (4 - — 1
2 7 \5 " 5 (4)
s.t. i1,ip € [0,200] N Z.

lts optimal solution is i; = 1, 75 = 2 with an objective value of 0.72.
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Integer Polynomial Optimization over a Polytope

Theorem (D,Hemmecke, Koeppe,Weismantel) Let the number of variables
d be fixed. Let f(x1,...,x4) be a polynomial of maximum total degree D
with integer coefficients, and let P be a convex rational polytope defined
by linear inequalities in d variables.

(1) We can construct an increasing sequence of lower bounds {L;} and a
decreasing sequence of upper bounds {U.} to the optimal value

f* = maximize f(x1,2o,...,xq) subject to x € PN A (5)

The bounds L, Ur can be computed in time polynomial in k£, the input
size of P and f, and the maximum total degree D and they satisfy the
inequality Uy — Ly, < f*- (¥/|PNZ4| —1).
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(2) Moreover, if f is positive semidefinite over the polytope (i.e. f(z) >0
for all x € P), there exists a fully polynomial-time approximation scheme
(FPTAS) for the optimization problem (5).

The construction of the bounds and algorithm uses Barvinok’s rational
functions.
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Polynomial Evaluation Lemma

Lemma: Given a Barvinok rational function f(.5), representing a finite set
of lattice points S, and a polynomial g with integer coefficients we can
compute, in time polynomial on the input size a Barvinok rational function
for the generating function

f(S,9,2) => gla)z".

NOTE: This is independent of the degree of g.
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Differential Operators give the coefficients:

We can define the basic differential operator associated to f(x) = z,

zra%- Z 2% = Z zr—z Z o2

ac PNza ac PNza ac PNZd

Next if f(2) = c¢- zlﬁl C zgd, then we can compute again a
rational function representation of gp ¢(2) by repeated application of basic
differential operators:

) B o Bd 5
() () o

— Integer Optimization — 68



Jesus De Loera

VISIT:

www.math.ucdavis.edu/~latte

with lots of nice stuff about lattice points on polytopes...

THANK YOU!
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