Some old and new problems in combinatorics and geometry

Gil Kalai
Hebrew University of Jerusalem

Part 1: Around Borsuk’s problem:

Let $f(d)$ be the smallest integer so that every set of diameter one in R^d can be covered by $f(d)$ sets of smaller diameter.

Borsuk conjectured that $f(d) \leq d + 1$. It is known (Kahn and Kalai, 1993) that: $f(d) \geq 1.2 \sqrt{d}$, and also that (Schramm, 1989) $f(d) \leq (\sqrt{3/2} + o(1))^d$.
A remaining problem

Is $f(d)$ exponential in d?

Best shot (in my opinion) for an example:
(a) Start with binary linear codes of length n (based on AG-codes) with the property that the number of maximal-weight codewords is exponential in n.
(b) Show that the code cannot be covered by less than exponential number of sets which do not realize the maximum distance. Part (b) can be difficult.
Low dimensional counterexamples and a problem of Larman

The Borsuk conjecture is false for $n = 1305$ and all $n > 2014$ (Kahn, Kalai 1993)

... Gradual improvements...946 (A. Nilli) 561 (Raigorodski) 560 (Weissbach) 323 (Hinrichs), 321 (Pikhurko), 298 (Hinrichs and Richter).

Larman asked: Is the Borsuk conjecture correct for 2-distance sets?
Low dimensional counterexamples and a problem of Larman

The Borsuk conjecture is false for $n = 1305$ and all $n > 2014$ (Kahn, Kalai 1993)

... Gradual improvements...946 (A. Nilli) 561 (Raigorodski) 560 (Weissbach) 323 (Hinrichs), 321 (Pikhurko), 298 (Hinrichs and Richter).

Larman asked: Is the Borsuk conjecture correct for 2-distance sets?

(May 19, 2013) Andriy V. Bondarenko found a 2-distance set with 416 points in 65 dimensions that cannot be partitioned into less than 83 parts of smaller diameter. Remarkable!
Volumes of sets of constant width

Let us denote the Volume of the n-ball of radius 1/2 by V_n.

Question (Oded Schramm): Is there some $\epsilon > 0$ so that for every $n > 1$ there exist a set K_n of constant width 1 in dimension n whose volume satisfies $VOL(K_n) \leq (1 - \epsilon)^n V_n$.

(A negative answer for spherical sets will push the $(3/2)^{n/2}$ upper bound to $(4/3)^{n/2}$.)
How to save Borsuk’s conjecture?

Problem: Is Borsuk’s conjecture true for “non-coincidental” sets?
This question can be made precise. Let K be a compact set of diameter 1 and D be its set of diameters, namely D is the set of pairs (x,y) of points in K with $\| x - y \|_2 = 1$. The problem applies to the case that every perturbation of the distances between pairs in D corresponds to a perturbation of K itself.
Part 2: Around Tverberg’s theorem

Tverberg’s Theorem states the following: Let x_1, x_2, \ldots, x_m be points in \mathbb{R}^d with $m \geq (r-1)(d+1)+1$. Then there is a partition S_1, S_2, \ldots, S_r of $\{1, 2, \ldots, m\}$ such that $\bigcap_{j=1}^r \text{conv}(x_i : i \in S_j) \neq \emptyset$. This was a conjecture by Birch who also proved the planar case.

The bound of $(r-1)(d+1)+1$ in the theorem is sharp as easily seen from configuration of points in sufficiently general position. The case $r = 2$ is Radon’s theorem.
Old & New Problems in Combinatorics and Geometry

Monday, October 7 at 5:10 PM in Giedt
My ’74 conjecture

For a set A, denote by $T_r(A)$ those points in R^d which belong to the convex hull of r pairwise disjoint subsets of A. We call these points Tverberg points of order r.

Conjecture: For every $A \subset R^d$,

$$\sum_{r=1}^{\lfloor \frac{|A|}{d} \rfloor} \dim T_r(A) \geq 0.$$

(Note that $\dim \emptyset = -1$.) The conjecture was proved for $d \leq 2$ by Akiva Kadari (unpublished M. Sc thesis in Hebrew).
A related question about directed graphs that can be described as the union of two trees

Let G be a directed graph with n vertices and $2n - 2$ edges.

Question: When can you divide your set of edges into two trees T_1 and T_2 (so far we disregard the orientation of edges,) so that when you reverse the directions of all edges in T_2 you get a strongly connected digraph.
A related question about directed graphs that can be described as the union of two trees

Let G be a directed graph with n vertices and $2n-2$ edges.

Question: When can you divide your set of edges into two trees T_1 and T_2 (so far we disregard the orientation of edges,) so that when you reverse the directions of all edges in T_2 you get a strongly connected digraph.

I conjectured that if G can be written as the union of two trees, the only additional obstruction is that there is a cut consisting only of two edges in reversed directions.
A counterexample by Maria and Paul

... But Maria Chudnovsky and Paul Seymour found a counterexample with five vertices, and some additional necessary conditions.

Here is another attempt at a counterexample; hopefully we are doing the right problem now.
It’s a 5-vertex graph, with vertices a_1,a_2,b_1,b_2,c, and directed edges $a_i\rightarrow b_j$ for all i,j $b_1\rightarrow c,b_2\rightarrow c$ $c\rightarrow a_1,c\rightarrow a_2$
In fact, here is what seems to be another necessary condition:
There is no induced cycle $c_1-\ldots-c_{2k}-c_1$ in G, s.t. each c_i is cubic, the edges of the cycle alternate in direction, and none of c_1,\ldots,c_{2k} are sources or sinks of G.
The topological Tverberg Conjecture

Conjecture (Tverberg): Let \(f \) be a continuous function from the \(m \)-dimensional simplex to \(\mathbb{R}^d \), where \(m = (r - 1)(d + 1) \). Then there are \(r \) disjoint faces of the simplex whose images have a point in common.
Part 3: Problems around polytopes

Triangulations and puzzles

Problem: Consider a triangulation of a d-dimensional sphere. Suppose you are given the dual graph of the triangulation as an abstract graph, can you determine the triangulation itself? (The dual-graph is sometimes refer to as the *puzzle* corresponding to the triangulation.)

For triangulations coming from simplicial polytopes this was proved by Blind and Mani.

For $d = 2$ this is a result of Whitney.
Erdős-Ko-Rado meets Catalan

Conjecture: Let C be a collection of triangulations of an n-gon so that every two triangulations in C share a diagonal. Then $|C|$ is at most the number of triangulations of an $(n - 1)$-gon.
Erdős-Ko-Rado meets Catalan

Conjecture: Let C be a collection of triangulations of an n-gon so that every two triangulations in C share a diagonal. Then $|C|$ is at most the number of triangulations of an $(n - 1)$-gon. Gjergji Zaimi made a more general conjecture:

Conjecture: Let P be a polytope with no triangular face. Then the maximum number of vertices such that every two vertices belongs to a common facet is attained by all vertices of a single facet.
The $F \leq 4E$ conjecture

Theorem (follows from Euler’s theorem): Let G be a simple planar graph with V vertices and E edges. $E \leq 3V$.

Now let K be a two-dimensional simplicial (or polyhedral) complex and suppose that K can be embedded in \mathbb{R}^4. Denote by E the number of edges of K and by F the number of 2-faces of K. Here is a really great conjecture:

Conjecture:

$$F \leq 4E$$

A weaker version which is also widely open and very interesting is:

For some absolute constant C,

$$F \leq CE$$
The Polynomial Hirsch Conjecture

Conjecture: Let P be a d-dimensional polytope with n facets, then the diameter of the graph of P is at most polynomial in d and n.

The question extends and all proofs of known upper-bounds applies to very abstract setting, e.g., to dual-graphs of triangulations of pure $(d - 1)$-dimensional complexes, with connected links.
Centrally-Symmetric polytopes

Conjecture: A centrally symmetric d-polytope has at least 3^d non-empty faces.

Equality: The d-cube and all *Hanner polytopes*

Analogous to the Mahler’s well-known conjecture asserting that a CS set in R^d \(\text{Vol}(K) \text{Vol}(K^*) \geq 4^d/d! \). (World record holder: Greg Kuperberg)

A related conjecture: A centrally symmetric d-polytope has at least $2^d d!$ maximal chains of faces.
Ramsey’s type conjecture for polytopes

Conjecture: For a fixed k, every d-polytope of sufficiently high dimension d contains a k-face which is either a simplex or a (combinatorial) cube.
Karin Adiprasito and I came up with the following analogous conjecture:

Conjecture: For every k there is $n(k)$ so that for every Rimannian metric on S^n, $n > n(k)$, there is a point and a k-dimensional section with positive Ricci curvature.
Threshold and Expectation threshold

Consider a random graph G in $G(n, p)$ and the graph property: G contains a copy of a specific graph H. (Note: H depends on n; a motivating example: H is a Hamiltonian cycle.) Let q be the minimal value for which the expected number of copies of H' in G is at least $1/2$ for every subgraph H' of H. Let p be the value for which the probability that G contains a copy of H is $1/2$.

Conjecture: [Kahn - Kalai 2006]

$$p/q = O(\log n).$$

The conjecture can be vastly extended to general Boolean functions, and there are possible connection with harmonic analysis and discrete isoperimetry.
Problem: Let X be a family of subsets of $[n] = \{1, 2, \ldots, n\}$. How large X is needed to be so that the restriction (trace) of X to some set $B \subset [n]$, $|B| = (1/2 + \delta)n$ has at least $3/4 \cdot 2^{|B|}$ elements?

Kahn-Kalai-Linial (1988): $2^n/n^c$ for some constant $c > 0$ is ok.

Kahn Kalai (2013): $2^n/2^{n\beta}$, for some $\beta < 1$ is not enough.

Bourgain (2013): $2^n/n^C$ is ok, for some $\delta = \delta(C)$.
Graphs without induced cycles of length divisible by three.

A conjecture by Roy Meshulam and me (motivated by Helly-type theorems): There is a constant C such that every graph G with no induced cycles of order divisible by 3 is colorable by C colors.
Graphs without induced cycles of length divisible by three.

A conjecture by Roy Meshulam and me (motivated by Helly-type theorems): There is a constant C such that every graph G with no induced cycles of order divisible by 3 is colorable by C colors.

Another conjecture by Roy Meshulam and me: For every $b > 0$ there is a constant $C = C(b)$ with the following property: Let G be a graph such that for all its induced subgraphs H

(*) The number of independent sets of odd size minus the number of independent sets of even size is between $-b$ and b.

Then G is colorable by C colors.
Tommorow’s lecture: Why quantum computation cannot work

The lecture (10-11) will be accessible for general audience and self-contained. Let me explain one word in the title:
Tommorow’s lecture: Why quantum computation cannot work

The lecture (10-11) will be accessible for general audience and self-contained. Let me explain one word in the title: “why”
Tomorrow’s lecture: Why quantum computation cannot work

The lecture (10-11) will be accessible for general audience and self-contained. Let me explain one word in the title: “why” I will present an explanation for why quantum computers cannot be realized. This is not a definite or complete explanation and certainly not a mathematical proof. But it is a plausible explanation (within QM, of course). The topic is related to interesting mathematics.
Paul Erdős’ way with people and with mathematical problems

There is a saying in ancient Hebrew writings:

Do not scorn any person and do not dismiss any thing, for there is no person who has not his hour, and there is no thing that has not its place.

Paul Erdős had an amazing way of practicing this saying, when it came to people, and when it came to his beloved “things” - mathematical problems.
Thank you very much!
Encore: Cocycles

A cocycle is a k-uniform hypergraph such that every $k + 1$ vertices contains an even number of edges. Let $f(k, n)$ be the largest number of edges in a k-uniform hypergraph with n vertices without a cocycle. Let $T(k, n)$ be the maximum number of edges in a k-uniform hypergraph without having all edges from a set of size $k + 1$.

Conjecture: When k is even $T(k, n) = f(k, n)$.

Problem: When k is even what is $f(k, n)$?