Optimization (168)

Lecture 10-11-12

Jesus De Loera

UC Davis, Mathematics

Wednesday, April 2, 2012



LAST EPISODE...

@ Theorem V. Klee and G. Minty (1972) showed that there are explicit linear
programs with n constraints for which the largest-coefficient pivot rule can take
2" —1 pivots to reach the optimal solution.

@ But we know today there are many alternative methods to the SIMPLEX
METHOD:

@ Fourier-Motzkin Elimination (Goes back to Fourier, rediscovered by T. Motzkin in
1930’s. Interesting in theory but much slower than Simplex)

@ Relaxation Methods (invented by T. Motzkin and his students in the 1950’s.
Interesting in theory but much slower than Simplex).

@ Kachiyan’s Ellipsoid Method (invented in the late 1970’s. First ever polynomial
time algorithm for solving linear programs. SLOW!)

@ Karmarkar’s Interior Point Methods (invented in the late 1980’s. Good theoretical
and practical performance!! Competes with Simplex!).

@ Many other algorithms exist, but they are mostly variations or improvements of
those mentioned so far.






Suppose you know nothing about simplex, but wish to

estimate

max 4xq+ x> +5x3+3x4
st. Xy —Xo—X3+3x4 <1
5x1 +x2+3x3+8x4 <55
—X1+2x2+3x3 —5x4 <3

X1,X2,X3, X4 Z 0

Clearly, if you GUESS a feasible solution we obtain a lower bound for the maximum.
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Note that the objective function has a nice relation with this new inequality!
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Thus the maximum value must be z* < 2. We can be more clever:
If we add the second and third constraints we have

4x1 + Xo +5x3 +3x4 < 4x1 +3x2 +6x3 +3x4 < 58.

THIS method can be generalized!
IDEA: We need to construct linear combinations of the constraints of the original LP.
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y1(x1 —x2 —x3+3x4 < 1)+ y2(5x1 + X2 +3x3 +8x4 < 55) 4 y3(—x1 +2x243x3 —5x4 < 3)
Regroup in x;’s

(V1 +5y2 —y3)x1 +(—y1 +y2 +2y3)x2+ (—y1 +3y2+3y3)x3 + (3y1 +8y2 — Sy3)xa
<y1 + 55y + 3ys.

We wish to use the LEFT-hand side as an upper bound to the objective function!!!
Av, L v~ 1L By~ 1L v, thic maanc



yi+5y—y3 >4
—Yy1+y2+2y3 > 1
—Yy1+3y2+3y3 25
3y1+8y, —5y3 >3

If all these is true, then we must have that 4x; + xo +5x3 +3xs < y1 +55)> +3y3



Vi+5y—ys >4
—Yit+Yy2+2y32>1
—¥1+3y2+3y3>5
3y1+8y2—5y3 >3

If all these is true, then we must have that 4x; 4+ xo +5x3 + 3x4 < y4 + 55y +3y3
Since we want the BEST upper bound for our maximization problem we need to find

the SMALLEST value of y; + 55> + 33
Minimize y; +55y> +3y3
Vi+5y—ys >4
—Vit+y2+2y3 21
—¥1+3y2+3y3 235
3y1+8y2—5y3 >3
Y1.Y2,¥3,¥4 >0



Economic Interpretation

Given a cache of raw materials and a factory for turning these raw materials into a variety
of finished products, how many of each product type should we make so as to maximimze
profit?

This is a resource allocation problem (m =2, n = 3):

maximize T, + Ty + 3Ty

subject to @y + apEs + apry < b
n®y + ATy + anry < by
Ly, L2, I3 2 0:
where
¢; = profit per unit of product j produced
b; = units of raw material 7 on hand

a;; = units raw material i required to produce 1 unit of prod j.



Economic Interpretation

If we produce one unit less of product 7, then we free up:
® a;j units of raw material 1 and

® ay; units of raw material 2.
Selling these unused raw materials for 3, and y. dollars/unit yields ay;y, + asjy2 dollars.

Only interested if this exceeds lost profit on each product j:

(Eljy] + agjyg 2 C]: _} = 1,2,3.

Consider a buyer offering to purchase our entire inventory.

Subject to above constraints, buyer wants to minimize cost:

minimize iy +  bays

subject to apy + any: = a
apy + anlp = &
a;sy + auslys = cy

Yy, Yo = 0.



This remarkable observation gives you a construction: For each LP (PRIMAL)

mn

maximize E CiT

j=1
n

subject to Zaij;t:jg b; A B SR
=1

z; 20 T B R

We have a DUAL LINEAR PROGRAM

m

minimize E biyi
i=1

subject to Zyiaﬁ > T (R

i=1
yi> 0 =i b

Lemma: If we rewrite the dual in standard maximization form it equals the negative
transpose of the primal problem. Moreover the dual of the dual is the original LP.



Rewriting the dual in the maximization form

m
—maximize Z —by;
i=1
m
subject to z =y < =6 =l

i=1

yi =0 =il

Thus we get the original back if we dualize.

Dual is “negative transpose’ of pri-
mal.
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Rewriting the dual in the maximization form

m

—maximize Z —by;

= Dual is “negative transpose” of pri-
i=1
m

mal.
subject to z =y < =6 =l

i=1
yi =0 =l e

Thus we get the original back if we dualize.
There is a nice way to write the primal and the dual in matrix form:

max ¢’ x miany
Ax < b ATy >c
x>0 y=0

Theorem: (Weak Duality theorem) if P is the primal linear program in standard
maximization form and D is the dual in the minimization form. For each pair of feasible
solutions, x, y we have

ZC/'X/- =c'x < bT,V = Zbi}’i 10
i i



QUESTION: Is there a gap in between the largest primal solution and the smallest
dual solution??
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QUESTION: Is there a gap in between the largest primal solution and the smallest
dual solution??

Theorem (von Neumann Strong Duality Theorem) A linear program has an optimal
solution if and only if its dual has an optimal solution too and ¢”x = b” y. Thus for a
primal and its dual we have only 4 allowable situations:

Finite optimum Unbounded Infeasible

Finite optimum Possible Impossible | Impossible
Unbounded Impossible Impossible Possible
Infeasible Impaossible Possible Possible

Let us see why we have all the options...



What is the dual of this LP?

Maximize 2x; — xo
Xg—Xo <1
—X1+x <=2
X1,Xo >0

GOOD NEWS: can use the duality theorem to check whether we really found an
optimal solution!! True solutions (x*,y*) must satisfy ¢’ x* = b” y*



What is the dual of this LP?

Maximize 2x; — xo
Xg—Xo <1
—X1+x2 <=2
X1,Xo >0

GOOD NEWS: can use the duality theorem to check whether we really found an
optimal solution!! True solutions (x*,y*) must satisfy ¢’ x* = b” y*

GOOD NEWS: The simplex method is not just solving the primal problem! It
simultaneously solves the dual problem too!

The optimal solution of the dual problem can be read off the objective function row of
the final dictionary and vice versa.

original variables of the primal MATCHED with dual slack variables
slack variables of the primal MATCHED with dual variables



Take a (primal) LP and its dual

Maximize —3x1 +2x2 + x3 Minimize 3y»
—X2+2x3 <0 —3y2 =2 =3
—3x1 +4x2—x3 <3 —yit+4y =22
X1,X2,X3 > 0 2y1—y2 21
V1,220

But if we rewrite both as dictionaries with the maximization forms we have

Z=—3xy+2x2+ X3 z=-3y
wy = Xo — 2X3 zZy = 3 — 3y
Wo =3+ 3x1 —4x0 — X3 Zo = —2—y;+4ye

X1, X2, X3, Wy, Wo >0 Z3 = —14+2y;1 —y»

Y1,Y0,21,22,23 2 0

KEY POINT: As we pivot the dictionaries will be negative transpose of each other!



e Dual is negative transpose of

e Primal is feasible, dual is not.

o - [ [ - - -
a [0 [0 s 2 s [

w2 = 3 Sl -2 = 4 =2~ 1

Its Dual:

Notes:

obj 0 0 yl o+ -3 y2

= 3 | A ally E 2l primal.
= - [ s [« |

o - - -

Use primal to choose pivot: ; enters, w, leaves.

Make analogous pivot in dual: z; leaves, y» enters.



After First Pivot:

obj = 372 + -372 x1 + 142 w2 o+ -33
Primal (feasible): ' *& = ye |- | -se |- ve | #2- o4 | 3]
32 = e |- | -3a |- e |2]- vs |58
obj = | -32 [+ | -34 |y + | -34 |2
. s =L 32 |- e |- s | =2
Dual (still not feasible): @ = e v 0 e
o - - o wi [

Note: negative transpose property intact.

Again, use primal to pick pivot: x3 enters, w; leaves.

Make analogous pivet in dual: z; leaves, 3, enters.



Primal;

e |s optimal.

Dual:
e Negative transpose prop-

erty remains intact.

e |s optimal.

Conclusion

Simplex method applied to primal problem (two

the primal and the dual.

x3

x2

5/3 + -4/3 x1 o+ 549 w2 o+ -2/9 wl
143 -1/3 =1~ 19 2]~ 9 |E
23 - | -2 x1]- 2/9 w2 - -1/9 it

obj = 543 + 173 z3 + -2/3 z2

21 = Y3 |- 173 =3 - 23 |2

¥2 = 5/9 ~ -1/9 z3] - -2/9 z2|

¥l = 2/9 - -4/9 z3] - 1/9 =2|

phases, if necessary), solves both



