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LAST EPISODE...

Theorem V. Klee and G. Minty (1972) showed that there are explicit linear
programs with n constraints for which the largest-coefficient pivot rule can take
2n−1 pivots to reach the optimal solution.

But we know today there are many alternative methods to the SIMPLEX
METHOD:

Fourier-Motzkin Elimination (Goes back to Fourier, rediscovered by T. Motzkin in
1930’s. Interesting in theory but much slower than Simplex)

Relaxation Methods (invented by T. Motzkin and his students in the 1950’s.
Interesting in theory but much slower than Simplex).

Kachiyan’s Ellipsoid Method (invented in the late 1970’s. First ever polynomial
time algorithm for solving linear programs. SLOW!)

Karmarkar’s Interior Point Methods (invented in the late 1980’s. Good theoretical
and practical performance!! Competes with Simplex!).

Many other algorithms exist, but they are mostly variations or improvements of
those mentioned so far.
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DUALITY IN
LINEAR PROGRAMMING
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Suppose you know nothing about simplex, but wish to
estimate

max 4x1 + x2 +5x3 +3x4

s.t. x1− x2− x3 +3x4 ≤ 1

5x1 + x2 +3x3 +8x4 ≤ 55

− x1 +2x2 +3x3−5x4 ≤ 3

x1,x2,x3,x4 ≥ 0

Clearly, if you GUESS a feasible solution we obtain a lower bound for the maximum.

For example x∗ = (2,1,1,1/3) is a solution that says maximum is at least 22.
Bad idea to GUESS solutions anyway! Instead we develop a systematic estimation of
upper bounds.
Suppose we multiply the second constraint by 5

3 we obtain the inequality:

25
3

x1 +
5
3

x2 +5x3 +
40
3

x4 ≤
275

3

Note that the objective function has a nice relation with this new inequality!
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4x1 + x2 +5x3 +3x4 ≤
25
3

x1 +
5
3

x2 +5x3 +
40
3

x4 ≤
275
3

Thus the maximum value must be z∗ ≤ 275
3 . We can be more clever:

If we add the second and third constraints we have

4x1 + x2 +5x3 +3x4 ≤ 4x1 +3x2 +6x3 +3x4 ≤ 58.
THIS method can be generalized!
IDEA: We need to construct linear combinations of the constraints of the original LP.
We multiply the i-th constraint of the LP by yi ≥ 0 and add them up!! In our example:

y1(x1−x2−x3 +3x4≤ 1)+y2(5x1 +x2 +3x3 +8x4≤ 55)+y3(−x1 +2x2 +3x3−5x4≤ 3)

Regroup in xj ’s

(y1 +5y2− y3)x1 +(−y1 + y2 +2y3)x2 +(−y1 +3y2 +3y3)x3 +(3y1 +8y2−5y3)x4

≤y1 +55y2 +3y3.

We wish to use the LEFT-hand side as an upper bound to the objective function!!!
4x1 + x2 +5x3 +3x4 this means
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y1 +5y2− y3 ≥ 4

−y1 + y2 +2y3 ≥ 1

−y1 +3y2 +3y3 ≥ 5

3y1 +8y2−5y3 ≥ 3

If all these is true, then we must have that 4x1 + x2 +5x3 +3x4 ≤ y1 +55y2 +3y3

Since we want the BEST upper bound for our maximization problem we need to find
the SMALLEST value of y1 +55y2 +3y3

Minimize y1 +55y2 +3y3

y1 +5y2− y3 ≥ 4

−y1 + y2 +2y3 ≥ 1

−y1 +3y2 +3y3 ≥ 5

3y1 +8y2−5y3 ≥ 3

y1,y2,y3,y4 ≥ 0
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Economic Interpretation
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Economic Interpretation
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This remarkable observation gives you a construction: For each LP (PRIMAL)

We have a DUAL LINEAR PROGRAM

Lemma: If we rewrite the dual in standard maximization form it equals the negative
transpose of the primal problem. Moreover the dual of the dual is the original LP.
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Rewriting the dual in the maximization form

Thus we get the original back if we dualize.

There is a nice way to write the primal and the dual in matrix form:

max cT x minbT y

Ax ≤ b AT y ≥ c

x ≥ 0 y ≥ 0

Theorem: (Weak Duality theorem) if P is the primal linear program in standard
maximization form and D is the dual in the minimization form. For each pair of feasible
solutions, x ,y we have

∑
j

cjxj = cT x ≤ bT y = ∑
i

biyi
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QUESTION: Is there a gap in between the largest primal solution and the smallest
dual solution??

Theorem (von Neumann Strong Duality Theorem) A linear program has an optimal
solution if and only if its dual has an optimal solution too and cT x = bT y . Thus for a
primal and its dual we have only 4 allowable situations:

Let us see why we have all the options...
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What is the dual of this LP?

Maximize 2x1− x2

x1− x2 ≤ 1

−x1 + x2 ≤−2

x1,x2 ≥ 0

GOOD NEWS: can use the duality theorem to check whether we really found an
optimal solution!! True solutions (x∗,y∗) must satisfy cT x∗ = bT y∗

GOOD NEWS: The simplex method is not just solving the primal problem! It
simultaneously solves the dual problem too!

The optimal solution of the dual problem can be read off the objective function row of
the final dictionary and vice versa.

original variables of the primal MATCHED with dual slack variables

slack variables of the primal MATCHED with dual variables

12



What is the dual of this LP?

Maximize 2x1− x2

x1− x2 ≤ 1

−x1 + x2 ≤−2

x1,x2 ≥ 0

GOOD NEWS: can use the duality theorem to check whether we really found an
optimal solution!! True solutions (x∗,y∗) must satisfy cT x∗ = bT y∗

GOOD NEWS: The simplex method is not just solving the primal problem! It
simultaneously solves the dual problem too!

The optimal solution of the dual problem can be read off the objective function row of
the final dictionary and vice versa.

original variables of the primal MATCHED with dual slack variables

slack variables of the primal MATCHED with dual variables

12



Take a (primal) LP and its dual

Maximize −3x1 +2x2 + x3 Minimize 3y2

−x2 +2x3 ≤ 0 −3y2 ≥−3

−3x1 +4x2− x3 ≤ 3 −y1 +4y2 ≥ 2

x1,x2,x3 ≥ 0 2y1− y2 ≥ 1

y1,y2 ≥ 0

But if we rewrite both as dictionaries with the maximization forms we have

z = −3x1 +2x2 + x3 z =−3y2

w1 = x2−2x3 z1 = 3 −3y2

w2 =3+3x1−4x2− x3 z2 = −2− y1 +4y2

x1,x2,x3,w1,w2 ≥ 0 z3 = −1+2y1− y2

y1,y2,z1,z2,z3 ≥ 0

KEY POINT: As we pivot the dictionaries will be negative transpose of each other!
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