
h-VECTORS OF SMALL MATROID COMPLEXES
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Abstract. Stanley conjectured in 1977 that the h-vector of a matroid simplicial complex
is a pure O-sequence. We give simple constructive proofs that the conjecture is true for
matroids of rank less than or equal to 3, and co-rank 2. We also used computers to verify
Stanley’s conjecture holds for all matroids on at most nine elements.

1. Introduction and Background

Before stating the key goal of our investigations and stating our results we will briefly

review some relevant background material on matroids and simplicial complexes. For further

information, we refer the reader to the books of Oxley [?], White [?], and Stanley [?].

Recall that a matroid M = (E(M), I(M)) consists of a ground set E(M) and a family of

subsets I(M) ⊆ 2E called independent sets such that

(I1): ∅ ∈ I(M);

(I2): If A ∈ I(M) and A′ ⊂ A, then A′ ∈ I(M); and

(I3): If A,A′ ∈ I(M) with |A| < |A′|, then there is some e ∈ A′\A such that A∪e ∈ I(M).

Equivalently, the independent sets of a matroid M on ground set E(M) form a simplicial

complex with the property that the restriction I(M)|E′ is pure for any subset E ′ ⊆ E(M). A

basis of M is a maximal independent set under inclusion, and the rank of M is the cardinality

of a basis. Given a matroid M on ground set E(M) with bases B(M), we define its dual

matroid, M∗, to be the matroid on E(M) whose bases are B(M∗) = {E \B : B ∈ B(M)}.
If M is a matroid of rank d, the f -vector of M is f(M) := (f−1(M), f0(M), . . . , fd−1(M)),

whose entries are fi−1(M) := |{A ∈ I(M) : |A| = i}|. Oftentimes, it is more convenient to

study the h-vector h(M) := (h0(M), . . . , hd(M)) whose entries are defined by the relation

d∑
j=0

hj(M)λj =
d∑

i=0

fi−1(M)λi(1− λ)d−i.

See [?] for more on h-vectors and the combinatorics of simplicial complexes.

It should not be expected that the h-numbers of a general simplicial complex are nonneg-

ative; however, the h-numbers of a matroid M may be interpreted combinatorially in terms

of certain invariants of M . Fix a total ordering {v1 < v2 < . . . < vn} on E(M). Given a

basis B ∈ I(M), an element vj ∈ B is internally passive in B if there is some vi ∈ E(M)\B
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such that vi < vj and (B \ vj) ∪ vi is a basis of M . Dually, vj ∈ E(M) \ B is externally

passive in B if there is an element vi ∈ B such that vi < vj and (B \ vi) ∪ vj is a basis.

(Alternatively, vj is externally passive in B if it is internally passive in E(M) \B in M∗.) It

is well known ([?, Equation (7.12)]) that

(1.1)
d∑

j=0

hj(M)λj =
∑

B∈B(M)

λip(B),

where ip(B) counts the number of internally passive elements in B. This proves that the

h-numbers of a matroid complex are nonnegative. Alternatively,

(1.2)
d∑

j=0

hj(M)λj =
∑

B∈B(M∗)

λep(B),

where ep(B) counts the number of externally passive elements in B. Since the f -numbers

(and hence the h-numbers) of a matroid depend only on its independent sets, Equations

(1.1) and (1.2) hold for any ordering of the ground set of M . It is worth remarking that the

h-polynomial above is actually an specialization of the well-known Tutte polynomial of the

corresponding matroid (see [?]).

A longstanding conjecture of Stanley [?] suggests that matroid h-vectors are highly struc-

tured.

Conjecture 1.1. For any matroid M , h(M) is a pure O-sequence.

An order ideal O is a family of monomials (say of degree at most r) with the property

that if µ ∈ O and ν|µ, then ν ∈ O. Let Oi denote the collection of monomials in O of degree

i. Let Fi(O) := |Oi| and F (O) = (F0(O), F1(O, . . . , Fr(O)). We say that O is pure if all of

its maximal monomials (under divisibility) have the same degree. A vector h = (h0, . . . , hd)

is a pure O-sequence if there is a pure order ideal O such that h = F (O).

Conjecture 1.1 is known to hold for several families of matroid complexes, such as paving

matroids [?], cographic matroids [?], cotransversal matroids [?], lattice path matroids [?],

and matroids of rank at most three [?, ?]. The purpose of this paper is to present a proof of

Stanley’s conjecture for all matroids of with at most nine elements, all matroids of corank

two and all matroids of rank at most three. While Stanley’s conjecture is known to hold

for matroids of rank two [?] and rank three [?], we use the geometry of the independence

complexes of matroids of small rank to provide much simpler shorter proofs for these cases.

Our results show that any counterexample to Stanley’s conjecture must have at least 10

elements and rank at least four.

This article will use several ideas from the theory of multicomplexes and monomial ideals.

Although a general classification of matroid h-vectors or pure O-sequences seems to be an

incredibly difficult problem, some properties are known and will be used in the proofs below:
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Theorem 1.2. [?, ?, ?] Let h = (h0, h1, . . . , hd) be a matroid h-vector or a pure O-sequence

with hd 6= 0. Then

(1) h0 ≤ h1 ≤ · · · ≤ hb d
2
c,

(2) hi ≤ hd−i for all 0 ≤ i ≤ bd
2
c, and

(3) for all 0 ≤ s ≤ d and α ≥ 1, we have

(1.3)
s∑

i=0

(−α)s−ihi ≥ 0.

Inequality (1.3) is known as the Brown-Colbourn inequality [?, Theorem 3.1].

2. Rank-2 Matroids

Let M be a loopless matroid of rank 2. The independence complex of M is a complete mul-

tipartite graph whose partite sets E1, . . . , Et are the parallelism classes of M . Let si := |Ei|.
Choose one representative ei ∈ Ei from each parallelism class of M so that the simplification

of M is a complete graph on {e1, . . . , et}, and let Ẽi = Ei \ ei. Clearly

f0(M) =
t∑

i=1

(si − 1) + t

and f1(M) =
∑

1≤i<j≤t

(si − 1)(sj − 1) + (t− 1)
t∑

i=1

(si − 1) +

(
t

2

)
,

and hence,

h1(M) =
t∑

i=1

(si − 1) + (t− 2)

and h2(M) =
∑

1≤i<j≤t

(si − 1)(sj − 1) + (t− 2)
t∑

i=1

(si − 1) +

(
t− 1

2

)
.

Consider the pure O-sequence O with

O1 = {x1, . . . , xt−2} ∪ {xe : e ∈ Ẽi, 1 ≤ i ≤ t}

O2 = {xexe′ : e ∈ Ẽi, e
′ ∈ Ẽj, 1 ≤ i < j ≤ t}

∪{xixe : e ∈ Ẽj, 1 ≤ i ≤ t− 2, 1 ≤ j ≤ t}

∪{degree 2 monomials in x1, . . . , xt−2}.

We see that h(M) = F (O), which proves the following theorem.

Theorem 2.1. Let M be a matroid of rank 2. Then h(M) is a pure O-sequence.
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3. Corank-2 Matroids

In this section, we aim to prove Conjecture 1.1 for corank-2 matroids.

Theorem 3.1. Let M be a matroid of rank 2. Then h(M∗) is a pure O-sequence.

Proof. As before, let E1, . . . , Et denote the parallelism classes of the independence complex

of M . Order the ground set E(M) so that vi < vj for all vi ∈ Ek and vj ∈ E` and all

1 ≤ k < ` ≤ t.

For each basis B = {vi, vj} of M with vi ∈ Ek, vj ∈ E`, and k < `, let

a1(B) := #{i′ > i : vi′ ∈ Ek ∪ . . . ∪ E`−1}

and a2(B) := #{j′ > j : vj′ ∈ E` ∪ . . . ∪ Et},

and set µB := x
a1(B)
1 x

a2(B)
2 . We claim that O := {µB : B ∈ B(M)} is a pure order ideal and

that F (O) = h(M∗).

Figure 1. The bases B = {vi, vj} (left) and B̃ = {u1, u`} (right) with their

externally passive elements shaded.

We see that a1(B) counts the number of elements v ∈ E(M) \ B that are externally

passive in B for which vi < v < vj (shown in Figure 1 (left) shaded with lines of slope

1); and a2(B) counts the number of elements v ∈ E(M) \ B that are externally passive in

B for which vj < v ≤ vn (shown in Figure 1 (left) shaded with lines of slope −1). Since

a1(B) + a2(B) counts the number of externally passive elements in B, Equation (1.2) shows

that h(M∗) = F (O).

To see that O is an order ideal, we need only show that if ν|µB and deg(ν) = deg(µB)−
1, then ν ∈ O. Let B = {vi, vj} as before. If a1(B) > 0, consider B′ = {vi+1, vj} ∈
I(M). Clearly a1(B

′) = a1(B) − 1 and a2(B
′) = a2(B) so that µB′ ∈ O and deg(µB′) =

deg(µB)− 1. If a2(B) > 0, we must consider two possible cases. If vj+1 ∈ E`, then consider

B′′ = {vi, vj+1} ∈ I(M). Again a1(B
′′) = a1(B) and a2(B

′′) = a2(B) − 1 so that µB′′ =

x
a1(B)
1 x

a2(B)
2 − 1. On the other hand, if vj+1 ∈ E`+1, then vj−a1(B) ∈ Ek′ for some k′ ≤ `, and

so B′′′ = {vj−a1(B), vj+1} ∈ I(M). Again we see that µB′′′ = x
a1(B)
1 x

a2(B)−1
2 . This establishes

that O is an order ideal.

Finally, we must show that O is pure. For each 1 ≤ i ≤ t, let ui denote the smallest

element of Ei. For any basis B = {vi, vj} as above, let B̃ = {u1, u`}. As Figure 1 (right)

indicates, a1(B) ≤ a1(B̃) and a2(B) ≤ a2(B̃), and hence µB|µ eB. Moreover, we see that

deg(µ eB) = |E1|+ · · ·+ |Et| − 2, and hence each such monomial µ eB has the same degree. �

The techniques used to prove Theorem 3.1 can be easily extended to prove that h(M∗)

is a pure O-sequence for any matroid M whose simplification is a uniform matroid. The
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reader may easily check, however, that these techniques may not be used to prove Stanley’s

conjecture when M is the Fano matroid.

4. Rank-3 Matroids

Our goal for this section is to give a simple geometric-combinatorial proof of the following

theorem which was first proved in [?] in the case that d = 3 using the language of commutative

algebra.

Theorem 4.1. Let M be a loopless matroid of rank d ≥ 3. The vector (1, h1(M), h2(M), h3(M))

is a pure O-sequence.

Lemma 4.2. For any positive integers s1, . . . , st, the vector h = (1, h1, h2, h3) with

h1 =
t∑

i=1

(si − 1) + (t− d),

h2 =
∑

1≤i<j≤t

(si − 1)(sj − 1) + (t− d)
t∑

i=1

(si − 1) +

(
t− d+ 1

2

)
,

h3 =
∑

1≤i<j<k≤t

(si − 1)(sj − 1)(sk − 1) + (t− d)
∑

1≤i<j≤t

(si − 1)(sj − 1)

+

(
t− d+ 1

2

) t∑
i=1

(si − 1) +

(
t− d+ 2

3

)
,

is a pure O-sequence.

Proof. Consider disjoint sets Ẽ1, . . . , Ẽt with |Ẽi| = si− 1 for all i. We will construct a pure

order ideal O with F (O) = h whose degree-one terms are

O1 = {x1, . . . , xt−d} ∪ {xe : e ∈ Ẽi}ti=1.

We explicitly construct such an order ideal by setting

O2 = {xexe′ : e ∈ Ẽi, e
′ ∈ Ẽj, 1 ≤ i < j ≤ t}

∪{all degree 2 monomials in x1, . . . , xt−d}

and

O3 = {xexe′xe′′ : e ∈ Ẽi, e
′ ∈ Ẽj, e

′′ ∈ Ẽk, 1 ≤ i < j < k ≤ t}

∪{xkxexe′ : e ∈ Ẽi, e
′ ∈ Ẽj, 1 ≤ k ≤ t− d, 1 ≤ i < j ≤ t}

∪{xjxkxe : e ∈ Ẽi, 1 ≤ j < k ≤ t− d, 1 ≤ i ≤ t}

∪{x2
jxe : e ∈ Ẽi, 1 ≤ i ≤ t, 1 ≤ j ≤ t− d}

∪{all degree 3 monomials in x1, . . . , xt−d}
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�

Lemma 4.3. For any positive integers s1, . . . , st, the vector h′ = (1, h1, h2, h3) with

h1 =
t∑

i=1

(si − 1) + (t− d),

h2 =
∑

1≤i<j≤t

(si − 1)(sj − 1) + (t− d)
t∑

i=1

(si − 1) +

(
t− d+ 1

2

)
,

h3 =
∑

1≤i<j≤t

(si − 1)(sj − 1) + (t− d− 1)
t∑

i=1

(si − 1) +

(
t− d

2

)
+ 1,

is a pure O-sequence.

Proof. As in the proof of Lemma 4.2, let Ẽ1, . . . , Ẽt be disjoint sets with |Ẽi| = si−1. Recall

the order ideal O constructed in the proof of Lemma 4.2 We will construct a pure order ideal

Õ with F (Õ) = h′ such that Õ1 = O1, Õ2 = O2, and Õ3 ⊆ O3. Indeed, we set

Õ3 = {x1xex
′
e : e ∈ Ẽi, e

′ ∈ Ẽj, 1 ≤ i < j ≤ t}

∪{x2
jxe : e ∈ Ẽi, 1 ≤ i ≤ t, 2 ≤ j ≤ t− d}

∪{x2
ixj : 1 ≤ i < j ≤ t− d} ∪ {µ0},

where µ0 is a monomial defined as follows. If Ẽ1 ∪ · · · ∪ Ẽt is nonempty, choose some

e0 ∈ Ẽ1 ∪ · · · ∪ Ẽt and set µ0 = x2
1xe0 ; otherwise, set µ0 = x3

1. �

Proof: (Theorem 4.1)

Let E1, . . . , Et ⊆ E(M) denote the parallel classes of M , and set si := |Ei|. Choose one

representative ei from each class Ei, and let W = {e1, . . . , et}. Observe that ∆ := M |W
is a simple matroid of rank d. Let Ẽi = Ei \ {ei}, and notice that for any choices of
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ẽij ∈ Eij , {ẽi1 , . . . , ẽik} ∈ I(M) if and only if {ei1 , . . . , eik} ∈ ∆. Thus

f0(M) =
t∑

i=1

si and hence

h1(M) =
t∑

i=1

(si − 1) + (t− d);

f1(M) =
∑

1≤i<j≤t

sisj

=
∑

1≤i<j≤t

(si − 1)(sj − 1) + (t− 1)
t∑

i=1

(si − 1) +

(
t

2

)
and hence

h2(M) =
∑

1≤i<j≤t

(si − 1)(sj − 1) + (t− d)
t∑

i=1

(si − 1) +

(
t− d+ 1

2

)
;

f2(M) ≤
∑

1≤i<j<k≤t

sisjsk and hence

h3(M) ≤
∑

1≤i<j<k≤t

(si − 1)(sj − 1)(sk − 1) + (t− d)
∑

1≤i<j≤t

(si − 1)(sj − 1)

+

(
t− d+ 1

2

) t∑
i=1

(si − 1) +

(
t− d+ 2

3

)
.

On the other hand, by the Brown-Colbourn inequality (1.3), we have

h3(M) ≥ h2(M)− h1(M) + h0(M)

=
∑

1≤i<j≤t

(si − 1)(sj − 1) + (t− d− 1)
t∑

i=1

(si − 1) +

(
t− d

2

)
+ 1.

We construct a pure order ideal O′ with F (O′) = h(M) as follows. Following the notation

used in Lemmas 4.2 and 4.3, we set O′1 = O1; O′2 = O2, and choose Õ3 ⊆ O′3 ⊆ O3 with

|O′3| = h3(M).

�

5. Matroids with at most 9 elements

This part of our paper is mostly experimental and is crucially based on the data provided

to us by Dillon Mayhew and Gordon Royle. They constructed a computer database of

matroids on at most nine elements [?]. We use this data to generate the possible h-vectors

of matroid complexes, then we proceeded to search for each of them a corresponding pure

O-sequence that match those numbers. The key idea is simple, for given rank and given

number of elements we know the number of monomials of top degree that must be present.

So by sampling the space of monomials of given degree we can generate thousands of pure
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O-sequences that are candidates to be h-vectors of matroid complexes. Of course we often

generated pure O-sequences that did not match any matroid, for example (1, 5, 15, 27, 22)

and (1, 5, 15, 27, 35) are both valid pure O-sequences we generated, but we also know the the

only h-vectors of matroid complexes with initial value (1, 5, 15, 27, ∗) are

(1 5 15 27 0) (1 5 15 27 19) (1 5 15 27 20) (1 5 15 27 21) (1 5 15 27 24)

(1 5 15 27 25) (1 5 15 27 26) (1 5 15 27 27) (1 5 15 27 30) (1 5 15 27 36)

The code we use was mostly a Perl code available at XXXXXX.

In addition to generating large numbers of O-sequences, we made use of previous work,

such as [?], to eliminate certain h-vectors as already verified. For instance, paving matroids

are easily identified, and therefore we have not included monomials for these matroids.

Further, we only consider co-loopless matroids. If a matroid has j co-loops, it has an

h-vector of the form: (h0, h1, . . . , hr−j, 0, . . . , 0). The truncated sequence: (h0, h1, . . . , hr−j)

is the h-vector of the same matroid but with all co-loops contracted. This object is a matroid

of rank r− j on n− j elements, and therefore appears in our list of matroids and has already

been shown to satisfy Stanley’s conjecture.
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