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Abstract

This paper discusses algorithms and software for the enumeration of all lattice points inside a
rational convex polytope: we describattE, a computer package for lattice point enumeration
which contains the first implementation of A. Barvinok's algorithm (Math. Oper. Res. 19
(1994) 769).

We report on computational experiments with multiway contingency tables, knapsack type
problems, rational polygons, and flow polytopes. We prove that these kinds of symbolic—algebraic
ideas surpass the traditional branch-and-bound enumeration and in some in&taidss the
only software capable of counting. UsingttE, we have also computed new formulas of Ehrhart
(quasi-)polynomials for interesting families of polytopes (hypersimplices, truncated cubes, etc).

We end with a survey of other “algebraic—analytic” algorithms, including a “homogeneous”
variation of Barvinok’s algorithm which is very fast when the number of facet-defining inequalities
is much smaller compared to the number of vertices.
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1. Introduction

Counting lattice points inside convex polyhedra is a truly fundamental and useful
step in many mathematical investigations. It appears, for instance, in the context of
combinatorics MlacMahon 196Q Stanley 1997, representation theorK(rillov, 2003
Schmidt and Bincerl984), statistics Diaconis and GangolliLl995 Fienberg et a).2007),
and number theoryBeck 2000 Nijehuis and Wilf 1972. Lattices and polytopes are
at the foundation of discrete optimizatio@rptschel et al.1993 Schrijver, 1986. This
justifies the development of computer software that could count or list all lattice points in
an arbitrary rational convex polyhedron.

In the 1980's H. Lenstra created an algorithmdetectinteger points in polyhedra,
based on the LLL algorithm and the idea of short vect@®{schel et a].1993 Lenstra
1983. As a consequence, solving integer programming problems with a fixed number of
variables can be done in time polynomial in the size of the input. We are not aware of
any implementation of Lenstra’s original algorithm, but there have been already efforts
to investigate the practical value of these ideas. For exan@ek et al.(1993 have
implemented the integer programming algorithmLaoivasz and Scarf1992, which is
similar in structure to Lenstra’s algorithm. In addition, Aardal and collaborateasdal
et al, 2002ab, 1998 have written fairly effective modifications of the LLL procedure
for testing integer feasibility. In the 1990’s, on the basis of work by the geometers
Brion, Khovanski, Lawrence, and Pukhlikov, Barvinok created an algorithmdanting
integer points inside polyhedra that runs in polynomial time for fixed dimension (see
Barvinok 1994 Barvinok and Pommersheim999 and the references within). Shortly
after Barvinok’s breakthrougtyer and Kannarf1997 modified the original algorithm
of Barvinok, which originally relied on Lenstra’s result, giving a new proof that integer
programming problems with a fixed number of variables can be solved in polynomial time.
In Section 2 extending the work initiated iDe Loera and Sturmfeik003, we describe
the first ever implementation of Barvinok’s algorithm valid for arbitrary rational polytopes:
the prograniattE.

In Section 3we present some computational experience with our current implementa-
tion of LattE. We report on experiments with families of well-known rational polytopes:
multiway contingency tables, knapsack type problems, and rational polygons. We demon-
strate thaL.attE competes with commercial branch-and-bound software and solves very
hard instances, enumerating some examples that had never been dealt with before. We
also tested the performance in the case of two-way contingency tables and Kostant’s parti-
tion function where special purpose software has already been wiggdddni-Silva and
Vergne 2001 Beck and Pixton2003 De Loera and Sturmfel2003 Mount, 2000. In
Section 4wve present formulas for the Ehrhart quasi-polynomials of several hypersimplices
and truncations of cubes (e.g. the 24 cell). We show solid evidence that Barvinok's ideas
are practical and can be used to solve non-trivial problems, both in integer programming
and symbolic computing. In the last section of the paper we survey some other algorithms
for lattice point enumeration. In particular, we sketble homogenized Barvinok algo-
rithm. Like the original Barvinok algorithm it runs in polynomial time when the dimension
is fixed but it is in practice faster when the number of facet-defining inequalities is much
smaller than the number of vertices.
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Fig. 1. A quadrilateral irExample 2

2. LattE'simplementation of Barvinok’salgorithm

In 1994 Barvinok Barvinok 1994 gave an algorithm that counts lattice points in
convex rational polyhedra in polynomial time when the dimension of the polytope is
fixed. In this section, we go through the steps of Barvinok’s algorithm, showing how we
implemented them inattE. Barvinok’s algorithm relies on two important new ideas: the
use of rational functions as efficient data structures and the signed decompositions of cones
into unimodular cones.

The input data are am x d integral matrixM, anm-vectorb, and an integes. These
data define a polyhedroR = {x € RY | Mix = bj,fori = 1,2,...,s Mix <
bi,fori =s+1....mM e Z™9 andb e Z™}, whereM,; represents théth row
vector ofM andb; represents thih entry ofb. The goal is to output a short formula for
the multivariate generating function(P) = >, _p~7d 2%. Here and throughout the paper,

72 = 75'252 ...z, Atthe end,f (P) will be written as a sum of “short” rational functions
from which we can solve feasibility, counting, or even optimization questions, about the
lattice points inP.

Note that wherP is a polytope (i.e. a bounded polyhedron), the monomial$ &%)
are in bijection with the lattice points and th@igP) is a (Laurent) polynomial. Counting
the lattice points inP is equivalent to evaluating the expression at the vector with all
entries 1. Letv be a vertex ofP. Then, thesupporting cone KP,v) of P at v is
K(P,v) = v+ {u € RY : v+ 8u e P forall sufficiently smalls§ > 0}. Let V(P)
be the vertex set oP. One crucial component of Barvinok’s algorithm is the ability to
distribute the computation on the vertices of the polytope. This follows from the seminal
work of Brion (1988 and independentlyawrence(1997):

Theorem 1 (Brion, 1988 Lawrence199]). Let P be arational polyhedron and let(¥)
be the vertex set of P. Then,

f(Py= > fK(P,v).
veV(P)

Example 2. Consider the integral quadrilateral shownFig. 1 The vertexVs is (0, 0),
V2 =(5,0), V3= (4,2),andV4 = (0, 2).
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We obtain four rational generation functions whose formulas are

1 (Z + Z}22)
f(Ky) = ————— f(Ky,) = ,
®w =g -ma-n v =2 ZH(1- 27
(B2 + 2425) 22
f(Ky,) = — 2 T11%2 f(Ky,) = 2

1-z7HA-2z? 1-zhH1—-2z1)

Indeed, the result of adding the rational functions is equal to the polynomial
B+ A+ 0+ 8B+ 08+ B+ BB+ 0B+ B+ Bt ant
‘+uB+5+2+1 O

In order to use Brion’s theorem for counting lattice points in convex polyhedra, we need
to know how to compute the rational generating function of convex rational pointed cones.
For polyhedral cones this generating function is a rational function whose numerator and
denominator have a well-understood geometric meaning (s&tainley(1997, Chapter
4) and inStanley(198Q Corollary 4.6.8) for a clear explanation). We already have a
“simple” formula when the cone is simplicial. L§ti1, up, ..., ux} be a set of linearly
independent integral vectors Bf, wherek < d. Let K be a cone which is generated by
{ug, us, ..., Uk}, in otherwordsK = {A1u1+Aou2+-- -+ AkUk, for somer; > O andi =
1,2,...,k}. Consider the parallelepipedl= {A1U3 + AoUs + - - -+ AUk, 0 < Aj < 1,1 =
1,2,...,k}.

It is well known (Stanley 1997 that the generating function for the lattice pointkin
equals

k
= Y 7 Hl—lz“i. (%)

Beknzd resSnzd i=1

Thus, to derive a formula for arbitrary pointed cones one could decompose them
into simplicial cones, via a triangulation, and then apply the formula above and the
inclusion—exclusion principle iStanley(198Q Proposition 1.2). Instead, Barvinok’s idea
is that it is more efficient to further decompose each simplicial cone into simplicial
unimodular cones. Ainimodularcone is a simplicial cone with generatdrs, ..., Uk}
that form an integral basis for the latti®us, . .., ux} N Z9. Note that in this case the
numerator of the formula has a single monomial; in other words, the parallelepiped has
only one lattice point.

2.1. Simplicial signed decompositions

We now focus our attention on how the cone decomposition is done. To decompose a
cone into simplicial cones the first step is to obtain a triangulatiamigagulation of a
coneC in dimensiond is a collection ofd-dimensional simplicial cones such that their
union isC, their interiors are disjoint, and any pair of them intersect in a (possibly empty)
common face). There are efficient algorithms, when the dimension is fixed, for obtaining
a triangulation (seAdurenhammer and KleifR2000 andLee (1997 for details). INLattE
we use the well-known Delaunay triangulation which we compute via a convex hull
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calculation. The idea is to “lift” the rays of the cone into a higher dimensional paraboloid
by adding a new coordinate which is the sum of the squares of the other coordinates,
take the lower convex hull of the lifted points, and then “project” back those simplicial
facets. We use Fukuda’s implementationCbD (Fukuda 2001) of this lift-and-project
algorithm. This is not the only choice of triangulation, and definitely not the smallest one.
In Section 5we discuss some situations when the choice of triangulation in fact gives a
better rational function.

In principle, one could at this point list the points of the fundamental parallelepiped,
for example, using a fast Hilbert bases code such4es2 (Hemmecke 2002 or
NORMALIZ (Bruns and Kock2001), and then use formulé) for a general simplicial
cone. Theoretically this is bad because the number of lattice points in the parallelepiped is
exponentially large already for fixed dimension. In practice, this can often be done and in
some situations is useful. Barvinok instead decomposes each simplicial cone as a (signed)
sum of simplicialunimodularcones. To be more formal, for a satc RY, the indicator
function[A]: RY — R of Ais defined as

lifx e A
(A1) = {O:fi ‘A

We want to express the indicator function of a simplicial cone as an integer linear
combination of the indicator functions of unimodular simplicial cones. There is a nice
valuation from the algebra of indicator functions of polyhedra to the field of rational
functions Barvinok and Pommershejm 999, and many of its properties can be used
in the calculation. For example, the valuation is zero when the polyhedron contains
aline.

Theorem 3 (Barvinok and Pommershejh999 Theorem 3.1).There is a valuation f
from the algebra of indicator functions of rational polyhedra into the field of multivariate
rational functions such that for any polyhedron P([P]) = Y, przd X*.

Therefore once we have a unimodular cone decomposition, the rational generating
function of the original cone is a signed sum of “simplicial” rational functions. Next we
focus on how to decompose a simplicial cone into unimodular cones.

Letus, uy, ..., uq be linearly independent integral vectors which generate a simplicial
coneK. We denote thendexof K by ind(K); it tells how farK is from being unimodular.

That is, indK) = | detlui|uz]| ... |ug)| which is the volume of the parallelepiped spanned
by ug,u2,...,uq. It is also equal to the number of lattice points inside the half-open
parallelepipedK is unimodular if and only if the index df is 1. Now we discuss how we
implemented the following key result of Barvinok:

Theorem 4 (Barvinok and Pommersheirh999 Theorem 4.2).Fix the dimension d.
Then, there exists a polynomial time algorithm with a given rational polyhedral coae K
RY, which computes unimodular cones,K € | = {1,2,...,1}, and numbers; €
{—1, 1} such that

[Kl=) alKil.

iel
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Let K be a rational pointed simplicial cone. Consider the closed parallelepiped

I = {oaug + oaUz + -+ arglg < Joj] < (ind(K)~d, ] = 1,2,....d}.

Note that this parallelepiped is centrally symmetric and one can show that the volume of
I'is 2. Minkowski’s First Theorem$chrijver 1986 guarantees that becauBec RY is

a centrally symmetric convex body with volurme29, there exists a non-zero lattice point
w insideI". We will usew to build the decomposition.

We need to findv explicitly. We take essentially the approach suggestebysr and
Kannan(1997). We require a subroutine that computes the shortest vector in a lattice. For
fixed dimension this can be done in polynomial time using lattice basis reduction (this
follows trivially from Schrijver (1986 Corollary 6.4b, page 72)). It is worth observing
that when the dimension is not fixed the problem becomes NP-Hstdi,(1996.

We use the basis reduction algorithm of Lenstra, Lenstra, anddo@rotschel et al.
1993 Schrijver, 1986 to find a short vector. Giver, an integrald x d matrix whose
columns generate a lattice, LLL's algorithm outpiéts a newd x d matrix, spanning the
same lattice as is generated Ay The column vectors of’, u’, uj, ..., uy, are short and
nearly orthogonal to each other, and ea¢lis an approximation of the shortest vector in
the lattice, in terms of Euclidean length. It is well knovBchrijver, 1986 that there exists
a unique unimodular matrid such thatAU = A'.

The method proposed iByer and Kannar(1997 for finding w is the following.

Let A = (uijuz|...|uq), where theu; are the rays of the simplicial cone we wish to
decompose. Compute the reduced basi®\of using the LLL algorithm. LetA’ be the
reduced basis oA~1. Dyer and Kannan observed that we can find the smallest vector with
respect to thé> norm by searching over all linear integral combinations of the column
vectors of A" with small coefficients. We call this search taeumeration step_et A be

the smallest vector in the lattice spanned&ywith respect to th€* norm. We know that
there exists a unique unimodular mattixsuch thatA’ = A~1U. Minkowski's theorem

for thel > norm implies that for the non-singular mati, there exists a non-zero integral
vectorz such that|lle = [|A'Z|lee < |detA')|Y9, where|.|| is the infinity norm of the
vector spac®Y. See statement 23 in page 819nhrijver(1986. We can set

Ao < | det A) Y9 = |det A=1U) Y9 = |det A™Y) detu) Y9
= |det A~ Y9 = | detA)|~Y9 = |ind(K)| "9,

SinceA~1 and A’ span the same lattice, there exists an integral vacter RY such that
A = A~lw. Then, we have

w = A\.

Note thatw is a non-zero integral vector which is a linear integer combination of the
generatoray; of the coneK with possibly negative coefficienend with coefficients at
most|ind(K)|‘1/d. Therefore, we have found a non-zero integral veatar I'. In LattE,

we try to avoid the enumeration step because it is very costly. Instead, we chtmbe

the shortest of the columns . This may not be the smallest vector, but for practical
purposes, it often decreases thel(K)| just like for the shortest vector. Experimentally
we have observed that we rarely use the enumeration step.
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In the next step of the algorithm, for=1, 2, ..., d, we set
Kl = Conqulv u21 cet ui—ls w, u|+17 MR} ud}'

Now, we have to show that for eachind(K;) is smaller than inK). Letw = Zidzl aj ;.
Then, we have

ind(Ki) = | det(ua|ug| . .. [Ui—1|w]Uia] ... |Ua))]
= |ai || det((Ua|Uz] . . . [Ui1]ui [Uisa] . .. [Ug))]
= |y ind(K) < (ind(K))“T".

There is one more technical condition thatneeds to satisfy. This is that and
ui, ..., Uq belong to an open half-spacBdrvinok 1994 Lemma 5.2). This is easy to
achieve as either the we found or—w satisfy this condition. We can now decompose the
original coneK into cone; fori =1,2,...,d, of smallerindex[K] = Y +[K;]. This
sum of indicator functions carries signs which depend on the positianveith respect to
the interior or exterior oK. We iterate this process un#l; becomes a unimodular cone
fori = 1,2,...,d. For implementing Barvinok's decomposition of cones, we use the
packagelTL of Shoup(2003 to compute the reduced basis of a cone and to compute with
matrices and determinants. All our calculations were done in exact long integer arithmetic
using the routines integrated MTL. Here is the pseudo-code of the algorithm and
an example.

Algorithm 5 (Barvinok’s Decomposition of a Simplicial Cone).

Input: A simplicial coneK = condus, Uy, ..., Uq} given by its generators.
Output: A list of unimodular cones and nhumbegsas inTheorem 4

Set two queues Uni and NonUni.
if K is unimodular

then Uni = Uni U {K}.

else NonUni= NonUni U {K}.
while NonUni is not emptydo

Take a conéK € NonUni and sefA = (uq, Uy, ..., Ug) to be a matrix whose
columns are the rays df.

Compute the smallest vectbin the lattice, with respect 16°, which is spanned
by the column vectors oA~1.

Find a non-zero integral vectarsuch that. = A~1z.

if vectorsz, us, Uy, ..., Ug are in an open half-plane

then setz := z.

esesetz .= —z.
fori =1,2,...,ddo

setK; = conduy, ..., Uj_1, Z, Uj+1, ..., Uq} and setA; = (uq, ..., Ui—1,
Z, ui-‘rls-'-sud)'
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Fig. 2. The contribution of lower dimensional cones.

fori =1,2,...,ddo
if det(Aj) and detA) have the same sign
then assigrek;, = ex.
elseek; = —ek.
fori=1,2,...,ddo
if Ki is unimodular
then Uni = Uni U {Kj}.
else NonUni= NonUni U {Kj}.

return all elements in Uni.

It is very important to remark that, in principle, one also needs to keep track of
lower dimensional cones present in the decomposition for the purpose of writing the
inclusion—exclusion formula of the generating functib(K ). For example irFig. 2 we
have counted a ray twice, and thus it needs to be removed.

But this is actually not necessary thanksBron’s polarization trick (Barvinok and
Pommersheim1999 Remark 4.3). LetK* be the dual cone t&. Apply the iterative
procedure above t&* instead ofK, ignoring the lower dimensional cones. This can be
done because once we polarize the result back, the contribution of the lower dimensional
cones is zero with respect to the valuation that assigns to an indicator function its generating
function counting the lattice point8éarvinok and Pommersheim999 Corollary 2.8).

In the current implementation akttE we do the following:

(1) Find the vertices of the polytope and their defining supporting cones.
(2) Compute the polar cone to each of the cones.
(3) Apply the Barvinok decomposition to each of the polars.

(4) Polarize back the cones to obtain a decomposition, into full-dimensional unimodular
cones, of the original supporting cones.

(5) Recover the generating function of each cone and, by Brion’s theorem, of the whole
polytope.

Here is an example of how we carry out the decomposition.
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Example 6. Let K be a cone generated b8, 7)" and(1, 0)". Let
21
A (7 0) .
Then, we have déA) = —7 and
1
A= <0 7 )
1 F

The reduced basi&’ of A~ and the unimodular matri® for the transformation from
A~lto A are

>

Il
N

|
~ L~
~l W
v

-2

By enumerating the column vectors, we can verify th‘g%, %)T is the smallest vector

with respect td in the lattice generated by the column vectorsfof!. So, we have
z = (1, 0)T. Then, we have two cones:

2 0 0 1
K1_<7 1) and K2_<1 0).

The second cone is unimodular of indexd which is the same sign as the determinant
of A. Thus, Uni= Uni U {(8 (1))}; assignek, = 1. The first cone has determinant 2.
So, we assigrek, = —1. Since the first cone is not unimodular, we have Nonkhi

NonUni U {(5 (1))} Set

(0

Then, we have dép) = 2 and

1 1
) 1

A= 2% , A= 2 and U=(11)
- 1 Zz 3 s 4

Sincex = (3. 3T is the smallest vector with respect!fS, we havez = (1, 3)". So, we
get two cones:

2 1 1 0
K3=<7 3> and K4=<3 1).

The first matrix has negative determinant, which is not of the same sign as the determinant
of its parent matrixA. Sinceea = —1, we assign to the first con&, = 1 and the
second one has positive determinant, so we assigretg, it= 1. Since both of them are
unimodular, we take them into Uni and since NonUni is empty, we end the while loop and
print all elements in Uni.

= Nl
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Fig. 3. An example of Barvinok's decomposition.

This gives a full decomposition:

| (7)- (o)} = oorel(3) - (2)}oe=nel (3) o)}
oeerel(7)-(3)]- ©

SeeFig. 3for an example.

From the previous example, we notice that the determinant of each cone gets much
smaller in each step. This is not an accidenThsorem 4guarantees that the cardinality
of the index setl of cones in the decomposition is bounded polynomially in terms of the
determinant of the input matrix. We have looked experimentally at how many levels of
iteration are necessary to carry out the decomposition. We observed experimentally that
it often grows linearly with the dimension. We tested two kinds of instances. We used
random square matrices whose entries are between 0 and 9, thinking of their columns as
the generators of a cone centered at the origin. We tested fsoBhriatrices all the way to
8 x 8 matrices, and we tested fifteen random square matrices for each dimension. We show
the results inTable 1 For computation, we used a 1 GHz Pentium PC machine running
Red Hat Linux.

The second set of examples comes from the Birkhoff poly@®pef doubly stochastic
matrices Schrijver, 1986. Each vertex of the polytope is a permutation matrix which is a
0/1 matrix whose column sums and row sums are abdhfijver, 1986. We decompose
the cone with vertex at the origin and whose rays arentheermutation matrices. The
results are reported ifable 2

2.2. From cones to rational functions and counting

Once we decompose all cones into simplicial unimodular cones, it is easy to find the
generating function attached to thén coneK;. In the denominator there is a product
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Table 1
Averages of 15 random matrices for computational experiences
Dimension Height of tree # of cones |Determinant Time (s)
2 1.33 2.53 11.53 0
3 2.87 12.47 55.73 0.005
4 3.87 65.67 274.667 0.153
5 5.87 859.4 3875.87 0.25
6 7.47 10308 19310.4 3.67
7 8.53 91029.4 72986.3 41.61
8 10.67 2482647.533 1133094.733 2554.478
Table 2
The numbers of unimodular cones for the Birkhoff polytopes
Dimension # of vertices # of unimodular cones at a vertex cone Time (s)
B3=4 6 3 0.05
By=9 24 16 0.15
Bs = 16 120 125 0.5
Bg =25 720 1296 7.8

of binomials of the form(1 — zBi) where Bjj is the jth ray of the coneKj. Thus the
denominator is the polynomidl[(1 — zBii). How about the numerator? The coKeg is
unimodular; thus it must have a single monon##il, corresponding to the unique lattice
pointinside the fundamental parallelepipedf Remember that the vertex Kf is one of
the vertices of our input polytope. If that vertexhas all integer coordinates, thén = v,

or elsev can be written as a linear combinatign A Bj; where all ther; are rational
numbers and can be found by solving a system of equations (remembBy; tferm a
vector space basis fi“). The unique lattice point inside the parallelepiped of the déne
is simply > "[4j1Bjj (Barvinok and Pommersheih999 Lemma 4.1).

Brion's theorem says the sum of the rational functions coming from the unimodular
cones at the vertices is a polynomial with one monomial per lattice point inside the input
polytope. One might think that to compute the number of lattice points inside a given
convex polyhedron, one could directly substitute the value of 1 at each of the variables.
Unfortunately,(1, 1, ..., 1) is a singularity of all the rational functions. Instead we discuss
the method used ihattE to compute this value, which is different from that presented by
Barvinok Barvinok and Pommershei999. The typical generating function of lattice
points inside a unimodular cone forms

. yia
E[i ]75_1
[T@—z"i)
wherez? is monomial ind variables, eacl\ (cone vertex) andsj; (a generator of conig
are integer vectors of length i ranges over all cones givepranges over the generators of

conei, andE[i]is 1 or—1. Adding these rational functions and simplifying would yield the
polynomial function of the lattice point of the polytope. Now this is practically impossible
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as the number of monomials is too large. But calculating the number of monomials in
this polynomial is equivalent to evaluating the limitasgoes to 1 for ali. We begin by
finding an integer vector and making the substitutian — t*. This is with the intention

of obtaining a univariate polynomial. To do this,must be picked such that there is no
zero denominator in any cone expression, i.e. no dot produciwth a Bjj can be zero.
Barvinok showed that suchiacan be picked in polynomial time by choosing points on the
moment curve. Unfortunately, this method yields large values in the entrieslo$tead

we try random vectors with small integer entries, allowing small increments if necessary,
until we find A. Since we are essentially trying to avoid a measure zero set, this process
terminates very quickly in practice.

After substitution, we have expressions of the faktiVi / [T(1 — tPi), whereN; and
Dij are integers. Notice that this substitution, followed by summing these expressions,
yields the same polynomial as would result from first summing and then substituting. This
follows from the fact that we can take Laurent series expansions, and the sum of a Laurent
series is equal to the Laurent series of the sum of the original expressions.

Also, note that we have the following identity:

# of cones A.
= EJi
a;%;%d ;E; II(l ZB”)

After substitution we have the univariate (Laurent) polynomial such that:

g # of cones N-
tlizi Mo — Eli
2: 2: rkl tD”)
aePnzd i=1

With the purpose of avoiding large exponents in the numerators, we factor out a power
of t, sayt®. Now we need to evaluate the sum of these expressiohs=atl, but we
cannot evaluate these expressions directty-atl because each has a pole there. Consider
the Laurent expansion of the sum of these expressions abseut. The expansion must
evaluate at = 1 to the finite numbe} _,.p7q 1. It is a Taylor expansion and its value
att = 1 is simply the constant coefficient. If we expand each expression absui
individually and add them up, it will yield the same result as adding the expressions and
then expanding (again the sum of Laurent expansions is the Laurent expansion of the sum
of the expressions). Thus, to obtain the constant coefficient of the sum, we add up the
constant coefficients of the expansions altost 1 of each summand. Computationally,
this is accomplished by substitutibg= s+ 1 and expanding abost= 0 via a polynomial
division. Summing up the constant coefficients with proper accountingfidrand proper
decimal accuracy yields the desired result: the number of lattice points in the polytope.
Before the substitution = s + 1 we rewrite each rational function in the sum (rec¢all
was factored to keep exponents small);

tN| —C

Z 1—[(1 tD”) ZE/[i]

N

[P — 1)’
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in such a way thaDi’j > 0 for alli, j. This requires the powers bfat each numerator to
be modified, and the sigh[i] is also adjusted t&’[i]. Then the substitutioh = s+ 1
yields

N/
Z E/[i] (1+S|)D,I ’
[I(A+9)71 -1

where it is evident that, in each summand, the gote0 has an order equal to the number
of factors in the denominator. This is the same as the number of rays in the corresponding
cone and we denote this numberdhy

Thus the summand for comecan be rewritten a&’[i]s 9P, (5)/ Qi (s) wherePi(s) =
1+9s)N andQi(s) = ]_[d((lvL s)Di/i —1)/s). Pi(s)/Qi(s) is a Taylor polynomial whose
st coefficient is the contribution we are looking for (after accounting for the &tfi
of course). The coefficients of the quotielﬂt(s) /Qi(s) can be obtained recursively as
follows: let Qi (s) = by + bls +bys? + .- andP(s) = ag + a1S + a»s® + - - - and let
P ) = Cp + C1S + C5? + Therefore we want to obtaity which is the coeff|C|ent
of the constant term of, /Ql We do this by means of the following recurrence relation
(Henrici, 1974:

_ &
CO - boa
1
Ck = b—o(ak—blck_l—bzck_z— oo —bkcg) fork=1,2,....
In order to obtaincy, only the coefficientsag, a1,...,a4 and bo, by, ..., by are
required.

Example 7 (A Triangle). Let us consider three points in two dimensions such\hat

(0,1), Vo = (1, 0), andV3 = (0, 0). Then, the convex hull 0¥, V2, andV3 is a triangle

in two dimensions. We want to compute the number of lattice points by using the method
above. LetK; be the vertex cone &f fori = 1, 2, 3. Then, we have the rational functions

y _ X
Ay ha—xyy KT aemaxyy
1

1-xA-y)

We choose a vectaxr such that the inner products af and the generators d; are
not equal to zero. We choose = (1, —1) in this example. Then, reduce multivariate
to univariate with., so that we have

t-1 t
e Thae YT amoa oy
1

1-tH-tY
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We want all the denominators to have positive exponents. We simplify them in order to
eliminate negative exponents in the denominators with simple algebra. Then, we have

t—1 t4

K=aha-e " =agohae
—t

"k =T va—o

We factor out —1 from each rational function, so we obtain
t5

T A T )
—t2

M9 =a-va-o

We substituté = s + 1 and simplify them to the fornga%:

1 1+ 55+ 10s? + 10s% 4 5s* 4 s°
f(K) = 55—, f(Ko) = 5 ,
S“(2+9) S“(2+9)
—(14+2s+5%
f(K3) = — e

Now we use the recurrence relation to obtain the coefficient of the constant terms. Then,
for f (K1), we havec, = 3. For f(K2), we havec, = 3. For f (K3), we havec, = —1.

Thus, if we sum up all these coefficients, we have 3, which is the number of lattice points
in this triangle. O

LattE produces the sum of rational functions which converges to the generating
function of the lattice points of an input polytope. This generating function is a multivariate
polynomial of finite degree. As we saw 8ection 2.4t is possible to count the number of
lattice points without expanding the rational functions into the sum of monomials. Suppose
that instead of wanting to know the number of lattice points we simply wistlettide
whether there is one lattice point inside the polytope or not. The integer feasibility problem
is an important and difficult problemAg@rdal et al, 1998 Schrijver, 1986. Obviously,
one can simply compute the residues and then if the number of lattice points is non-zero,
clearly, the polytope has lattice points. But something faster and more elementary can be
done if we just test for the existence of lattice points. We are simply testing whether the
polynomial has any monomials at all, or whether the polynomial is the zero polynomial.

Remember thaall the coefficients of the polynomial are positive, and in fact equal to
one. If we find a specific vectar of positive values whose substitution gives us a non-
zero answer, then we are sure the polynomial has monomials. On the other hand if the
answer is zero, the polynomialdust bethe zero polynomial since there is no cancellation
of monomial values. Hence a single test on a non-zero vector, that avoids poles, evaluated
at the rational functions decides integer feasibility. To implement this, one has to take care
of large numbers with large integers. Another alternative is to substitute not just any vector,
but a vector whose entries are roots of unity; thus it reduces the complexity.
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Before we end our description battE, we must comment on how we deal with poly-
topes that are not full dimensional (e.g. transportation polytopes). Given the lower dimen-
sional polytopeP = {x € R" : Ax = a, Bx < b} with thed x n matrix A of full row-
rank, we will use the equations to transfoRrinto a polytopeQ = {x € R" 9 : Cx < c}
in fewer variables, whose integer points are in one-to-one correspondence to the integer
points of P. This second polytope will be the input to the main part.attE. The main
idea of this transformation is to find the general integer solutiea X + Zi”:_f Aigi to
Ax = a and to substitute it into the inequaliti®x < b, giving a new systen€x < cin
n —d variablesiy, ..., An—g.

It is known that the general integer solutigsxx = a can be found via the Hermite
normal formH = (R | 0) of A (Schrijver, 1986. Here,R is a lower-triangular matrix
andH = AU for some unimodular matrixJ. Moreover, asA is supposed to have full
row-rank,R is a non-singulad x d matrix. LetU; be the matrix consisting of the firdt
columns ofu andU; be the matrix consisting of the remaining- d columns ofU. Now
we haveAU; = RandAU, = 0 and the columns dfi; give the generatofg)s, . . ., On—d}
of the integer null-space oh. Thus, it remains to determine a special integer solutin
to Ax =a.

To do this, first find an integer solutiop to Hy = (R | 0)y = a, which is easy due to
the triangular structure dR. With xo = Uyp, we getAxg = AUy = Hyp = a and have
found all pieces of the general integer solutioa- xo~|-2i“:‘{j rigito{x € Z" : Ax=a}.

3. Computational experience and performance

LattE provides an interactive Web pag#p://www.math.ucdavis.eduattewhere any
user can freely submit a problem to be tested. You can also find there the files of all the
experiments presented in this section. If you are interested in a copy of the code, please
write to the first author. At the moment we have been able to handle polytopes of dimension
30 and several thousands vertices. It is known that the theoretical upper bound of the
number of unimodular cones i€ where

h— log log 19 — log log D
N log(d — 1/d)

and whereD is the volume of the fundamental parallelepiped of the input cBaevinok,

1994). If we fix the dimension this upper bound becomes polynomial time. Unfortunately,
if we do not fix the dimension, this upper bound becomes exponential. In practice this
might be costly and some families of polytopes have large numbers of unimodular cones.
The cross polytope family, for instance, has many unimodular cones and behaves badly.
For example, for the cross polytope in six dimensions, with cross6.ine inpuftilufa

2001, LattE took 147.63 s to finish computing. The number of lattice points of this
polytope is obviously 13. Also, for the cross polytope in eight dimensions, with cross8.ine
input file (Fukuda 2001), LattE took 85311.3 s to finish computing, even though this
polytope has only 16 vertices and the number of lattice points of this polytope is 17. For
all computations, we used a 1 GHz Pentium PC machine running Red Hat Linux.
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Here is a short description of how to us&ttE. Suppose we want to count the number
of lattice points inside a polytopP ¢ RY such thatP = {x € RY | Ax < b, A ¢
zZ™d b ezZm.

LattE admits to the following formats of the input. First, the user can providenput
(ineformat; see the explanation in the manual presentédlkatda(2001)) or simply write
it as

m d+1
b —A.

For example, if we want to count the number of lattice points inside the unit standard cube
in three dimensions, the input format is the following:

6 4

1 -1 0 O
1 0 -1 O
1 0 0 -1
0 1 0 O
0O 0 1 O
0O 0 0 1

There are six inequalities in three variablesone entry corresponding to the right hand
side (which is four entries) in this example. Now suppose we want to solve problems that
are not full dimensional. We want to count the number of lattice points inside a polytope
P c RY such thatP = {x € RY|Ax = bj,fori = 1,2,...,s, AX < bj,fori =
s+1,....,m A e Z™9 andb € Z™}, whereA; represents thigh row vector ofA and
b; represents thigh element ob.

The input format folLat tE when we wish to have equalities is the following:

m d+1
b —A
linearity s 1 2 ... s

For example, if we want to count the number of lattice points inside the polytope of the
small knapsack problefx + 2y + 3z = 6,x > 0,y > 0,andz > 0}, the input format
must be the following:

4 4

6 -1 -2 -3

0O 1 0 O

0O 0 1 o0

0O 0 0 1
linearity 1 1

There are four inequalities in three variablesone entry (which is four entries) in this
example.

We now report on computations with convex rational polytopes. We used a 1 GHz
Pentium PC machine running Red Hat Linux. We begin with the clasmuafiway
contingency tablesA d-table of size(ni, ..., ng) is an array of non-negative integers
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Table 3
Three-way cross-classification of gender, race, and income for a selected US censGotnaet1990 Census
Public Use Microdata Files

Gender= Male

Income level
Race <$10000 >$10000 anck$25 000 >$25 000 Total
White 96 72 161 329
Black 10 7 6 23
Chinese 1 1 2 4
Total 107 80 169 356

Gender= Female

Income level
Race <$10000 >$10000 anck$25 000 >$25 000 Total
White 186 127 51 364
Black 11 7 3 21
Chinese 0 1 0 1
Total 197 135 54 386

,,,,,

m-tables obtained by summing the entries over allundices. For instance, ifvi,j k)
is a 3-table then its 0-marginal is. 4+ = /%3 312, >¢%; vi j k, its 1-marginals are
Wi +.4+) = (ZTZZ1 S, vijk) and likewise(vy j 1), (v+.+.k), and its 2-marginals are
(i) = (R, vi,j.k) and likewise(vi 1 k), (v j,k)-

Such tables appear naturally in statistics and operations research under various names
such asmultiway contingency table®r tabular data We consider thaable counting
problem given a prescribed collection of marginals, how many d-tables are there that
share these marginals?Pable counting has several applications in statistical analysis,
in particular for independence testing, and has been the focus of much research (see
Diaconis and Gangolli1995 and the extensive list of references therein). Given a
specified collection of marginals fak-tables of sizeny, ..., ng) (possibly together with
specified lower and upper bounds on some of the table entries) the assouidticiddex
transportation polytopés the set of all non-negativeal valuedarrays satisfying these
marginals and entry bounds. The counting problem can be formulated as that of counting
the number of integer points in the associated multi-index transportation polytope. We
begin with a small example of a three-dimensional table of format®x 3 given below.

The data displayed ifiable 3have been extracted from the 1990 decennial census and are
used inFienberg et al(2001). For the 2-marginals implied by these data we get the answer
of 441 in less than a second.

We present now an example of &3 x 3 table with fairly large 2-marginals. They are
displayed inTable 4 LattE took only 19.67 s of CPU time. The number of lattice points
inside this polytope is

2249847900174017152559270967589010977293

Next we present an example of & 3 x 4 table with large 2-marginals. The 2-marginals
are displayed iTable 5 The CPU time for this example was 44 min 42.22 s. The number
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Table 4
2-Marginals for the 3x 3 x 3 example
164424 324745 127239
262784 601074 9369116
149654 7618489 1736281
163445 49395 403568
1151824 767866 8313284
1609500 6331023 1563901
184032 123585 269245
886393 6722333 935582
1854344 302366 9075926
Table 5
2-Marginals for the 3x 3 x 4 example
273510 273510 273510 191457
273510 273510 547020 191457
273510 547020 273510 191457
464967 273510 273510
547020 273510 464967
410265 601722 273510
273510 273510 273510
410265 547020 136755
547020 136755 410265
191457 191457 191457

of lattice points inside this polytope is
4091700129572445106288079361219676736812805058988286839062994

The next family of examples are some hard knapsack type problems. Suppose we
have a set of positive relatively prime integdes, ay, ..., ag}. Denote bya the vector
(a1, a2, ..., adq). Consider the following problem: does there exist a non-negative integral
vectorx satisfyingax = ap for some positive integeap? We take several examples from
Aardal et al.(2002g which have been found to be extremely hard to solve by commercial
quality branch-and-bound software. This is very surprising since the number of variables is
at most ten. It is not very difficult to see that if the right-hand-side vajuis large enough,
the equation will surely have a non-negative integer solution. Arbbenius numbefor
a knapsack problem is the largest vahgesuch that the knapsack problem is infeasible.
Aardal and LenstraAardal et al, 20023 solved them using the reformulation Aardal
et al.(1998. Their method works significantly better than the branch-and-bound one using
CPLEX 6.5. Here we demonstrate that our implementation of Barvinok’s algorithm is fairly
fast and, on the order of seconds, we resolved the first 15 problems in Tabl&atdz
et al. (20023 and verified that all are infeasible excgpib9, where there is a mistake.
The vector(348Q01,4,4,1,0,0,0,0,0) is a solution to the right-hand side 13385099.
In fact, usingLattE we know that the exact number of solutions is 838908602000. For
comparison we named the problems exactly as in Table Aaoflal et al.(20023. We
present our results iable 6 It is very interesting to know the number of lattice points
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Table 6
Infeasible knapsack problems

Frobenius # Time (min, s)

cuwwl 12223 12224 36674 61119 85569 89643481 0.55s

cuww2 12228 36679 36682 48908 61139 73365 89716838 1.78 s

cuww3 12137 24269 36405 36407 48545 60683 58925134 1.27s

cuww4 13211 13212 39638 52844 66060 79268 92482 104723595 2.042 s
cuww5 13429 26850 26855 40280 40281 53711 53714 67141 45094583 16.05s
probl 25067 49300 49717 62124 87608 88025 113673 119169 33367335 47.07s
prob2 11948 23330 30635 44197 92754 123389 136951 140745 14215206 1 min 0.58 s
prob3 39559 61679 79625 99658 133404 137071 159757 173977 58424799 1 min 28.3s
prob4 48709 55893 62177 65919 86271 87692 102881 109765 60575665 59.04 s
prob5 28637 48198 80330 91980 102221 135518 165564 176049 62442884 1 min41.78 s

prob6 20601 40429 40429 45415 53725 61919 64470 69340 78539 95043 22382774 3min45.86s
prob7 18902 26720 34538 34868 49201 49531 65167 66800 84069 137179 27267751 2min57.64s
prob8 17035 45529 48317 48506 86120 100178 112464 115819 125128 129688 21733990 8 min 29.78 s
prob10 45276 70778 86911 92634 97839 125941 134269 141033 147279 153525 106925261 4 min 24.67 s

Table 7

The number of lattice points if we add 1 to the Frobenius number
Problem RHS # of lattice points
cuwwl 89643482 1
cuww?2 89716839 1
cuww3 58925135 2
cuww4 104723596 1
cuww5s 45094584 1
probl 33367336 859202692
prob2 14215207 2047107
prob3 58424800 35534465752
prob4 60575666 63192351
prob5 62442885 21789552314
prob6 22382775 218842
prob7 27267752 4198350819898
prob8 21733991 6743959
prob10 106925262 102401413506276371

if we add 1 to the Frobenius number for each problentdhle 7 we find the number of
solutions if we add 1 to the Frobenius number in each of the (infeasible) problems. The
speed is practically the same as in the previous case. In fact the speed is the same regardless
of the right-hand-side valum.

Already, counting the lattice points of large width convex polygons is a non-trivial task
if one uses brute-force enumeration (e.g. list one by one the points in a bounding box
of the polygon and see whether it is inside the polygon). Here we experiment with very
large convexalmostregularn-gons. Regulan-gons cannot have rational coordinates, but
we can approximate them to any desired accuracy by rational polygons. In the following
experiment we take regulargons, fromn = 5 ton = 12, centered at the origin (these
have only a handful of lattice points). We take a truncation of the coordinates up to 3,
9, and 15 decimal digits, then we multiply by a large enough power of 10 to make those
vertex coordinates integral and we count the number of lattice points in the dilation. All
experiments take less than a second {&dde §.
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Table 8

The numbers of the approximated regular polygons. We show the number of lattice points in different dilation

factors (powers of ten) and time of computation

103 (s) 1@ (s) 101 (s)

5-gon 2371673(0.136) 2377641287748905186(0.191) 2377641290737895844565559026875(0.289)
6-gon 2596011(0.153) 2598076216000000011(0.193) 2598076211353321000000000000081(0.267)
7-gon 2737110(0.175) 2736410188781217941(0.318) 2736410188638105174143840143912(0.584)
8-gon 2820021(0.202) 2828427120000000081(0.331) 2828427124746200000000000000201(0.761)
9-gon 2892811(0.212) 2892544245156317460(0.461) 2892544243589428566861745742966(0.813)
10-gon  2931453(0.221) 2938926257659276211(0.380) 2938926261462380264188126524437(0.702)
11-gon 2974213(0.236) 2973524496796366173(0.745) 2973524496005786351949189500315(1.858)
12-gon  2997201(0.255) 3000000004942878881(0.466) 3000000000000005419798779796241(0.696)

The next two sets of examples are families that have been studied quite extensively in
the literature and provide us with a test for speed. In the first case we dealweitivay
contingency tablesThe polytope defined by a two-way contingency table is called the
transportation polytopeWe present the results ifable 9 The second family consists of
flow polytopes for the complete 4-vertex and the complete 5-vertex tournaments (directed
complete graphs). Consider the directed complete gkagbr | € N andl > 3. We assign
a number to each node of the graph. Then, we orient the arcs from the node of smaller
index to the node of bigger index. L&t be the node set of the complete grafph let w;
be a weight assigned to nodéori =1, 2, ..., 1, and letA be the arc set oK. Then, we
have the following constraints, with as many variables as arcs:

Z Xji — Z Xij = wj, Xij =0V, j) e A
(j,i)arc enterd (i, j)arc has taili

These equalities and inequalities define a polytope and this polytope is the special case
of a flow polytope The results for the complete grapKs and Ks, with different weight
vectors, are shown ifiables 1Gand11respectively.

These two families of polytopes have been studied by several autBaicobi-Silva
et al, 2003 Beck and Pixton 2003 De Loera and Sturmfels2003 Mount, 2000
and thus are good for testing the performanceLattE. We used several examples
of transportation polytopes, as presented in the table below. In genetalE runs at
comparable performance to the softwar&afdoni-Silva et al(2003 andBeck and Pixton
(2003 for generic vectorsa, b) but is slower for degenerate inputs (those that do not give
a simple polytope). The reason seems to be that at each non-simplexlvettExneeds
to triangulate each cone which takes considerable time in problems of high dimension.

4. New Ehrhart (quasi-)polynomials
Given a rational polytop® c RY, the function
ip(t) == #tPNZY,

for a positive integet, was first studied bighrhart(1977) and has received a lot of attention
in combinatorics. It is known to be a polynomial when all vertice$adire integral and



Table 9
Testing for 4x 4 transportation polytopes

Margins # of lattice points  Time (s)
[220, 215, 93, 64], 1225914276768514  1.048

[108, 286, 71, 127]

[109, 127, 69, 109], 993810896945891  1.785

[119, 86, 108, 101]

[72, 67, 47, 96], 25387360604030 1.648

[70, 70, 51, 91]

[179909, 258827, 224919, 61909], 13571026063401838164668296635065899923152079  1.954
[190019, 90636, 276208, 168701]

[229623, 259723, 132135, 310952], 646911395459296645200004000804003243371154862  1.765
[279858, 170568, 297181, 184826]

[249961, 232006, 150459, 200438], 319720249690111437887229255487847845310463475  1.854
[222515, 130701, 278288, 201360]

[140648, 296472, 130724, 309173], 322773560821008856417270275950599107061263625  1.903
[240223, 223149, 218763, 194882]

[65205, 189726, 233525, 170004], 6977523720740024241056075121611021139576919  1.541
[137007, 87762, 274082, 159609]

[251746, 282451, 184389, 194442], 861316343280649049593236132155039190682027614  1.880
[146933, 239421, 267665, 259009]

[138498, 166344, 187928, 186942], 63313191414342827754566531364533378588986467  1.973

[228834, 138788, 189477, 122613]

[20812723, 17301709, 21133745, 27679151], 665711555567792389878908993624629379187969880179721169068827951  2.917
[28343568, 18410455, 19751834, 20421471]

[15663004, 19519372, 14722354, 22325971], 63292704423941655080293971395348848807454253204720526472462015  3.161
[17617837, 25267522, 20146447, 9198895]

[13070380, 18156451, 13365203, 20567424], 43075357146173570492117291685601604830544643769252831337342557  2.990
[12268303, 20733257, 17743591, 14414307]
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Table 10
Testing for the complete grapfy

Weights on nodes # of lattice points Time (s)
[-6,-8,5,9] 223 0.288
[-9,-11, 12, 8] 330 0.286
[—1000,—-1, 1000, 1] 3002 0.287
[—4383, 886, 2777, 720] 785528058 0.287
[—4907,—2218, 3812, 3313] 20673947895 0.288
[—2569,—3820, 1108, 5281] 14100406254 0.282
[—3842,—3945, 6744, 1043] 1906669380 0.281
[—47896,—30744, 46242, 32398] 19470466783680 0.282
[-54915,-97874, 64165, 88624] 106036300535520 0.281
[—69295,-62008, 28678, 102625] 179777378508547 0.282
[—3125352,-6257694, 926385, 8456661] 34441480172695101274 0.509
[—2738090,—6701290, 190120, 9249260] 28493245103068590026 0.463
[—6860556,—1727289, 934435, 7653410] 91608082255943644656 0.503

Table 11

Testing for the complete grapfis. Time is given in seconds

Weights on nodes

# of lattice points Time (s)

[—12,-8,09, 7, 4]

[—125,-50, 75, 33, 67]

[—763,—41, 227, 89, 488]
[—11675,—88765, 25610, 64072, 10758]
[—78301,—24083, 22274, 19326, 60784]
[—52541,—88985, 1112, 55665, 84749]
[—71799,—80011, 86060, 39543, 26207]
[—45617,—46855, 24133, 54922, 13417]
[—54915,—97874, 64165, 86807, 1817]
[—69295,—62008, 28678, 88725, 13900]

[—8959393,—2901013, 85873, 533630, 11240903] 6817997013081449330251623043931489475270 0.555
277145720781272784955528774814729345461 0.599
710305971948234346520365668331191134724 0.478

[—2738090,—6701290, 190120, 347397, 8901863]
[—6860556,—1727289, 934435, 818368, 6835042]

14805 0.319

6950747024 0.325

222850218035543 0.325
563408416219655157542748 0.319
1108629405144880240444547243 0.336
3997121684242603301444265332 0.331
160949617742851302259767600 0.316
15711217216898158096466094 0.285
102815492358112722152328 0.277
65348330279808617817420057 0.288

it is a quasi-polynomial for arbitrary rational polytopes. It is called Biehart quasi-
polynomialin honor of its discovereiStanley 1997, Chapter 4). A functiorf : N — Cis

a quasi-polynomial if there is an integr > 0 and polynomialsfo, ..., fy—1 such that
f(s) = fi(s) if s=1i modN. The integem is called aquasi-periodof f. Therefore, by

counting the number of lattice points for sufficiently many dilations of a rational polytope,
we can interpolate its Ehrhart quasi-polynomial.
Using LattE, Maple, and interpolation, we have calculated the Ehrhart polynomials

and quasi-polynomials for polytopes that are slices or nice truncations of the-aulie.

To the best of our knowledge these values were not known before. For example, the 24-cell
polytope centered at the origin with smallest integer coordinates has Ehrhart polynomial

i24 cel(S) = 8%+ 37253 +8s?+ 121 1. InTable 12 we see the Ehrhart polynomials for the
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(1,0,1) (1,1,1)

(0,0.0) 0,1,0)

Fig. 4. The truncated cube.

hypersimplicesA(n, k). They are defined as the slice of thecube of the hyperplane of
equationy_ xj = kwith k < n. Note thatA(n, k) = A(n, n—k) because of the symmetries
of the regular cube. The hypersimplices form one of the most famous familieglef O
polytopes. It is known that hypersimplices am@mpressed polytop€®hsugi and Hihi
2001). This means that their Ehrhart polynomials can be recovered fromh-trectors of
any of their reverse lexicographic triangulations. Instead, we recovered them explicitly for
the first time usind.attE and interpolation.

We also have the Ehrhart quasi-polynomials of some truncated unit cubes.

Proposition 8. The Ehrhart quasi-polynomial for the truncated unit cub&ig. 4, where
its vertices are al/3 and2/3 of the way along edges of the cube, is given by

778 | 23 | 19s He
. 8_13+T2+T+1 ifs=0mod3
Itru_cube1(S) = % + % — Z—; — %) ifs=1mod3

%f+62—5§2+%5—g—i ifs=2mod 3
Proposition 9. The Ehrhart quasi-polynomial for the cuboctahedréig( 5) is

5T§'+252+%5—|—1 ifs=0mod 2

i tru_cu beis) { 3 2
5s: 3s 5s 3 i —

Proposition 10. The Ehrhart quasi-polynomial for the truncated regular simplex, where
the vertices are at/3 and2/3 of the way along the simplex edges (B&g 6), is given by

22 1 1311 ifs=0mod 3

itru_simplex(s): 28—3§3+12;9;2+g_§_g_? ifs=1mod 3
3 2 .

22218 ifs=2mod3

5. Other enumeration algorithms and futurework

We have demonstrated the practical relevance of Barvinok’s cone decomposition
approach for counting lattice points and deriving formulas. Several other algorithms are
available to carry out the same kind of enumeration. It is important to implement them
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Fig. 5. The cuboctahedron.

(1,0,1

/ \ >

/

f—

©,0,0) BT

Fig. 6. The truncated simplex.

all in the same computer system for comparison of performance and to corroborate that
the answers are correct. Some problems are solvable by some methods but not by others.
To close this article we quickly review some of the algorithms available to date that will
appear in the future versions bittE.

We have established that the major practical bottleneck of Barvinok’s algorithm is the
fact that a polytope may have too many vertices. Since we visit all vertices to compute
the rational function the result can be costly. For example, in the case of multiway
transportation polytopes, the number of vertices is much larger than the number of facet-
defining inequalities. For example, the well-known polytope of semi-magic cubes in the
4 x 4 x 4 case has over two million vertices, but only 64 inequalities describe the polytope.
This is the same with other classical challenges such as thé hagic square matrices
(seeAhmed et al. in press for details on these examples). In such cases we propose the
following simple variation of Barvinok’s algorithm. In a forthcoming papBre(Loera
et al, 2003 we will use it to solve several very large problems of combinatorial interest.
SeeDe Loera et al(2003 for details.

Algorithm 11 (Dealing with Polytopes with few Facets).

(1) Position thed-dimensional polytopé inside R%+1 by embedding the polytope at
levelxqy+1 = 1.
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(2) Consider théd + 1)-dimensional cone oveP; call this coneK. Compute the polar
K* of this cone. Since the number of facetsfs small compared to its vertices
the number of rays of the con€* is small.

(3) Apply Barvinok’s decomposition dk* into unimodular cones. Polarize back each
of these cones. It is known (e.Barvinok and Pommershei999 Corollary 2.8)
that by dualizing back we get a unimodular cone decompositidf.dfrom it we
can retrieve a signed sum of rational functions that has all the lattice poiktsasf
monomials.

(4) Now the issue is how to extract just the lattice pointdPofThis can be done by a
suitable monomial substitution that gives a coarser generating function graded into
levels for the coneK. In other words, the polytop® is by construction at level
Xd+1 = 1, and thus the monomials associated with the lattice poinsane of the
form 2252 ... zZ3t. We want to group together all such monomials. The problem is
that the substitution may be a pole of one or more of the rational functions. We need
to know the coefficient of when the variableg tend to 1. This can be done by the
Laurent series calculations described bef@aryinok and Woods2003 Theorem
2.6).

We have discovered that there is a strong dependence of the poles of the rational function
on the way we apply the decomposition. Roughly speaking, this depends on choosing a
good initial triangulation of the cone.

Another successful counting algorithm (and one that can be merged into the polar
Barvinok algorithm) is based on @biher and Hilbert bases. Lé&t be anm x d integral
matrix. Consider a convex pointed polyhedral c@e= {x | Ax = 0, x > 0}. We wish
to studyC N Z9. With any rational pointed polyhedral col® = {Ax = 0,x > 0}
and a fieldk we associate aemigroup ring Rc = k[x? : a € C n Z9]. A Hilbert
basis of the coneC is a finite set of vectors irfsc such that every other element of
S is a non-negative integer combination of these elements. The main theorem states
that Rc equalsk[x1, X2, ..., Xn]/lc Wherelc is the toric ideal generated by binomial
relationships holding among thi¢ Hilbert basis elements (s&»x et al, 1997 Sturmfels
1996 Lasserre2002. It turns out thatR: is a gradedk-algebra. A graded-algebra has a
decompositioRc = EBRC(i ), where eacliRc (i) collects all elements of degreand it is
ak-vector space (withRc (0) = k). The functionH (Rc, i) = dimg(Rc (i)) is theHilbert
functionof Rc. TheHilbert—Poincag serieof Re is Hr. (1) = > 2 H (Rc, it

The Hilbert—Poincar series can be computed from the knowledge of thabGei bases
of Ic. Here is why we want this series:

Lemma 12. Let R: be the semigroup ring obtained from the minimal Hilbert basis of
a cone C. The number of distinct lattice points of degree s equals the Hilbert function
H(Rc, s).

Several “analytic” algorithms have been proposed by many auttiBakigni-Silva
and Vergne2001 Beck and Pixton2003 Lasserre and Zergr2002 MacMahon 1960
Pemantle and Wilsqr2007). A couple of these methods have been implemented and
appear as the fastest for unimodular polyhedra. None of them has been implemented for
arbitrary rational polytopes. Consider, for example, Beck's method.M;etienote the
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columns of the matri>M We can interpreP(M, b) N Z9 as the Taylor coefficient af”

for the functlon]'[J_ MJ) One approach for obtaining the particular coefficient is to
use the residue theorems For example, it was seBedh (2000 that if M; denotes the

i th column of the defining matri, then

—b-1 bm—1

P(M.b)nzd = / R M
’ @)™ Jizyimer  Jizmimem 1 —2M1) - (1= 2M9)
Here O< €1, ..., €m < 1 are different numbers such that we can expand alll—ﬁﬁﬁk_z -

into the power series about 0. It is possible to do a partial fraction decomposition of
the integrand into a sum of simple fractions. This was done very successfully to carry
out very hard computations regarding the Birkhoff polytopBsok and Pixton2003.

Vergne and collaborators have recently developed a powerful general theory concerning the
multivariate rational functlon‘p—[J 1 (Baldom Silva and Vergn®001 Szenes and

Vergne 2002). Experimental results show itis a very fast method for unimodular polytopes
(Baldoni-Silva et al. 2003. Pemantle and Wilsoif2001) have pursued an even more
general computational theory of rational generating functions where the denominators are
not necessarily products of linear forms.
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