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The algebraic technique of Gr6bner bases is applied to study triangulations of the second 
hypersimplex A(2,n) .  We present a quadratic Grhbner basis for the associated toric ideal I(Kn). 
The simplices in the resulting triangulation of A(2,n)  have unit volume, and they are indexed 
by subgraphs which are linear thrackles [28] with respect to a circular embedding of Kn. For 
n _> 6 the number  of distinct initial ideals of I(Kn) exceeds the number of regular triangulations 
of A(2,n);  more precisely, the secondary polytope of A(2,n)  equals the state polytope of I(Kn) 
for n < 5 but not for n > 6. We also construct a non-regular triangulation of A(2 ,n)  for n > 9. 
We determine an explicit universal Grhbner basis of I(Kn) for n < 8. Potential applications in 
combinatorial optimization and random generation of graphs are indicated. 

1. Introduction 

Let ~ n  = {el -F ej : 1 < i < j < n} be the set of column vectors of the vertex-edge 
incidence matrix of the complete graph Kn.  The convex hull of J4n is called the 
second hypersimplex of order n and is denoted A(2, n). The second hypersimplex is 
an (n-1)-dimensional polytope in •n, with (~) vertices. In this paper we investigate 
triangulations and Grhbner bases associated with A(2,n). Its toric ideal I ( K n )  is 
the kernel of the ring map ~ :  k[ y[i,j] : 1 < i < j <_ n] --* k[ t l , . . .  ,tn] induced by 
y[i,j] ~-~ t i t j ,  where k is any field. The variables y[i,j] are indexed by the edges in 
Kn.  This family of ideals has been studied in [18] and [27]. 

With any point configuration 2 of lattice points we can associate two special 
polytopes. The secondary polytope }-]~(2) is a convex polytope whose faces are in 
bijection with the regular polyhedral subdivisions of 2 .  We refer the reader to [3], 
[4], [10] and [15] for details on regular triangulations, secondary polytopes and non- 
regular triangulations. The state polytope of a homogeneous ideal I is a convex 
polytope whose vertices are in bijection with the distinct initial ideals of I (see [1]). 
The relations among triangulations, state polytopes and secondary polytopes of a 
point configuration and its toric ideal can be found in [14], [21] and [22]. We refer 
to [13] for graph-theoretical concepts used in this paper and to [6] for the theory of 
Grhbner bases. 
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This paper is organized as follows. In Section 2 we describe a quadratic, square- 
free Grbbner basis for I(Kn) and the associated triangulation of A(2,n) into unit 
simplices. In Section 3, we compare the state polytope of I(Kn) with the secondary 
polytope of ~4n. A non-regular triangulation of A(2,n) for n >_ 9 is presented in 
Section 4. Section 5 describes a universal Grbbner basis of I(Kn) for n ~ 8. We 
conclude with some applications of the above theory to the generation of random 
graphs and to the perfect f-matching problem. 

2. A quadratic Grbbner basis and its triangulation 

We identify the vertices of Kn with the vertices of a regular n-gon labeled 
clockwise from 1 to n. The edges are closed line segments joining any two vertices. 
We define the weight of the variable y[i,j] as the number of edges of Kn which do not 
meet the edge (i,j). (We say that two edges meet if they either share an endpoint 
or a point in their relative interiors.) In what follows >- denotes any monomial order 
that  refines the partial order specified by these weights. Between any two vertices 
of Kn there are two paths that  use only edges of the n-gon. We define the circular 
distance between two vertices to be the length of the shorter path. For example, 
vertices 1 and n are at a circular distance 1 inside Kn and the pair {1,6} is at a 
distance 3 inside Ks. Given any pair of disjoint, non-intersecting edges (i, j), (k,l) 
of Kn, one of the pairs (i,k),(j,l) or (i,l),(j,k) meets in a point. With the disjoint 
edges ( i , j ) ,  (k, l), we associate the binomial y[i,j]y[k, l]-y[i, l]y[j, k] where (i, l), (j, k) 
is the intersecting pair. We denote by ~ the set of all binomials obtained in this 
fashion and by in• the finite set of their initial monomials with respect to >-. 

Theorem 2.1. The set ~ is the reduced Gr6bner basis of the idea/ I(Kn) with 
respect to tile monomial order ~-. 

Proof. For each binomial y[i,j]y[k,l]- y[i,l]y[j,k] in ~, the initial term with 
respect to ~- corresponds to the disjoint edges. This follows from the convex 
embedding of Kn prescribed above and the definition of the weights. We recall 
from [27] that  the binomials of I(Kn) are in bijection with even closed walks in 
Kn. Throughout  this paper we assume that all walks are closed. With an even 

walk F =  (i1,i2,. . .  ,i2k_l,i2k,il ) we associate the binomial bp=YIk_lY[i2l_l,i2l]- 
I-I~=l y[i21,i21+]]. Similarly one can recover an even walk from its binomial. The 
binomials associated with even closed walks in Kn form a universal Grbbner basis 
for the ideal I(Kn) (see [21], [27]). Therefore in order to prove that ~ is a Gr6bner 
basis of I(Kn) with respect to ~-, it is enough to prove that the initial monomial of 
a binomial br with respect to >- is always divisible by some monomial y[i,j]y[k,l] 
where (i,j),(k,l) is a pair of disjoint edges. 

Suppose on the contrary there exists a binomial bp that contradicts our asser- 
tion. This implies that  each pair of edges appearing in the initial monomial of br 
intersects. We will assume that br is a minimM counterexample in the sense that 
n is minimal and that br has minimal weight. The weight of a binomial is the sum 
of weights of its two terms. The walk F is spanning in Kn by minimality of n. All 
edges in the walk are visited with a unique parity since otherwise one ca~l factor 
out the variable associated with an odd-even edge, which contradicts minimality 
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of weight. If b F = y a - y/3 and in>(bF) = ya, then we can assume that each pair 
of edges appearing in the trailing monomial y/~ intersects. Otherwise if (i~j), (k,l) 
is a non-intersecting pair of edges then we can reduce y~ modulo ~ to obtain a 
counterexample of smaller weight. 

Let (s,t) be an edge of the walk F such that the circular distance between 
s and t is smallest possible. The edge (s,t) separates the vertices of I('n ex- 
cept s and t into two disjoint sets P and Q where IrPI[ > ff(?ll. Let  us start 
F at (s,t) = (i, , i2).  The walk is then a sequence of vertices and edges F = 
(il, (il,i2),i2, (i2,ia), ..., (i2k_l,i2k),i2k, (i2k,il)). Each pair of odd (even) edges in- 
tersect. The odd edges are of type (i2r-1, i2r) and the even edges of type (i2r,i2r+l). 
Since the circular distance of il,i 2 is minimal, the vertex i3 cannot be in Q. Oth- 
erwise the edge (12,i3) would have smaller circular distance. We claim that if P 
contains an odd vertex i2r-1, then it also contains the subsequent odd vertices 
i2r+l, i2r+a, . . . ,  i2k-1. The edge (il, i2) is the common boundary of the two regions 
P and Q. Any odd edge intersects it (at least by having an end in {i1,i2}) and thus 
i2r is in Q u {i1,i2}. Since any even edge must intersect (i2,ia), the vertex i2r+l 
lies in PU{i2}. To complete the proof of the claim we show that i2r+l ~s The 
e q u a l i t y  i 2 r + l  = i2 would imply either i2r = il or i2r E Q. If i2r = il then (il, i2) is 
both odd and even. On the other hand if i2r E Q then (i2r,i2) has smaller circular 
distance than (i1,i2). Thus i2r+l belongs to P. The claim is proved by repeating 
this argument. 

Since ia was shown to be in P it follows that all odd vertices except il lie in 
P and the even vertices in QU{il,i2}. The final vertex i2k is thus in Q. The even 
edge (i2k,il) must be a closed line segment contained in the region Q of the n-gon. 
Therefore (i2,ia) and (i2k,il) are two even edges that do not intersect which is a 
contradiction. This proves that ~ is a GrSbner basis of I(Kn) with respect to >-. 

By construction, no monornial in an element of ~ is divisible by the leading 
term of an element in g. Hence ~ is also the reduced GrSbner basis of I(Kn) with 
respect to >-. | 

We use the above theorem to give an explicit triangulation and determine the 
normalized volume of A(2,n). We recall that the normalized volume of a ( k -  1)- 
dimensional lattice polytope Q = conv({bl,... ,bq}) is given by the unique volume 
form on the affine hull of Q which is normalized by requiring that  the non-zero 
simplex volumes Vol(conv(bil,...,bik)) with 1 < i 1 < . . .  < i k < n, are relatively 
prime integers. By Theorem 3.1 in [21] the square-free monomia] ideal ( in>(~))  = 
in>-(I(Kn)) is the 8tanley-Reisner ideal of a regular triangulation T> of A(2,n).  
The simplices in T>- are the supports of standard monomials with respect to the 
GrSbner basis ~. All maximal simplices in T>- have unit normalized volume. This 
follows from Theorem 5.3 in [14] (see also Proposition 3.11 in [23]). We observed 
before that  the elements of in>-(~), i.e., the minimally non-standard monomials, 
are supported on pairs of disjoint edges. 

Corollary 2.2. The simplices ofT> are the subgraphs of I(n with the property that 
any pair of edges intersect in the given convex embedding of the graph. | 

Here and in what follows we identify subgraphs of Kn with subpolytopes of 
A(2, n); the subgraph H is identified with the convex hull of the column vectors of 
its vertex-edge incidence matrix. 
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Theorem 2.3. The maximal simplices in the triangulation T>. of A(2,n) are span- 
ning subgraphs on n edges with the property that any pair of edges intersect. Every 
such subgraph is connected and contains a unique odd cycle. The number of such 
subgraphs and hence the normalized volume of A(2,n) is 2 n - l -  n. 

The formula for the volume of A(2,n) is well known. It was first computed 
by Laplace (see [20]). It can be shown that the triangulation T>- is isomorphic to 
the k -- 2 case of the Eulerian triangulation in [20]. A different triangulation of 
the second hypersimplex was constructed by Gel'land, Kapranov and Zelevinsky in 
[11]. The difference between the two triangulations will be discussed in Example 
3.2. For the proof of Theorem 2.3 we need the following lemma. 

Lemma 2.4. A subpolytope ~ of A(2,n) is an (n - 1)-dimensional simplex if and 
only if the corresponding subgraph H satisfies the following properties. 

(i) H is a spanning subgraph with n edges, 
(ii) all cycles in H are odd, 
(iii) every component contains at least one odd cycle. 
Furthermore the normalized volume of a is 2 q(H)-I where q(H) is the number 

of disjoint cycles in H. 

Proof  of Lemma 2.4. Suppose H supports an (n-1)-simplex.  Let M H be the (0,1) 
incidence matrix of H. This matrix is non-singular which implies properties (i) and 
(ii). Suppose there exists a component C of H with no odd cycles. By property 
(ii), C is a tree. By induction on the number of edges in the tree one can prove 
that  M/-/is singular. The converse direction can be shown similarly. 

Under the hypothesis (i), (ii) and (iii) we will now show that the subpolytope 
supported by H is a simplex having the stated volume. Let M H be its vertex-edge 
incidence matrix. We prove that  the absolute value of the determinant of M H is 
equal to 2 q(H). If all vertices of H have degree two, then H is a disjoint union 
of odd cycles Ci and the matrix MH (up to permutation of columns) is the direct 
sum of the matrices MC~. Therefore the determinant of M H is the product of the 
determinants of the matrices MC~. The determinant of the incidence matrix of an 
odd cycle is 2 or -2. Therefore the absolute value of the determinant of M H is 
2 q(H). If the set of vertices with degree distinct from two is non-empty, then there 
is a vertex v of H of degree one. The row associated with v has 1 in some column 
and 0 elsewhere. Therefore the absolute values of the determinants of M H and 
MH-v are equal. Using this repeatedly we can reduce to the first case. The g.c.d. 
of det(MH) where H ranges over all subgraphs of the specified kind is two. Hence 
the normalized volume of a simplex a is 2 q(H)-l .  | 

Proof  of Theorem 2,3. The characteristics of the subgraphs follow from Corollary 
2.2 and Lemma 2.4. Since the normalized volume of a maximal simplex in the 
triangulation T>- was seen to be one, it follows that there is a unique odd cycle in 
the corresponding subgraph. Recall that  the vertices of the graph are the vertices 
of a regular n-gon numbered in a clockwise manner and the edges are closed line 
segments joining two vertices. Consider an odd cycle C in Kn with 2 k -1  edges, k E 
{2, . . . ,  In~2] }. We assume C is drawn such that  each pair of edges in C intersect. 
There are 1 = n - ( 2 k - 1 )  vertices that are not in C. We need to introduce l new 
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edges in order to obtain a spanning subgraph. Let v be a vertex outside C. Due 
to the convex embedding of Kn and the requirement that the new edge should 
intersect all existing edges, there exists a unique vertex w in C such that (v,w) is 
one of the new edges. Therefore there is exactly one way to complete an odd cycle 
to be a graph with the above properties. There are (2kn_l) odd cycles for each kE 

~ [ n / 2 ]  (2kn 1 ) = 2 n _  1 {2, . . . ,  Fn/21 } and tile total number of such graphs is L--,k=2 -- n. I 

Remarks 2.5. 
1. The graphs appearing as simplices in T>- are known as thrackles in the 

combinatorics literature [28]. The fact that our thrackle complex T>- is pure of 
dimension n -  1 reflects (the easy linear version of) Conway's famous Thrackle 
Conjecture, stating that a thrackle on n vertices can have at most n edges. 

2. The standard monomials modulo our GrSbner basis are precisely the multi- 
thrackles. In other words, a monomial m does not lie in in>-(I(Kn)) if and only if 
the support of m is a thrackle. This is equivalent to m = y[il,jl]y[i2,j2]'" y[ir,jr], 
where 

(2.1) i l<_i2<_'"<_ir<_jl<_j2<_'"<_jr,  i l < j l ,  i 2 < j 2 , . . . , i r < j r .  

Note that  m is recovered from O(m) = tilti~...ti, tjl...tj~ by simply sorting 
indices. 

3. The number of sequences which satisfy (2.1) equals the Hilbert polynomial 
of k[y]/I(Kn), which is tile Erhart  polynomial of A(2,n): 

n - 1  - 1  

(This formula was shown to us by Richard Stanley.) Using the methods in 
[19], one can derive the h-vector and the f-vector  of the triangulation T>_ from 
(2.2). 

4. The easier fact that I(Kn) is generated by quadrics is a special instance 
(V = A2 Cn) of Theorem 4 in [9]. Flaschka and Haine proved that the ideal of the 
generic torus orbit in any irreducible GL(n)-module V is generated by quadrics. 

3. On Secondary and State Polytopes 

In this section we compare the state polytope of the homogeneous ideal I(Kn) 
with the secondary polytope of An. Both polytopes lie in IRP and are ( p -  n)- 
dimensional where p = (~) is the number of edges in Kn. The secondary polytope 
of a general point configuration 5~ is a Minkowski summand of the state polytope 
of the corresponding toric ideal. We refer the reader to [1], [14], [21] and [22] for 
the general theory. Our main result in this section is: 

Theorem 3.1. The state polytope of I(Kn) and the secondary polytope of M~ 
(A) coincide up to n = 5 and 
(B) are distinct for n >_ 6. 

Proof  of (A). A point configuration ~ of lattice points is called unimodular if any 
full dimensional simplex with vertices in :~ has unit normalized volume. It can 
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be seen by inspection that the configurations M3, ~ 4  and Jd 5 are unimodular. By 
results in Section 5 of [22] it follows that the secondary polytope of ~dn and the 
state polytope of I(Kn) coincide up to n=5 .  This proves statement (A). | 

Example 3.2. We discuss the cases n -- 4 and n = 5 in detail. The polytope 
A(2, 4) is a regular octahedron in l~ 4. It has three distinct regular triangulations. 
Therefore the secondary( polytope, which is the same as the state polytope of 
I(K4), is a triangle in I~ ~ The distinct initial ideals are @[1,4]y[2, 3], y[1,3]y[2, 4]), 
(y[1, 3]y[2,4], y[1, 2]y[3,4]) and (y[1,4]y[2, 3], y[1,2]y[3, 4]). 

The polytope A(2,5) has dimension four with 10 vertices and 10 facets (5 
tetrahedra and 5 octahedra). Its secondary polytope, ~(~ds) , is a five dimensional 
polytope with 102 vertices, 255 edges, 240 two-faces, 105 three-faces and 20 facets. 
Under the natural S5-action on the vertices of A(2,5), the regular triangulations 
fall into three distinct orbits. We list a representative from each orbit. Each 
triangulation consists of eleven subgraphs with five edges each. Let [i j] be short 
for edge (i,j). The triangulations are: 

1. {{[13], [23], [34], [35], [45]}, {[13], [23], [24], [341, [45]}, {[13], [14], [24], [34], 
[45]}, {[13], [23], [25], [35], [45]},{[13], [15], [25], [35], [45]}, {[13], [14], [15], 
[25], [45]}, {[12], [13], [14], [15], [25]}, {[13], [231, [24], [25], [45]}, {[12], [13], 
[23], [24], [25]}, {[13], [14], [24], [25], [45]}, {[12], [13], [14], [24], [25]}} 

2. {{[13], [23], [34], [35], [45]}, {[12], [23], [24], [34], [45]}, {[12], [14], [24], [34], 
[45]}, {[12], [23], [25], [35], [45]}, {[12], [15], [25], [35], [45]}, {[12], [23], [24], 
[25], [45]}, {[12], [13], [23], [35], [45]}, {[12], [13], [23], [34], [45]}, {[12], [13], 
[14], [34], [45]}, {[12], [13], [15], [35], [45]}, {[12], [13], [14], [15], [45]}} 

3. {{[12], [15], [24], [25], [351}, {[15], [24], [251, [351, [45]}, {[141, [15], [24], [34], 
[45]}, {[12], [13], [15], [34], [35]}, {[121, [13], [23], [34], [35]}, {[121, [23], [24], 
[34], [35]}, {[12], [23], [24], [25], [35]}, {[121, [13], [14], [15], [34]}, {[121, [14], 
[15], [24], [34]}, {[15], [24], [34], [35], [45]}, {[12], [15], [24], [34], [35]}} 

The third triangulation is our thrackle triangulation. The second triangulation 
is the one constructed by Gel'fand, Kapranov and Zelevinsky in [11]. To distinguish 
these symmetry classes of triangulations we list the following features. The minimal 
non-faces of triangulations 1 and 3 have two vertices, while triangulation 2 has a 
minimal non-face with three vertices: {[12], [34], [35]}. (Thus the reduced GrSbner 
basis of triangulation 2 is not quadratic.) Triangulations 1 and 2 have the property 
that all maximal simplices have a common vertex. (These are respectively [13] and 
[45].) The thrackle triangulation 3 has more symmetry: each vertex is contained in 
either eight or three maximal simplices. 

Proof of (B). Consider the subgraph G of/(6 shown in Figure 1. 
2 3 E>4 

Fig. 1. Subgraph G 
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Let M G be the set of columns of the vertex-edge incidence matrix of G. The 
configuration ~d G consists of eight vectors spanning a 6-dimensional space. The 
Gale transform of MG is thus 2-dimensional and is shown in Figure 2. 

[56] 

[23] 

[12], [34] 

/ 
[16t, [45] 

~- [26], [35] 

Fig. 2. Gale transform ofM G 

Using this Gale transform and the methods in [26], we see that the following 
four binomials form a universal Grhbner basis for the toric ideal I(G): 

y[2, 3]y[5, 6] - y[2, 6]y[3, 5], y[1, 2]y[5, 6]y[3, 4] - y[1, 6]y[2, 3]y[4, 5], 

y[1, 2]y[5,612Y[3, 4] - y[1, 6]y[2, 6]y[3, 5]y[4, 5], 

y[1, 2]y[2, 6]y[3, 5]y[3, 4] - y[1, 6]y[2,312y[4, 5]. 

The first two binomials suffice to generate I(G), which is therefore a complete 
intersection. 

Let P(G) denote the convex hull ofM G and YG the set of eight variables y[i,j] 
appearing in I(G). We briefly recall some known general facts ([15], [21], [22]) 
about polyhedral subdivisions and toric ideals. Every function w:Y G--* ~ defines a 
regular polyhedral subdivision Aw of P(G), and it defines an initial ideal inw (I(G)) 
of I(G). For special choices of w, the ideal inw (I(G)) need not be a monomial ideal, 
and A,~ need not be a triangulation. However, by Theorem 3.1 in [21], whenever 
inw(I(G)) is a monomial ideal for some w, then A,~ must be a triangulation. The 
converse statement holds if and only if the state polytope St(I(G)) equals the 
secondary polytope E(MG). 

For the graph G in Figure 1 we define w to be the function which maps y[2,3] 
and y[5,6] to 1, and the other six variables to 0. The initial ideal inw(I(G)) is 
generated by 

{y[2, 3]y[5, 6], y[1, 2]y[5, 6]y[3, 4] - y[1, 6]y[2, 3]y[4, 5], 

y[1, 2]y[5,612Y[3, 4], y[1, 6]y[2,312y[4, 5]}. 

We see that  inw (I(G)) is not a monomial ideal, and that it has precisely two initial 
ideals, both having the same radical 

J = (y[2, 3]y[5, 6], y[1, 2]y[5, 6]y[3, 4], y[1, 6b[2, 3]y[4  5]). 
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Hence both these initial ideals correspond to the same triangulation and we conclude 
that A~ is a triangulation, namely it is the simplicial complex whose non-faces are 
the square-free monomials in J (Section 3, [21]). 

Combining the discussion in the last two paragraphs, we have shown that the 
secondary polytope E(~G) does not equal the state polytope St(I(G)) .  The Gale 
transform in Figure 2 gives more precise information: using the methods in Section 
4 of [3] we see that  E(~da) is a pentagon, and by direct computation we see that  
St(I(G))  is a hexagon. 

We next show the same result, E(~K6) • St(I(K6)) ,  for the complete graph 
on six nodes. Let YK~ be the set of variables in I(K6) and v : YK6 --+ Z be any 
function which is zero on YG, with G as above, positive elsewhere, and such that 
each maximal cell in the regular polyhedral subdivision Av of A(2,6) is either a 
simplex or equal to P(G). Let w : YK6 --+Z be the function whose restriction to YG 
equals w as above and which is zero elsewhere. 

Let us now consider the weight function M .  v + w where M is a very large 
positive integer. The polyhedral subdivision AM.v+~ is a regular triangulation of 
A(2,6): outside the subpolytope P(G) it has precisely the same simplices as Av, 
while inside P(G) it has the same simplices as A~ above. 

To prove our result, it suffices to show that  the ideal inM.v+~(I(K6) ) is not 
a monomial ideal. If it were a monomial ideal, then also its elimination ideal 

inM.v+w(I(K6) ) N k[YG] : inM.v+,j(I(K6) • k[YG] ) 

= inM.v+w([(G)) = in~([(G))  

would be a monomial ideal. This contradicts our result above, and it hence com- 
pletes the proof for / (6 .  To establish the result for Kn, n > 6 ,  we can use the exact 
same technique, which is to write I(K6) as an elimination ideal of I(Kn).  This 
proves statement (B) of Theorem 3.1. | 

4. A Non-Regular Triangulation 

We complement our discussion on regular triangulations by showing that 
A(2,n) for n _> 9 admits a non-regular triangulation. Our technique is similar to 
that  in Section 4 of [4]. We exhibit a non-regular triangulation of the point config- 
uration associated with a subgraph of / (9 .  This is then extended to a non-regular 
triangulation to A(2, 9) and finally to a non-regular triangulation of A(2, n) for n > 
9. Consider the subgraph G of / (9  shown in Figure 3. 

Let the point configuration associated with G be MG C ~9. The convex hull 
P(G) of the points in MG is an 8-dimensional polytope with 12 vertices. Let ~G = 
{za,z~, . . . ,zz} C 1~3 be the following Gale transform of ~d a (we note that  the rows 
of this matrix are even walks in G). 

za z b Zc z d Ze z f  zg Z h z i ~ z k z l 

0 0 0 1 - 1  1 - 2  1 - 1  1 0 ON 

) - I  i - 2  I --I  I 0 0 0 0 0 i 
0 0 - 1  1 -1  1 - 1  0 0 0 1 0 
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i 

j h 

k g 

z / 
/ 

Fig. 3. Subgraph of K 9 

Figure 4 shows an affine Gale diagram (see [24]) of riG. We think of Figure 4 as 
a configuration in the northern hemisphere of the 2-sphere. The points a, e, e,g, i, k 
are contained in the northern hemisphere while the points b, d, f,1, h , j  are contained 
in the southern hemisphere. These six southern p_o_ints_are represented on the 
northern hemisphere by their antipodal points b , d , f , l , h , j .  The chamber complex 
associated with the vector configuration 2G  equals the normal fan of the secondary 
polytope of od G by the results of [3], [4] and [10]. The part of this complex which 
lies in the northern hemisphere is drawn in Figure 4. 

bzo/ \ed  
Fig. ~. Affine Gale diagram of the configuration ~d G 
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We consider the maximal cell X in Figure 4 which is the intersection of the 
simplicial cones pos({bi,bj,bk} ) where ijk ranges over the triples in the following 
list: 

c, k, g e, i, k c, i, k e, k, g a, c, i 
c,i,d c , f , i  a,e,i b,e,k e,k,l 
a, f, g a, k, g a, i, g a, g, d. 

The regular triangulation TX corresponding to the region X has as its maximal 
simplices the complements of all triples in the above list. Let C be the signed circuit 
of~d G given by C= ( 0 , 0 , + , - , + , - , 0 , + , - , + , - , 0 ) .  The tetrahedra {c,e,h,j} and 
{d, f , i ,k}  intersect in their relative interior. Hence we can geometrically perform 
a generalized bistellar operation [10] (also known as a modification in Chapter 7, 
page 231, of [12]) for the triangulation TX to obtain a new triangulation Ty. The 
maximal simplices in Ty are the complements of the non-underlined triples in the 
above list and the new triples {a,c,g},{a,e,g},{a,h,g} and {a,j,g}. 

Lemma 4.1. The triangulation Ty is a non-regular triangulation of P(G). 

Proof. If Ty was a regular triangulation of P(G) then the intersection of the 
interiors of the open cones pos({bi,bj, bk}) where ijk ranges over the triples in the 
first list that are not underlined and those in the second list would be non-empty. 
In Figure 4 it can be seen that  the intersection of the cones {a,c,i}, {e,k,g} and 
{a,e,g} is empty and hence Ty is a non-regular triangulation of P(G). | 

Theorem 4.2. There exists a non-regular triangulation for A(2, n), n > 9. 

Proof. The polytope P(G) is a subpolytope of A(2,9). We can complete the 
triangulation Ty of P(C) to be a triangulation T of A(2,9) by placing (see [15]) 
the remaining vertices. Since Ty was a non-regular triangulation of P(G) there does 
not exist any piecewise linear convex function on A(2, 9) that induces Ty. Any such 
function would have induced locally a regular triangulation of P(G). This extends 
to A(2,n),  n >_ 9 since A(2,9) is a subpolytope of A(2,n) and the same argument 
applies. | 

Remark 4.3. In the above proof we made use of two general facts: 
�9 Let P C Q be polytopes and let T be any triangulation of P. Then there exists 

a triangulation T I of Q that  extends T. 
�9 If T is non-regular, then T I is non-regular. 

5. Universa l  Grhbner bases 

In this section we describe minimal universal Grhbner bases for the ideals 
I(Kh),I(K6), I(K7) and / (Ks) .  We remark that an infinite universal Grhbner 
basis for the ideal I(Kn) consists of the binomials associated with all possible 
even closed walks in Kn. An n-tuple (A1,...,An) is an elementary vector of the 
point configuration M = {a l , . . . ,  an} CN d if it defines an integral affine dependency 
Alal + . . .  + A n a n  = 0 with the properties: (a) At least one hi is distinct from zero. 
(b) The greatest common divisor of {A1,...,An} is one. (c) The support {ilA i 50}  
is minimal with respect to inclusion. In the case of the specific point configuration 
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odn the elementary vectors correspond to either even cycles or two disjoint odd 
cycles joined by a path [27]. We call the binomials of [ (Kn)  associated with the 
elementary vectors, the circuits of I (Kn) .  

Theorem 5.1. The circuits form a universal Gr6bner basis of I (Kn)  for n < 7. The 
same statement  is not tr~ze for n >_ 8. 

Proof. For these computations we used the Lawrence construction introduced in 
[25] to calculate universal GrSbner bases of toric ideals. All computations were 
done using MACAULAY [2]. The elements of the universal GrSbner basis are (up 
to a relabeling using the natural Sn-action) presented in Table 1. The numbers 
give the cardinality of the S~-orbit of each binomial. 

Types of binomials 

y[ab]y[cd] - y[ac]y[bd] 
y[ab]y[ed]y[ec] - y[bc]y[dely[ac ] 

y[ab]y[cd]2y[e f ] - y[bc]y[df ]y[de]y[ac] 

y[ab]y[cd]y[e f ] - y[bc]y[de]y[a f ] 

y[abJy[cdly[ef]y[cgJ- y[bc]y[de]y[f g]y[ac] 
y[ab]y[cd]2y[egly[e fl  - y[bc]y[de]2y[f g]y[ac] 

y[ab] y [cd I y[e f] y [gh I - y[bc] y [de I y [ f 9] y [ah 1 
y[ably[cb]2y[e f ]2y[gh] - y[bc]y[ de]2y[f g]y[f h]y[ac] 

y[ab]y[cd]2y[ef ]y[gh] - y[bc]y[de]y[f g]y[dh]y[ac} 

y [ab]y [cd] y [ef] y leg] y [ch] - y [bc] y [de] y [fg] y [e h] y [a c] 
y[ab]y[ed]y[e f ]y[dg]y[ch] - y[bc]y[de]y[df ]y[gh]y[ae] 

TOTAL 

K5 /(6 K7 Ks 
15 45 105 210 

15 90 315 840 

0 90 630 2520 

0 60 420 1680 

0 0 1260 10080 

0 0 630 2520 

0 0 0 2520 

0 0 0 5040 

0 0 0 10080 

0 0 0 2520 

0 0 0 5040 

30 285 3360 45570 

Table 1. Universal GrSbner basis for Kn, n < 8  

Notice that  for n < 7 the elements in the universal Grhbner bases in Table 1 
are precisely the circuits of the corresponding I (Kn) .  Therefore the circuits of odn 
form a universal Grhbner basis for I (Kn)  for n < 7. However this property does 
not hold for I (K8) and hence for all I (Kn) ,  n > 8. The universal Grhbner basis of 
I (Ks )  needs, up to labeling, two extra types of binomials. These are the binomials 
supported in the subgraphs of Ks shown in Figure 5. 

The computation of the universal Grhbner basis for I(K8) was a more 
challenging enterprise than the direct Lawrence calculations of the previous 
cases. We computed a universal Gr6bner basis H for the ideal I ( K s -  
{(1,8),(1,7),(1,6),(1,5),(1,4)}) using the Lawrence technique. The set H con- 
tains precisely the eleven types of binomials listed in Table 1. If a walk F needs 
to be added to H in order to complete a universal Grhbner basis o f / ( K s ) ,  then F 
cannot be supported in any subgraph of I(8 isomorphic to K s -  {(1, 8), (1,7), (1,6), 
(1,5), (1,4)}. This implies that F must visit every vertex twice and be supported in 
a subgraph of minimal degree three. We call this type of even walks saturated. An 
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Fig. 5. Non-circui ts  necessary in a universal  Grbbner  basis of I ( K 8 )  

even walk is primitive if there is no proper subset of its edges that supports an even 
closed subwalk. As a consequence of Proposition 5.1 in [8] (see also [25]), the set of 
primitive even walks in Kn defines binomials that  constitute a universal Grbbner 
basis for I(Kn). Finally, a detailed case analysis (omitted here) shows that  a sat- 
urated even walk in Ks cannot be primitive. All primitive even walks in Ks are 
then supported in a subgraph isomorphic to Ks-{(1 ,8) , (1 ,7 ) , (1 ,6 ) , (1 ,5 ) , (1 ,4 )} .  
Therefore, the union of the S8-orbits of the eleven binomials is a universal Grbbner 
basis f o r / ( K s ) .  | 

As an estimate for the size of a universal Grbbner basis for I(Kn) we can 
bound the degree of the binomials involved. General bounds, valid for arbitrary 
toric ideals, can be found in [8] and [21]. 

Proposit ion 5.2. The largest degree dn of a binomial in a minimal universal Grbbner 
basis/or  I (K~),  satis~es n -  2 < dn < (~). 

Proof. The lower bound holds because any universal Grbbner basis of I(Kn) must 
contain all circuits and among the circuits there exist elements of degree n - 2 .  The 
associated subgraphs are two disjoint triangles joined by a path of length n - 5 .  We 
already mentioned that  the primitive even walks define the binomials of a universal 
Grbbner basis for I(Kn). We observe that  an even walk that  visits an edge more 
than twice with the same parity cannot be primitive. The binomials coming from 
primitive even walks are then forced to have at most degree two for each of the 
appearing variables. Finally, we remark that  there are at most (~)/2 variables in 
each term of any binomial of I(Kn). | 



GROBNER BASES AND TRIANGULATIONS 421 

6. Applications 

Toric ideals have recently been applied to problems in integer programming 
[5], [26] and in computational statistics [7] (see also Section 5 in [8]). The specific 
family of toric ideals I(Kn) studied in this paper has the following interpretations 
in these two domains of application. 

Consider the problem of generating a random multigraph on n nodes with 
fixed degree at each node. This problem has been studied in detail by Sinclair and 
Jerrum (see [17]). A natural algorithm follows from the approach in [7]: the idea is 
to start  with any legal multigraph and then to perform a random walk with respect 
to a fixed finite set of local moves which alters multigraphs while maintaining the 
vertex degrees. The possible moves are precisely the even walks, that is, binomials 
in the ideal I(Ign). It follows from Theorem 3.2 in [7] that a set of moves gives an 
irreducible Markov chain for all degree sequences if and only if the corresponding 
binomials generate I(Kn). Thus Theorem 2.1 gives an explicit list of connecting 
moves: each move is quadratic and involves only four edges. 

The task of constructing irreducible Markov chains becomes much harder if 
structural zeros are prescribed (see Section 4.E in [7]), that  is, if certain edges 
are prohibited during the random walk. The algebraic counterpart is to find a 
generating set for the ideal I(G), where G is a subgraph o f / i n .  This problem is 
solved simultaneously for all subgraphs of Kn by finding a universal Grhbner basis 
for I(Kn). This is shown in Corollary 4.2 of [7]. Note in particular that Proposition 
4.3 in [7] deals with the easier case of bipartite graphs. Our results in Section 5 give 
a complete answer for all graphs with n < 8 nodes and bounds for the general case. 

The set of all multigraphs on n nodes with fixed vertex degrees is the set of fea- 
sible solutions of an important problem of combinatorial optimization, namely, the 
perfect f-matching problem [16]. Let f be a positive integer valued function on the 
n vertices of Kn such that f(i) specifies the degree of the vertex i. An assignment 
of a non-negative integer p[i,j] to the edge (i,j) such that ~{(~d):j#i}p[i,j] = f ( i )  
holds for each vertex i is called a perfect f-matching. Suppose in addition to the 
degree of each vertex we are also given a cost cij for each edge (i,j), and the ob- 
jective is to find a perfect f-matching on n nodes with minimum total cost. Then 
we have the following integer program which is called the minimum weight perfect 
f-matching problem. 

subject to 

Minimize E cij �9 p[i,j] 
i,j 

E p[i, j] = f(i) 
{(i , j):j~i} 

p[i, j] > O, integer 

i = l , . . . , n  

The coefficient matrix of the above integer program is the vertex-edge incidence 
matrix of Kn and any feasible solution is a perfect f-matching of Kn. Consider 
the family of integer programs obtained by varying the function f but with the 
above coefficient matrix and costs cij fixed. The results of [5] and [26] show that 
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the reduced Gr6bner basis of I(Kn) with respect to a term order refining the cost 
function c = (cij) is a minimal test set for the above family. This implies that  
given any feasible integer solution to a program in this family, one of the following 
happens. Either there exists a binomial in the corresponding Grbbner basis of 
l(Kn) that reduces the monomial representation of this solution to give a new 
solution of smaller cost or there is no such element which implies that the current 
solution is optimal. 

As an example, consider the quadratic GrSbner basis in Section 2. The cor- 
responding optimization problem asks for the minimum weight perfect/-matching 
of Kn where the cost of a variable p[i,j] is the number of edges in Kn that do not 
meet (i,j). The function f specifies the degree of each vertex and thus provides 
the right hand side vector of this integer program. Under the special embedding 
of Kn prescribed in Section 2, an optimal solution is a perfect f-matching in Kn 
that maximizes the total number of crossings among edges. In other words, it is a 
multi-thrackle of Kn. 

As an illustration of the technique of solving integer programs using test 
sets, consider the reduced Gr6bner basis E of Theorem 2.1. We begin with any 
perfect f-matching of/(n. If no two edges of this multigraph are disjoint, then the 
corresponding monomial is reduced with respect to the above quadratic Gr6bner 
basis and we conclude that the current solution is optimal. On the other hand, if 
there exists two edges (i,j) and (k,l) in this multigraph that are disjoint, then the 
corresponding monomial is divisible by y [i, j]y [i, k], the leading term of y [i, j] y [k, l ] -  
y[i,l]y[j,k] which is an element of the quadratic Grbbner basis ~. Reducing the 
current feasible solution by this element in ~ provides the new feasible solution in 
which the disjoint edges (i,j) and (k,l) have been replaced by the intersecting edges 
(i,/) and (j,k). Therefore the new solution has strictly smaller weight compared 
to the old solution. By repeating this procedure we obtain the optimal solution to 
the integer program after finitely many steps. Therefore the reduced Grbbner basis 

provides a minimal set of directions that allow a monotone path from any non- 
optimal perfect/-matching of Kn to an optimal perfect f-matching. We emphasize 
that the specific integer program corresponding to ~ has a trivial solution, which 
is given by the sorting procedure in Remarks 2.5, (2). 

A universal Grbbner basis of I(Kn) provides a test set with respect to every 
cost function and right hand side vector for the minimum weight f-matching 
problem on Kn (see Section 3.2 in [26]). Hence, the universal Grbbner bases of 
I(Kn) for n _ 8 provides an explicit set of moves by which one can solve the 
minimum weight f-matching problem on K.n for n ~ 8 with respect to any cost 
function c and function f .  

In closing we remark that the work of Gel'/and, Kapranov and Zelevinsky 
was motivated by yet another application of toric ideals: the study of generalized 
hypergeometric functions (see [10], [11], [12] and [22]). Grbbner bases and their 
regular triangulations provide tools for constructing series solutions for the ~d- 
hypergeometric systems of differential equations. 
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