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1. Introduction
Let A = �aij � be an integral m × n-matrix and b ∈ �m

such that the convex polyhedron P = 
u ∈ �n� Au≤ b�
is bounded. Given k linear functionals f1� f2� � � � �
fk ∈ �n, we consider the multicriterion integer linear pro-
gramming problem

vmin �f1�u�� f2�u�� � � � � fk�u��

subject to Au≤ b�
u ∈ �n�

(1)

where vmin is defined as the problem of find-
ing all Pareto optima and a corresponding Pareto
strategy. For a lattice point u, the vector f�u� =
�f1�u�� � � � � fk�u�� is called an outcome vector. Such an
outcome vector is a Pareto optimum for the above prob-
lem if and only if there is no other point ũ in the feasi-
ble set such that fi�ũ�≤ fi�u� for all i and fj�ũ� < fj�u�
for at least one index j . The corresponding feasible
point u is called a Pareto strategy. Thus, a feasible
vector is a Pareto strategy if no feasible vector can
decrease some criterion without causing a simultane-
ous increase in at least one other criterion. For gen-
eral information about the multicriteria problems, see,
e.g., Figueira et al. (2005) and Sawaragi et al. (1985).

In general multiobjective problems, the number of
Pareto-optimal solutions may be infinite, but through-
out the paper we assume that the polyhedron P =

u ∈ �n� Au ≤ b� is bounded. This implies that the
number of Pareto optima and strategies is finite.
There are several well-known techniques to generate
Pareto optima. Some popular methods used to solve
such problems include, e.g., weighting the objec-
tives or using a so-called global criterion approach;
see Ehrgott and Gandibleux (2000). In abnormally
nice situations, such as multicriteria linear programs
(Isermann 1974), one knows a way to generate all
Pareto optima, but most techniques reach only some
of the Pareto optima.
The purpose of this article is to study the sets of all

Pareto optima and strategies of a multicriterion inte-
ger linear program using the algebraic structures of
generating functions. The set V Pareto of Pareto points
can be represented as the multivariate polynomial
that is the sum of monomials

g�V Pareto�z�= ∑{
zv� u ∈ P ∩�n� v= f�u� ∈ �k

is a Pareto optimum
}
� (2)

the so-called generating function of V Pareto. (Here, we
are using the multiexponent notation zv = z

v1
1 z

v2
2 � � � z

vk
k .)
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We remark that the number of monomials in expres-
sion (2) usually is exponentially large. Our main the-
oretical result states that, under the assumption that
the number n of variables and the number k of cri-
teria is fixed, we can compute in polynomial time a
so-called short rational generating function of V Pareto; i.e.,
a polynomial-size sum of rational functions of a spe-
cial kind,

∑
i∈I

�i

zci

�1− zdi1��1− zdi2� � � � �1− zdis � � (3)

that after removing its removable singularities, de-
scribes the same polynomial function g�V Pareto�z�. The
same can be done for the corresponding Pareto strate-
gies when written in the form

g�U Pareto�x� = ∑{
xu� u ∈ P ∩�n�

f�u� is a Pareto optimum
}
� (4)

Theorem 1. Let the dimension n and the number k of
objective functions be fixed.
(a) There exists a constant s = s�k�n� and a polynomial-

time algorithm for the following problem. Given as input,
in binary encoding,

�I1� an integer m, a matrix A ∈ �m×n, a vector
b ∈ �m, and

�I2� linear functionals f1� � � � � fk ∈ �n,
output, in binary encoding,

�O1� for every i in an index set I an integer �i, an
integer vector ci, and integer vectors dij for j = 1� � � � � s,
such that the generating function g�V Pareto�z� of the
Pareto set V Pareto of the multicriterion integer program-
ming problem (1) has a representation as the rational
function

g�V Pareto�z�= ∑
i∈I

�i

xci

�1− xdi1��1− xdi2� � � � �1− xdis � � (5)

(b) The same holds for U Pareto instead of V Pareto.
(c) There exists a polynomial-time algorithm for the fol-

lowing problem. Given as input, in binary encoding,
�I1� an integer m, a matrix A ∈ �m×n, a vector b ∈ �m

and
�I2� linear functionals f1� � � � � fk ∈ �n,

output, in binary encoding,
�O1� the number #V Pareto of Pareto optima and
�O2� the number #U Pareto of Pareto strategies

of the multicriterion integer programming problem (1).
(d) There exist output-sensitive polynomial-time algo-

rithms �more strongly, polynomial-space polynomial-delay
prescribed-order enumeration algorithms� for the following
two problems. Given as input, in binary encoding,

�I1� an integer m, a matrix A ∈ �m×n, a vector
b ∈ �m, and

�I2� linear functionals f1� � � � � fk ∈ �n,

output, in binary encoding,
�O1� in lexicographic order all vectors in the set

V Pareto �or U Pareto, respectively�,
where V Pareto and U Pareto are the sets of Pareto optima
and strategies of the multicriterion integer programming
problem (1).

In contrast, it is known that for a nonfixed dimen-
sion it is #P-hard to enumerate Pareto optima and
NP-hard to find them (Emelichev and Perepelitsa
1992, Sergienko and Perepelitsa 1991). The proof of
Theorem 1, parts (a) and (b), will be given in §2. It is
based on the theory of short rational generating func-
tions as developed in Barvinok (1994), Barvinok and
Pommersheim (1999), Barvinok and Woods (2003),
and Woods (2004). Part (d) of Theorem 1 will be
proved in §3; we actually prove the result for arbitrary
term orders rather than just the lexicographic order.
For a user that knows some or all of the Pareto

optima or strategies, a goal is to select the “best”
member of the family. One is interested in select-
ing one Pareto optimum that realizes the best com-
promise between the individual objective functions.
The quality of the compromise is often measured by
the distance of a Pareto optimum v from a user-
defined comparison point 	v. For example, often users
take as a good comparison point the so-called ideal
point videal ∈ �k of the multicriterion problem, which
is defined as

videali =min
fi�u�� u ∈ P ∩�n��

The criteria of comparison with the point 	v are quite
diverse, but some popular ones include computing
the minimum over the possible sums of absolute
differences of the individual objective functions, eval-
uated at the different Pareto strategies, from the com-
parison point 	v; i.e.,

f �u�= �f1�u�− 
v1� + · · · + �fk�u�− 
vk�� (6a)

or the maximum of the absolute differences,

f �u�=max{�f1�u�− 
v1�� � � � � �fk�u�− 
vk�
}
� (6b)

over all Pareto optima �f1�u�� � � � � fk�u��. Another
popular criterion, sometimes called the global crite-
rion, is to minimize the sum of relative distances of
the individual objectives from their known minimal
values; i.e.,

f �u�= f1�u�− videal1

�videal1 � + · · · + fk�u�− videalk

�videalk � � (6c)

We stress that if we take any one of these func-
tions as an objective function of an integer program,
the optimal solution will be, in general, a non-Pareto
solution of the multicriterion problem (1). In contrast,
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we show in this paper that by encoding Pareto optima
and strategies as a rational function, we avoid this
problem because we evaluate the objective functions
directly on the space of Pareto optima.
All of the above criteria (6) measure the distance

from a prescribed point with respect to a polyhedral
norm. In §4, we prove:

Theorem 2. Let the dimension n and the number k of
objective functions be fixed.
(a) There exists a polynomial-time algorithm for the fol-

lowing problem. Given as input, in binary encoding,
�I1� an integer m, a matrix A ∈ �m×n, a vector

b ∈ �m,
�I2� linear functionals f1� � � � � fk ∈ �n,
�I3� a prescribed point 	v ∈ �k, and
�I4� a vertex or inequality description of a rational

polytope Q ⊆ �k,
output, in binary encoding,

�O1� a Pareto optimum v of the multicriterion inte-
ger programming problem (1) that minimizes the distance
�v− 	v�Q from the prescribed point 	v, where �·�Q is the
polyhedral norm whose unit ball is Q.
(b) There exists a polynomial-space polynomial-delay

enumeration algorithm for the following problem. Given as
input the same data as in (a), output, in binary encoding,

�O1� all Pareto optima v of the multicriterion integer
programming problem (1) in the order of increasing dis-
tances �v− 	v�Q from the prescribed point 	v, where � · �Q

is the polyhedral norm whose unit ball is Q.

Often users are actually interested in finding a
Pareto optimum that minimizes the Euclidean dis-
tance from a prescribed comparison point 	v,

f �u�=
√

�f1�u�− 
v1�2 + · · · + �fk�u�− 
vk�2� (7)

but to our knowledge no method of the literature
gives a satisfactory solution to that problem. In §4,
however, we prove the following theorem, which
gives a very strong approximation result—a fully
polynomial-time approximation scheme (FPTAS).

Theorem 3. Let the dimension n and the number k
of objective functions be fixed. Then, there exists a
polynomial-time algorithm for the following problem.
Given as input
�I1� an integer m, a matrix A ∈ �m×n, a vector b ∈ �m,

linear functionals f1� � � � � fk ∈ �n, all in binary encoding,
�I2� a prescribed comparison point 	v ∈ �k in binary

encoding, and
�I3� a positive rational number 1/� in unary encoding,

output, in binary encoding,
�O1� a Pareto optimum v� of the multicriterion integer

programming problem (1) such that

�v� − 	v� ≤ �1+ ��min
{�v− 	v�� v ∈ V Pareto

}
�

where �·� denotes the Euclidean norm and V Pareto is the
set of Pareto optima of (1).

We actually prove this theorem in a somewhat more
general setting, using an arbitrary norm whose unit
ball is representable by a homogeneous polynomial
inequality.

2. The Rational Function Encoding of
All Pareto Optima

We give a very brief overview of the theory of ratio-
nal generating functions necessary to establish The-
orem 1. For full details, we recommend Barvinok
(1994), Barvinok and Pommersheim (1999), Barvinok
and Woods (2003), De Loera et al. (2006), and the ref-
erences therein. Barvinok (1994) gave an algorithm for
counting the lattice points in P = 
u ∈ �n� Au≤ b� in
polynomial time when the dimension n of the feasi-
ble polyhedron is a constant. The input for Barvinok’s
algorithm is the binary encoding of the integers aij
and bi, and the output is a formula for the multivari-
ate generating function

g�P�x�= ∑
u∈P∩�n

xu�

where xu is an abbreviation of xu11 x
u2
2 · · ·xunn . This long

polynomial with exponentially many monomials is
encoded as a much shorter sum of rational functions
of the form

g�P�x�= ∑
i∈I

�i

xci

�1− xdi1��1− xdi2� · · · �1− xdin � � (8)

Barvinok and Woods (2003) further developed a set
of powerful manipulation rules for using these short
rational functions in Boolean constructions on various
sets of lattice points.

Theorem 4 (Boolean Operations Lemma;
Corollary 3.7 in Barvinok and Woods 2003). Let m
and l be fixed integers, and let #� 
0�1�m → 
0�1� be any
Boolean function such that #�0� = 0. Then, there exists
a constant s = s�l�m� and a polynomial-time algorithm
for the following problem. Given as input, in binary
encoding,
�I1� the dimension n and
�I2� rational generating functions

g�Sp�x�= ∑
i∈Ip

�pi

xcpi

�1− xdpi1� · · · �1− xdpis � �

of m finite sets Sp ⊆ �n, represented by the rational num-
bers �pi, integer vectors cpi, and dpij for p = 1� � � � �m,
i ∈ Ip, j = 1� � � � � lmp such that the numbers lmp of terms in
the denominators are at most l,
output, in binary encoding,
�O1� rational numbers �i, integer vectors ci, dij for i ∈ I ,

j = 1� � � � � si, where si ≤ s such that

g�S�x�= ∑
i∈I

�i

xci

�1− xdi1� · · · �1− xdisi �
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is a rational generating function of the finite set S that is
the Boolean combination of S1� � � � � Sp corresponding to the
function #.

We will use the Boolean operations lemma to ex-
tract special monomials present in the expansion of
a generating function. The essential step in the algo-
rithm of Theorem 4 is the use of the Hadamard product
(Barvinok and Woods 2003, Definition 3.2) and a spe-
cial monomial substitution. The Hadamard product is
a bilinear operation on rational functions (we denote
it by ∗). The computation is carried out for pairs of
summands as in (8). Note that the Hadamard prod-
uct m1 ∗ m2 of two monomials m1, m2 is zero unless
m1 =m2.
Another key subroutine introduced by Barvinok

and Woods (2003) is the following projection theorem.

Theorem 5 (Projection Theorem; Theorem 1.7
in Barvinok and Woods 2003). Let the dimension n
be a fixed constant. Then, there exists a constant s�n�
and a polynomial-time algorithm for the following problem.
Given as input, in binary encoding,
�I1� an inequality description of a rational polytope

P ⊂ �n,
�I2� a positive integer k, and
�I3� an integral matrix T ∈ �k×n,

output, in binary encoding,
�O1� rational numbers �i, integer vectors ci, dij for i ∈ I ,

j = 1� � � � � si, where si ≤ s such that

g�S�x�= ∑
i∈I

�i

xci

�1− xdi1� · · · �1− xdisi �
is a rational generating function of the set S = T �P ∩�n�.

One has to be careful when using the lemmas above
that the sets in question are finite. The proof of The-
orem 1 will require us to project and intersect sets
of lattice points represented by rational functions. We
cannot, in principle, do those operations for infinite
sets of lattice points. Fortunately, in our setting, it is
possible to restrict our attention to finite sets.
Finally, one important comment. If we want to

count the points of a lattice point set S, such as the
set of Pareto optima, it would apparently suffice to
substitute 1 for all the variables xi of the generating
function

g�S�x�= ∑
u∈S
xu = ∑

i∈I
�i

xci

�1− xdi1��1− xdi2� · · · �1− xdin �
to get the specialization �S� = g�S�x = 1�. But this
cannot be done directly due to the singularities in
the rational function representation. Instead, choose a
generic vector � = �'1� � � � �'n� and substitute each of
the variables xi by et'i . Then, we get

g�S�et��=∑
i∈I

�i

et���ci�

�1−et���di1���1−et���di2��···�1−et���din��
�

Counting the number of lattice points is the same as
computing the constant terms of the Laurent series
for each summand and adding them up. This can
be done efficiently using elementary complex residue
techniques:

Theorem 6 (Specialization Theorem; Barvinok
1994, Barvinok and Pommersheim 1999). Let n and l
be fixed integers. Then, there exists a polynomial-time algo-
rithm for the following problem. Given as input, in binary
encoding,
�I1� rational numbers �i, integer vectors ci, dij for i ∈ I ,

j = 1� � � � � li, where li ≤ l such that 1 is a removable sin-
gularity of the rational function

g�P�x�= ∑
i∈I

�i

xci

�1− xdi1� · · · �1− xdili � �

output, in binary encoding,
�O1� the number

g�P�x= 1�= lim
x→1

∑
i∈I

�i

xci

�1− xdi1� · · · �1− xdili � �

With these powerful results at hand, we can prove
our first theorem.

Proof of Theorem 1 (Parts (a)–(c)). The proof of
part (a) has two steps:
Step 1. For i = 1� � � � � k, let v̄i ∈ � be an upper bound

of polynomial encoding size for the value of fi over P .
Such a bound exists because of the boundedness of P ,
and it can be computed in polynomial time by lin-
ear programming. We will denote the vector of upper
bounds by �v ∈ �k. We consider the truncated multi-
epigraph of the objective functions f1� � � � � fk over the
linear relaxation of the feasible region P ,

P≥
f1�����fk

= {
�u�v� ∈ �n ×�k� u ∈ P�

v̄i ≥ vi ≥ fi�u� for i = 1� � � � � k}� (9)

which is a rational convex polytope in �n × �k. Let
V ≥ ⊆ �k denote the integer projection of P≥

f1�����fk
on the

v variables, i.e., the set

V ≥ = {
v ∈ �k� ∃u ∈ �n with

�u�v� ∈ P≥
f1�����fk

∩ ��n ×�k�
}
� (10)

Clearly, the vectors in V ≥ are all integer vectors in the
outcome space that are weakly dominated by some
outcome vector �f1�u�� f2�u�� � � � � fk�u�� for a feasible
solution u in P ∩ �n; however, we have truncated
away all outcome vectors that weakly dominate the
computed bound �v. Let us consider the generating
function of V ≥, the multivariate polynomial

g�V ≥�z�= ∑{
zv� v ∈ V ≥}�
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In the terminology of polynomial ideals, the mono-
mials in g�V ≥�z� form a truncated ideal generated
by the Pareto optima. By the projection theorem (our
Theorem 5), we can compute g�V ≥�z� in the form of a
polynomial-size rational function in polynomial time.
Step 2. Let V Pareto ⊆ �k denote the set of Pareto

optima. Clearly, we have

V Pareto = (
V ≥\�e1 +V ≥�

)∩ · · · ∩ (
V ≥\�ek +V ≥�

)
�

where ei ∈ �k denotes the ith unit vector and

ei +V ≥ = 
ei + v� v ∈ V ≥��

The generating function g�V Pareto�z� can be computed
by the Boolean operations lemma (Theorem 4) in
polynomial time from g�V ≥�z� as

g�V Pareto�z�

= (
g�V ≥�z�− g�V ≥�z� ∗ z1g�V ≥�z�

)
∗ · · · ∗ (g�V ≥�z�− g�V ≥�z� ∗ zkg�V ≥�z�

)
� (11)

where ∗ denotes taking the Hadamard product of the
rational functions.

Proof of Part (b). Now we recover the Pareto
strategies that gave rise to the Pareto optima; i.e., we
compute a generating function for the set

U Pareto = 
u ∈ �n� u ∈ P ∩�n and

f�u� is a Pareto optimum��

To this end, we first compute the generating function
for the set

SPareto = {
�u�v� ∈ �n ×�k� v is a Pareto point

with Pareto strategy u
}
�

For this purpose, we consider the multigraph of the
objective functions f1� � � � � fk over P ,

P=
f1�����fk

= {
�u�v� ∈ �n ×�k�

u ∈ P� vi = fi�u� for i = 1� � � � � k}� (12)

Using Barvinok’s theorem, we can compute in poly-
nomial time the generating function for the integer
points in P ,

g�P�x�= ∑{
xu� u ∈ P ∩�n

}
�

and also, using the monomial substitution xj →
xjz

f1�ej �
1 · · ·zfk�ej �k for all j , the generating function is

transformed into

g�P=
f1�����fk

�x�z�= ∑{
xuzv� �u�v� ∈ P=

f1�����fk
∩ ��n ×�k�

}
�

where the variables x carry on the monomial expo-
nents the information of the u-coordinates of P=

f1�����fk

and the z variables of the generating function carry
the v-coordinates of lattice points in P=

f1�����fk
. Now,

g�SPareto�x�z� = �g�P�x�g�V Pareto�z��

∗ g�P=
f1�����fk

�x�z�� (13)

which can be computed in polynomial time for a
fixed dimension by the theorems outlined earlier in
this section. Finally, to obtain the generating function
g�U Pareto�x� of the Pareto strategies, we need to com-
pute the projection of SPareto into the space of the strat-
egy variables u. Because the projection is one-to-one,
it suffices to compute the specialization

g�U Pareto�x�= g�SPareto�x�z= 1��

which can be done in polynomial time.
Proof of Part (c). To obtain the number of Pareto

optima or Pareto strategies, we first compute the
respective rational generating function by the algo-
rithms above and then use Theorem 6 for comput-
ing the specialization g�V Pareto�z = 1� in polynomial
time. �

3. Efficiently Listing All
Pareto Optima

The Pareto optimum that corresponds to the best com-
promise between the individual objective functions is
often chosen in an interactive mode, where a visual-
ization of the Pareto optima is presented to the user,
who then chooses a Pareto optimum. Because the out-
come space frequently is of a too-large dimension for
visualization, an important task is to list (explicitly
enumerate) the elements of the projection of the Pareto
set into some lower-dimensional linear space.
It is clear that the set of Pareto optima (and thus

also any projection) is of exponential size in general,
ruling out the existence of a polynomial-time enu-
meration algorithm. To analyze the running time of
an enumeration algorithm, we must turn to output-
sensitive complexity analysis.
Various notions of output-sensitive efficiency have

appeared in the literature; we follow the discussion
of Johnson et al. (1988). Let W ⊆ �p be a finite set
to be enumerated. An enumeration algorithm is said
to run in polynomial total time if its running time
is bounded by a polynomial in the encoding size
of the input and the output. A stronger notion is
that of incremental polynomial time: Such an algorithm
receives a list of solutions w1� � � � �wN ∈W as an addi-
tional input. In polynomial time, it outputs one solu-
tion w ∈ W\
w1� � � � �wN � or asserts that there are no
more solutions. An even stronger notion is that of a
polynomial-delay algorithm, which takes only polyno-
mial time (in the encoding size of the input) before

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



De Loera, Hemmecke, and Köppe: Pareto Optima of Multicriteria Integer Linear Programs
44 INFORMS Journal on Computing 21(1), pp. 39–48, © 2009 INFORMS

the first solution is output, between successive out-
puts of solutions, and after the last solution is out-
put to the termination of the algorithm. Because the
algorithm could take exponential time to output all
solutions, it could also build exponential-size data
structures in the course of the enumeration. This
observation gives rise to an even stronger notion of
efficiency, a polynomial-space polynomial-delay enumer-
ation algorithm.
We also wish to prescribe an order, like the

lexicographic order, in which the elements are to be
enumerated. We consider term orders ≺R on mono-
mials yw that are defined as in Mora and Robbiano
(1988) by a nonnegative integral p×p-matrix R of full
rank. Two monomials satisfy yw1 ≺R yw2 if and only
if Rw1 is lexicographically smaller than Rw2. In other
words, if r1� � � � � rn denote the rows of R, there is some
j ∈ 
1� � � � �n� such that �ri�w1� = �ri�w2� for i < j , and
�rj �w1�< �rj �w2�. For example, the unit matrix R= In
describes the lexicographic term ordering.
We prove the existence of a polynomial-space

polynomial-delay prescribed-order enumeration algo-
rithm in a general setting, where the set W to be enu-
merated is given as the projection of a set presented
by a rational generating function.

Theorem 7. Let the dimension k and the maximum
number l of binomials in the denominator be fixed. Then,
there exists a polynomial-space polynomial-delay enumer-
ation algorithm for the following enumeration problem.
Given as input, in binary encoding,
�I1� a number M ∈ �+,
�I2� rational numbers �i, integer vectors ci, dij for i ∈ I ,

j = 1� � � � � li, where li ≤ l such that
∑
i∈I

�i

zci

�1− zdi1��1− zdi2� · · · �1− zdis �
is a rational generating function of a set V ⊆ �k of lattice
points with V ⊆ -−M�M.k,
�I3� an integer p with 1≤ p ≤ k,
�I4� a matrix R ∈ �

p×p
+ ,

output, in binary encoding,
�O1� all points in the projection of V onto the last

p components,

W = 
w ∈ �p� ∃t ∈ �k−p such that �t�w� ∈ V ��

in the order ≺R, which is the term order on monomials in
y1� � � � � yp induced by the matrix R.

The algorithm can be implemented without using the
projection lemma.

We remark that Theorem 7 is a stronger result than
what can be obtained by the repeated application
of the monomial-extraction technique of Lemma 7
from De Loera et al. (2004), which would only give an
incremental polynomial-time enumeration algorithm.

Proof. We give a simple recursive algorithm that is
based on the iterative bisection of intervals.

Input: Lower and upper bound vectors l�u ∈ �p.
Output: All vectors w in W with l≤Rw≤ u, sorted

in the order �R.
(1) If the set W ∩ 
w� l ≤ Rw ≤ u� is empty, do

nothing.
(2) Otherwise, if l = u, compute the unique

point w ∈ �k with Rw= l= u and output w.
(3) Otherwise, let j be the smallest index with

lj �= uj . We bisect the integer interval 
lj� � � � �uj� evenly
into 
lj� � � � �mj� and 
mj + 1� � � � �uj�, where mj =
��lj +uj�/2�. We invoke the algorithm recursively on
the first part, then on the second part, using the cor-
responding lower and upper bound vectors.
We first need to compute appropriate lower and

upper bound vectors l, u to start the algorithm. To
this end, let N be the largest number in the matrix R,
and let l= −pMN1 and u= pMN1. Then, l≤ Rw≤ u
holds for all w ∈ W . Clearly, the encoding length of l
and u is bounded polynomially in the input data.
In Step 1 of the algorithm, to determine whether

W ∩ 
w� l≤Rw≤ u�= �� (14)

we consider the polytope

Ql�u= -−M�M.k−p×
w∈�p� l≤Rw≤u�⊆�k� (15)

a parallelelepiped in �k. Because W is the projection
of V and because V ⊆ -−M�M.k, we have (14) if and
only if V ∩ Ql�u = �. The rational generating func-
tion g�Ql�u�z� can be computed in polynomial time.
By using the Boolean operations lemma, we can com-
pute the rational generating function g�V ∩Ql�u�z� in
polynomial time. The specialization g�V ∩Ql�u�z= 1�
can also be computed in polynomial time by Theo-
rem 6. It gives the number of lattice points in V ∩Ql�u;
in particular, we can decide whether V ∩Ql�u = �.
It is clear that the algorithm outputs the elements

of W in the order given by ≺R. We next show that
the algorithm is a polynomial-space polynomial-delay
enumeration algorithm. The subproblem in Step 1
only depends on the input data as stated in the the-
orem and on the vectors l and u, whose encoding
length only decreases in recursive invocations. There-
fore, each of the subproblems can be solved in poly-
nomial time (thus also in polynomial space).
The recursion of the algorithm corresponds to a

binary tree whose nodes are labeled by the bound
vectors l and u. There are two types of leaves in
the tree, one corresponding to the “empty-box” sit-
uation (14) in Step 1, and one corresponding to the
“solution-output” situation in Step 2. Inner nodes of
the tree correspond to the recursive invocation of the
algorithm in Step 3. It is clear that the depth of the
recursion is O�p log�pMN�� because the integer inter-
vals are bisected evenly. Thus, the stack space of the
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algorithm is polynomially bounded. Because the algo-
rithm does not maintain any global data structures,
the whole algorithm uses polynomial space only.
Let wi ∈W be an arbitrary solution and let wi+1 be

its direct successor in the order ≺R. We shall show that
the algorithm only spends polynomial time between
the output of wi and the output of wi+1. The key
property of the recursion tree of the algorithm is the
following:

Every inner node is the root of a subtree that
contains at least one solution-output leaf. (16)

The reason for that property is the test for situa-
tion (14) in Step 1 of the algorithm. Therefore, the
algorithm can visit only O�p log�pMN�� inner nodes
and empty-box leaves between the solution-output
leaves for wi and wi+1. For the same reason, also
the time before the first solution is output and the
time after the last solution is output are polynomially
bounded. �

The following corollary, which is a stronger for-
mulation of Theorem 1(d), is immediate. It asserts
the existence of an output-sensitive polynomial-time
algorithm for the enumeration of arbitrary projections
of the set of Pareto optima and strategies.

Corollary 8. Let n and k be fixed integers. Then, there
exists a polynomial-space polynomial-delay prescribed-order
enumeration algorithm for the following problem. Given as
input, in binary encoding,
�I1� an integer m, a matrix A ∈ �m×n, a vector b ∈ �m,

linear functionals f1� � � � � fk ∈ �n (representing a multicri-
terion integer programming problem),
�I2� an integral matrix T ∈ �p×�k+n� (representing a pro-

jection),
�I3� a matrix R ∈ �

p×p
+ (representing a term order),

output, in binary encoding,
�O1� all vectors in the projection T SPareto ⊆ �p of the

set SPareto of Pareto optima and strategies of the multicri-
terion integer programming problem (1), in the order ≺R,
which is the term order on monomials in y1� � � � � yp
induced by the matrix R.

Remark 9. We remark that Theorem 7 is of general
interest. For example, it also implies the existence of a
polynomial-space polynomial-delay prescribed-order
enumeration algorithm for Hilbert bases of rational
polyhedral cones in fixed dimension.
Indeed, fix the dimension d, and let C = cone ·


b1� � � � �bn� ⊆ �d be a pointed rational polyhedral
cone. The Hilbert basis of C is defined as the inclusion-
minimal set H ⊆ C ∩ �d, which generates C ∩ �d as
a monoid. For simplicial cones C (where b1� � � � �bn

are linearly independent), Barvinok and Woods (2003)
proved that one can compute the rational generating
function g�H�z� (having a constant number of binomi-
als in the denominators) of the Hilbert basis of C ∩�d

using the projection theorem. The same technique
works for nonsimplicial pointed cones. Now, The-
orem 7 gives a polynomial-space polynomial-delay
prescribed-order enumeration algorithm.

4. Selecting a Pareto Optimum Using
Global Criteria

Now that we know that all Pareto optima of mul-
ticriteria integer linear programs can be encoded in
a rational generating function, and that they can be
listed efficiently on the output size, we can aim to
apply selection criteria stated by a user. The advan-
tage of our setup is that when we optimize a global
objective function, it guarantees to return a Pareto
optimum because we evaluate the global criterion
only on the Pareto optima. Let us start with the sim-
plest global criterion that generalizes the use of the l1
norm distance function:

Theorem 10. Let the dimension k and the maximum
number l of binomials in the denominator be fixed.
(a) There exists a polynomial-time algorithm for the fol-

lowing problem. Given as input, in binary encoding,
�I1� a bound M ∈ �+,
�I2� rational numbers �i, integer vectors ci, dij for

i ∈ I , j = 1� � � � � li, where li ≤ l such that

g�V �z�= ∑
i∈I

�i

zci

�1− zdi1��1− zdi2� · · · �1− zdili �
is a rational generating function of a bounded set V ⊆ �k

of lattice points with V ⊆ -−M�M.k,
�I3� a prescribed point 	v ∈ �k,
�I4� a vertex description or inequality description of a

rational convex central-symmetric polytope Q ⊆ �k,
output, in binary encoding,
�O1� a point v ∈ V that minimizes the distance

dQ�v�	v�= �v− 	v�Q from the prescribed point 	v,
where the polyhedral norm �·�Q be defined using the
Minkowski functional

�y�Q = inf
'≥ 0� y ∈ 'Q�� (17)

(b) There exists a polynomial-space polynomial-delay
enumeration algorithm for the following enumeration prob-
lem. Given as input, in binary encoding, the same data as
above and in addition
�I5� a matrix R ∈ �

p×p
+ (representing a term order),

output, in binary encoding,
�O1� the points of V in the order of increasing dis-

tances dQ from the prescribed point 	v, refined by the term
order ≺R defined by the matrix R.

Theorem 2, as stated in the introduction, is an
immediate corollary of this theorem.

Proof. Because the dimension k is fixed, we can
compute an inequality description

Q = 
y ∈ �k� Ay≤ b�
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of Q with A ∈ �m×k and b ∈ �k in polynomial time, if
Q is not already given by an inequality description.
Let v ∈ V be arbitrary; then

dQ�	v�v�= �v− 	v�Q

= inf{'≥ 0� v− 	v ∈ 'Q
}

=min{'≥ 0� 'b≥A�v− 	v�}�
Thus, there exists an index i ∈ 
1� � � � �m� such that

dQ�	v�v�= �Av�i − �A	v�i
bi

�

so dQ�	v�v� is an integer multiple of 1/bi. Hence, for
every v ∈ V , we have that

dQ�	v�v� ∈ 1
lcm�b1� � � � � bm�

�+� (18)

where lcm�b1� � � � � bm� clearly is a number of polyno-
mial encoding size. On the other hand, every v ∈ V
certainly satisfies

dQ�	v�v�≤ ka�M +max
�
v1�� � � � � �
vd���� (19)

where a is the largest number in A, which is also a
bound of polynomial encoding size.
Using Barvinok’s algorithm, we can compute the

rational generating function g�	v+'Q�z� for any ratio-
nal ' of polynomial enoding size in polynomial time.
We can also compute the rational generating func-
tion g�V ∩ �	v + 'Q��z� using the Boolean opera-
tions lemma. By computing the specialization g�V ∩
�	v+'Q��z= 1�, we can compute the number of points
in V ∩ �	v+ 'Q�; thus we can decide whether this set
is empty or not.
Hence, we can use binary search for the smallest

' ≥ 0 such that V ∩ �	v + 'Q� is nonempty. Because
of (18) and (19), it runs in polynomial time. By using
the recursive bisection algorithm of Theorem 7, it is
then possible to construct one Pareto optimum in V ∩
�	v + 'Q� for part (a), or to construct a sequence of
Pareto optima in the desired order for part (b). �

Now we consider a global criterion using a distance
function corresponding to a nonpolyhedral norm like
the Euclidean norm �·�2 (or any other lp-norm for
1 < p < �). We are able to prove a very strong type
of approximation result, a so-called fully polynomial-
time approximation scheme (FPTAS), in a somewhat
more general setting.

Definition 11 (FPTAS). Consider the optimization
problems

max
f �v�� v ∈ V �� (20a)

min
f �v�� v ∈ V �� (20b)

An FPTAS for the maximization problem (20a) or the
minimization problem (20b), respectively, is a fam-
ily 
��� � ∈ �� � > 0� of approximation algorithms ��,
each of which returns an �-approximation; i.e., a solu-
tion v� ∈ V with

f �v��≥ �1− ��f ∗� where f ∗ =max
v∈V

f �v�� (21a)

or, respectively,

f �v��≤ �1+ ��f ∗� where f ∗ =min
v∈V

f �v�� (21b)

such that the algorithms �� run in polynomial time in
the input size and 1/�.

Remark 12. An FPTAS is based on the notion of
�-approximation (21), which gives an approximation
guarantee relative to the value f ∗ of an optimal solu-
tion. It is clear that this notion is most useful for
objective functions f that are nonnegative on the fea-
sible region V . Because the approximation quality
of a solution changes when the objective function is
changed by an additive constant, it is not possible in
general to convert an FPTAS for a maximization prob-
lem to an FPTAS for a minimization problem.
We shall present an FPTAS for the problem of mini-

mizing the distance of a Pareto optimum from a pre-
scribed outcome vector 	v ∈ �k. We consider distances
d�	v� ·� induced by a pseudonorm �·�Q via

d�	v�v�= �v− 	v�Q� (22a)

To this end, let Q ⊆ �k be a compact basic semial-
gebraic set with 0 ∈ intQ, which is described by one
polynomial inequality,

Q = {
y ∈ �k� q�y�≤ 1}� (22b)

where q ∈ �-y1� � � � � yk. is a homogeneous polynomial
of (even) degree D. The pseudonorm �·�Q is now
defined using the Minkowski functional:

�y�Q = inf{'≥ 0� y ∈ 'Q
}
� (22c)

Note that we do not make any assumptions of the
convexity of Q, which would make �·�Q a norm.
Because Q is compact and 0 ∈ intQ, there exist pos-
itive rational numbers (norm equivalence constants)
6, 7 with

6B� ⊆Q⊆7B�� where B� ={
y∈�k� �y�� ≤1}� (23)

see Figure 1.
Now we can formulate our main theorem, which

has Theorem 3, which we stated in the introduction,
as an immediate corollary.

Theorem 13. Let the dimension n and the number k of
objective functions be fixed. Moreover, let a degree D and
two rational numbers 0<6≤ 7 be fixed. Then, there exists
a polynomial-time algorithm for the following problem.
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Figure 1 A Set Defining a Pseudonorm with the Inscribed and
Circumscribed Cubes �B� and �B� (Dashed)

Given as input
�I1� an integer m, a matrix A ∈ �m×n, a vector b ∈ �m,

linear functionals f1� � � � � fk ∈ �n, in binary encoding,
�I2� a prescribed comparison point 	v ∈ �k, in binary

encoding,
�I3� a list of coefficients qi ∈ �, encoded in binary encod-

ing, and exponent vectors �i ∈ �+, encoded in unary
encoding, representing a homogeneous polynomial

q = ∑
i

qiy
�i ∈ �-y1� � � � � yk.

of degree D,
�I4� a positive rational number 1/� encoded in unary

encoding,
output, in binary encoding,
�O1� a Pareto optimum v� of the multicriterion integer

programming problem (1) such that

�v� − 	v� ≤ �1+ ��min
{�v− 	v�� v ∈ V Pareto

}
�

where �·� denotes the Euclidean norm and V Pareto is the
set of Pareto optima of (1).

The proof is based on the following result, which
is a more general formulation of Theorem 1.1 from
De Loera et al. (2006).

Theorem 14 (FPTAS for Maximizing Nonnega-
tive Polynomials over Finite Lattice Point Sets).
For all fixed integers k �dimension) and l �maximum
number of binomials in the denominator�, there exists
a polynomial-time algorithm for the following problem.
Given as input
�I1� two vectors vL, vU ∈ �k,
�I2� rational numbers �i, integer vectors ci, dij for i ∈ I ,

j = 1� � � � � li, where li ≤ l such that

g�V �z�= ∑
i∈I

�i

zci

�1− zdi1��1− zdi2� · · · �1− zdili �
is a rational generating function of a finite set V ⊆ �k of
lattice points that is contained in the box 
v� vL ≤ v≤ vU �,
�I3� a list of coefficients fi ∈ �, encoded in binary encod-

ing, and exponent vectors �i ∈ �+, encoded in unary
encoding, representing a polynomial

f = ∑
i

fiv
�i ∈ �-v1� � � � � vk.

that is nonnegative on V ,

�I4� a positive rational number 1/� encoded in unary
encoding,
output, in binary encoding,
�O1� a point v� ∈ V that satisfies

f �v��≥ �1− ��f ∗� where f ∗ =max
v∈V

f �v��

In the paper by De Loera et al. (2006), the above
result was stated and proved only for sets V that con-
sist of the lattice points of a rational polytope; how-
ever, the same proof yields the result above.

Proof of Theorem 13. Using Theorem 1, we first
compute the rational generating function g�V Pareto�z�
of the Pareto optima. With binary search using the
Boolean operations lemma with generating functions
of cubes as in §3, we can find the smallest nonnegative
integer � such that

�	v+�B��∩V Pareto �= �� (24)

If � = 0, then the prescribed outcome vector 	v itself is
a Pareto optimum, so it is the optimal solution to the
problem.
Otherwise, let v0 be an arbitrary outcome vector in

�	v+�B��∩V Pareto. Then,

� ≥ �v0 − 	v�� = inf
{
'� v0 − 	v ∈ 'B�

}

≥ inf
{
'� v0 − 	v ∈ '

1
6
Q

}
= 6�v0 − 	v�Q�

thus �v0 − 	v�Q ≤ �/6. Let : = 7�/6. Then, for every
v1 ∈ �k with �v1 − 	v�� ≥ :, we have

:≤ �v1 − 	v�� = inf
{
'� v1 − 	v ∈ 'B�

}

≤ inf
{
'� v1 − 	v ∈ '

1
7
Q

}
= 7�v1 − 	v�Q�

thus
�v1 − 	v�Q ≥ :/7= �/6≥ �v0 − 	v�Q�

Therefore, a Pareto optimum v∗ ∈ V Pareto minimizing
the distance dQ from the prescribed outcome vector 	v
is contained in the cube 	v + :B�. Moreover, for all
points v ∈ 	v+ :B�, we have

�v0 − 	v�Q ≤ :/6= 7�/62�

We define a function f by

f �v�= �7�/62�D − �v− 	v�D
Q� (25)

which is nonnegative over the cube 	v+:B�. Because q
is a homogeneous polynomial of degree D, we obtain

f �v�= �7�/62�D − q�v− 	v�� (26)

so f is a polynomial.
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We next compute the rational generating function

g�V Pareto ∩ �	v+ :B���z�

from g�V Pareto�z� using the Boolean operations
lemma. Let �′ > 0 be a rational number, which we will
determine later. By Theorem 14, we compute a solu-
tion v�′ ∈ V Pareto with

f �v�′�≥ �1− �′�f �v∗��

or, equivalently,

f �v∗�− f �v�′�≤ �′f �v∗��

Thus,

-dQ�	v�v�′�.D − -dQ�	v�v∗�.D = �v�′ − 	v�D
Q − �v∗ − 	v�D

Q

= f �v∗�− f �v�′�

≤ �′f �v∗�

= �′(�7�/62�D − �v∗ − 	v�D
Q

)
�

Because � is the smallest integer with (24) and also
�v∗ − 	v�� is an integer, we have

� ≤ �v∗ − 	v�� ≤ 7�v∗ − 	v�Q�

Thus,

-dQ�	v�v�′�.D − -dQ�	v�v∗�.D ≤ �′
[(

7

6

)2D
− 1

]
�v∗ − 	v�D

Q�

An elementary calculation yields

dQ�	v�v�′�− dQ�	v�v∗�≤ �′

D

[(
7

6

)2D
−1

]
dQ�	v�v∗��

Thus, we can choose

�′ = �D

[(
7

6

)2D
− 1

]−1
(27)

to get the desired estimate. Because 6, 7, and D are
fixed constants, we have �′ = ;���. Thus, the compu-
tation of v�′ ∈ V Pareto by Theorem 14 runs in polyno-
mial time in the input encoding size and 1/�. �

Remark 15. It is straightforward to extend this
result to also include the lp norms for odd inte-
gers p, by solving the approximation problem sepa-
rately for all of the 2k =O�1� shifted orthants 	v+O� =

v� <i�vi − 
vi� ≥ 0�, where � ∈ 
±1�k. On each of the
orthants, the lp-norm has a representation by a poly-
nomial as required by Theorem 13.
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Note Added in Proof
It has come to our attention that Blanco (2007) has inde-
pendently investigated rational generating function tech-
niques for multicriteria integer linear programs for his Ph.D.
work.
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