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1. Introduction

Integration is a fundamental problem arising in many contexts, from engineering to algebraic geometry. For example,
center of mass, moments and products of inertia about various axes are integrals used in any type of dynamic simulation
or modeling such as computer games (see [1–3]), similarly, normalized volumes indicate the degrees of toric varieties and
are closely related to moment maps of symplectic manifolds (see [4,5]). Integration over polyhedra is particularly useful
because many domains can be approximated by polyhedra and then decomposed into convex polyhedra (e.g., a tetrahedral
mesh decomposition etc.).

In this work we are interested in the exact evaluation of integrals over convex polyhedral regions. More precisely, let P be
a d-dimensional rational convex polyhedron in Rn and let f ∈ Q[x1, . . . , xn] be a polynomial with rational coefficients. We
consider the problem of efficiently computing the exact value of the integral of the polynomial f over P , which we denote
by

∫
P f dm. Here we use the integral Lebesgue measure dm on the affine hull 〈P 〉 of the polytope P . This general setting

is quite useful because, when the polytope is full-dimensional, the integral Lebesgue measure coincides with the standard
Riemann integral but generalizes it naturally to cases when the polytope is not full-dimensional. Another reason to compute
in this setting is that the volume of P and every integral of a polynomial function with rational coefficients yields rational
numbers. Finally this normalization of the measure occurs naturally in Euler–Maclaurin formulas for a polytope P , which
relate sums over the lattice points of P with integrals over the various faces of P . We remark that the computer algebra
community has dedicated a great deal of effort to develop a different kind of exact integration, sometimes called symbolic
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integration (see [6]), and understood to be the automatic computation of the antiderivatives of functions, as predicted by
the fundamental theorem of calculus, but we do not discuss this kind of exact integration here.

Regarding the theoretical computational complexity of our problem, it is very educational to look first at the case when
f is the constant polynomial 1, and the answer is simply a volume. It has been proved that already computing the volume
of polytopes of varying dimension is #P-hard [7–11], and that even approximating the volume is hard [12]. More recently
in [13] it was proved that computing the center of mass of a polytope is #P-hard.

We report on a new C++ implementation, LattE integrale [14], which extends the work done in [15] and [16]. This
paper is mostly an experimental and practical study, but it also slightly develops the theory of [15]. This article presents
useful formulas for integration of powers of linear forms over simplicial cones that complement those presented in [15].

Our method of computation relies on powerful mathematical ideas. It was proved in [15] that, unlike general polyno-
mials, integrals over simplices of arbitrary powers of linear forms, or of polynomials with a fixed number of variables, can
be computed in polynomial time. In this case our algorithms use known properties of integrals of exponentials of linear
forms (see [17,18]). This allows for fast calculation over general polytopes using two methods that depend on two different
decompositions of polyhedra. General polyhedra can be decomposed as either a disjoint union of simplices, i.e., triangula-
tions, or as signed cone decompositions of the kind proposed by Brion, Lasserre, Lawrence, and Varchenko [19,20,10,21].
The polynomial-time complexity for integration over simplices shown in [15] can be extended to more polyhedra as long as
their decompositions are of “small” size (note that this is always the case in fixed dimension).

This paper is organized as follows. We begin in Section 2 recalling the mathematical ideas at the heart of our algorithms
(although we omit details of proofs, they can be found in the references). We begin with a short review of polyhedral
geometry, specially valuations. In Section 3 we discuss details about the implementation including main subroutines and
data structures. In Section 4 we first discuss speed improvements for integrating over simplices from earlier work in [15],
and then we report on several benchmarks of integration over arbitrary polytopes. More experimental tables are available
online [14]. We conclude our paper with an application: we solve a computational challenge from combinatorial voting
theory.

2. Mathematical preliminaries

In this section we recall the necessary mathematical background used in our algorithms. We state results without proof
but excellent background sources for what is going to be discussed here include [15,22–24] and the references mentioned
there.

2.1. Polyhedra and polynomials

A convex rational polyhedron P in Rd (we will simply say polyhedron) is defined as the intersection of a finite number m
of closed halfspaces bounded by rational affine hyperplanes. We say that P is full-dimensional (in Rd) if the affine span of P
is Rd . When P = {x: Ax � b} for a m × d matrix A and m-vector b, P is said to be given by a halfspace or h-representation.
For our purposes we focus on two special kinds of polyhedra. First, for integration, we consider only compact polyhedra,
which are called polytopes. When P is a polytope it is know to be the convex hull conv(V ) of finitely many points in Rd ,
V = {v1, . . . , vn}. In that case P is said to be given by a vertex or v-representation. We can switch between the h- and
v-representations of a d-dimensional polytope using well-known algorithms (see [25,26]).

Second, in many computations we use cones: a polyhedral cone is a polyhedron C containing the origin and if y ∈ C , then
any dilation λy is also in C . We call a cone C any polyhedral cone (with vertex 0) and an affine cone is a translation s + C of
a cone C . A cone C is called simplicial if it is generated by linearly independent vectors of Rd . A simplicial cone C is called
unimodular if it is generated by linearly independent integral vectors v1, . . . , vk such that {v1, . . . , vk} can be completed to
an integral basis of Zd . An affine cone C is called simplicial (respectively, simplicial unimodular) if the associated cone is.
The set of vertices of P is denoted by V (P ). For each vertex s ∈ V (P ), the cone of feasible directions Cs(P ) at the vertex s is
the cone of all vectors y such that s + εy ∈ P for some ε > 0. The tangent cone of a polytope P at a vertex s is the affine
cone s + Cs(P ) (this is a translation of Cs(P )). For details on all these notions see, e.g., [22].

For the integration of a full-dimensional polytope we consider the standard Lebesgue measure, which gives volume 1 to
the fundamental domain of the lattice Zn . But if P lies inside an affine subspace L + a, with L a rational linear subspace
of dimension n � d, we will normalize the Lebesgue measure on L, so that the volume of the fundamental domain of the
lattice L ∩Zd is 1. Thus for any affine subspace L +a parallel to L, we define the integral Lebesgue measure dm by translation.
For example, the diagonal of the unit square has length 1 instead of

√
2. This has the great advantage that for rational input

our output will always be an (exact) rational number
∫

P f dm in the usual binary encoding.
One important point of our method is that all computations are done in the representation of polynomials given by

powers of linear forms. It is well known that any homogeneous polynomial of degree M can be decomposed as a sum of
M-th powers of linear forms. For example, one can decompose the polynomial f as a sum f = ∑

� c�〈�, x〉M with at most

2M terms. This decomposition is given by the following well-known identity for monomials: If xM = xM1
1 xM2

2 · · · xMn
n , then

xM = 1

|M|!
∑

(−1)|M|−(p1+···+pn)

(
M1

p1

)
· · ·

(
Mn

pn

)
(p1x1 + · · · + pnxn)

|M|, (1)

0�pi�Mi
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Table 1
Average number of powers of linear forms plus or minus one standard deviation necessary to express one monomial in d variables, averaged over 50
monomials of the same degree.

d Monomial degree

5 10 20 30 40 50

3 14 ± 3 (6.6 ± 1.2) · 101 (4.0 ± 0.5) · 102 (1.2 ± 0.1) · 103 (2.7 ± 0.2) · 103 (5.2 ± 0.2) · 103

4 16 ± 5 (1.1 ± 0.2) · 102 (1.1 ± 0.2) · 103 (4.5 ± 0.6) · 103 (1.3 ± 0.2) · 104 (3.0 ± 0.2) · 104

5 19 ± 4 (1.5 ± 0.4) · 102 (2.2 ± 0.6) · 103 (1.2 ± 0.3) · 104 (4.7 ± 0.7) · 104 (1.4 ± 0.2) · 105

6 20 ± 5 (2.0 ± 0.6) · 102 (4.1 ± 1.2) · 103 (3.2 ± 0.8) · 104 (1.5 ± 0.3) · 105 (5.2 ± 0.6) · 105

7 21 ± 5 (2.4 ± 0.9) · 102 (6.7 ± 2.4) · 103 (7.1 ± 2.1) · 104 (4.0 ± 1.0) · 105 (1.7 ± 0.3) · 106

8 21 ± 5 (2.9 ± 0.9) · 102 (1.1 ± 0.5) · 104 (1.4 ± 0.5) · 105 (9.8 ± 2.7) · 105 (4.8 ± 1.1) · 106

10 24 ± 5 (3.5 ± 1.1) · 102 (2.1 ± 0.9) · 104 (4.1 ± 1.6) · 105 (4.5 ± 1.7) · 106 (3.1 ± 1.0) · 107

where |M| = M1 + · · · + Mn � M . Of course, when dealing with general polynomials, this same formula can be applied for
as many monomials as is necessary. For example, the polynomial 7x2 + y2 + 5z2 + 2xy + 9yz can be written as 1

8 (12(2x)2 −
9(2y)2 + (2z)2 + 8(x + y)2 + 36(y + z)2).

It is worth noting that the above formula does not yield an optimal decomposition, but it suffices to generate a
polynomial-time algorithm on fixed degree |M| or fixed number of variables [15]. The problem of finding a decomposition
with the smallest possible number of summands is known as the polynomial Waring problem. What is the smallest integer
r(M,n) such that a generic homogeneous polynomial f (x1, . . . , xn) of degree M in n variables is expressible as the sum
of r(M,n) M-th powers of linear forms? This problem was solved for general polynomials by Alexander and Hirschowitz
[27] (see [28] for an extensive survey), but there is no computational or constructive version of this result that would yield
the optimal decomposition for a specific input polynomial and the bounds may be much too pessimistic on the average
situation. Only very recently Carlini et al. [29] gave efficient decompositions of a monomial. However, their decomposition
involves roots of unity, and here we are interested in an arithmetic version of the problem where everything is expressed
using rational forms and rational coefficients. But we can see that the explicit rational construction we use in our code is
not too far away from the optimum.

Table 1 lists the average number of powers of linear forms necessary to decompose monomials of given degree gener-
ated uniformly at random. To create the monomials, we keep adding 1 to the power of a randomly chosen variable until
the monomial has the desired degree. The table shows mild exponential growth as degree or dimension grow. This was
predicted in the theory.

In conclusion, to integrate a multivariate polynomial, we first algebraically decompose each monomial into a sum of
powers of linear forms which, as we will see next, can be integrated very fast in practice over simplices or over simplicial
cones using a few useful formulas. Thus we will need a geometric decomposition of our polytopes into those pieces.

2.2. Valuations and formulas of integration of exponentials over cones and simplices

We now recall several formulas for the integrals of a power of a linear form over a simplex or over a simplicial cone. The
idea is that if we can do fast integration for those two structures, then we can always rely on two polyhedral decompositions
of the input polyhedron to obtain the integral. See Section 2.5 for details.

One of the most important properties of integrals over polyhedra is that they can be seen as valuations. A valuation F
is a linear map from the rational vector space of the indicator functions of rational polyhedra P ⊂ Rd into a rational vector
space M . Whenever the indicator functions [Pi] of a family of polyhedra Pi satisfy a linear relation

∑
i ri[Pi] = 0, then the

elements F (Pi) satisfy the same relation
∑

i ri F (Pi) = 0 (for a formal definition within the polytope algebra, see Chapter 2
of [22]).

Let C = ∑d
i=1 R+ui be the simplicial cone spanned by linearly independent integral vectors u1, u2, . . . , ud . The fundamen-

tal parallelepiped ΠC of the cone C (with respect to the generators ui, i = 1, . . . ,d) is the set of points ΠC = ∑d
i=1[0,1[ ui .

Let us denote by vol(ΠC ) its volume.

Proposition 1. (See Theorem 8.4 in [22].) There exists a unique valuation I(P )(�) which associates to every polyhedron P ⊂ V a
meromorphic function so that the following properties hold

(i) If � is a linear form such that e〈�,x〉 is integrable over P , then

I(P )(�) =
∫
P

e〈�,x〉 dm.

(ii) For every point s ∈Rn, one has

I(s + P )(�) = e〈�,s〉 I(P )(�).

(iii) If P contains a straight line, then I(P ) = 0.
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A consequence of the valuation property is the following fundamental theorem. It follows from the Brion–Lasserre–
Lawrence–Varchenko decomposition theory of a polyhedron into the supporting cones at its vertices [19,22,21,20].

Lemma 2. Let P be a polyhedron with set of vertices V (P ). For each vertex s, let Cs(P ) be the cone of feasible directions at vertex s.
Then

I(P )(�) =
∑

s∈V (P )

I
(
s + Cs(P )

)
(�). (2)

Note that the cone Cs(P ) in Lemma 2 may not be simplicial, but for simplicial cones their integrals have explicit rational
function formulas. As we see in Proposition 4, one can derive an explicit formula for the rational function I(s + Cs(P )) in
terms of the geometry of the cones.

Lemma 3. Using the valuation property for the valuation I(P )(�) and the linearity over the integrands we have that:

(i) For any triangulation T of the polytope P , we have I(P )(�) = ∑
�∈T I(�)(�).

(ii) For any triangulation Ds of the feasible cone Cs(P ) at each of the vertices s of the polytope P we have I(P )(�) =∑
s∈V (P )

∑
C∈Ds

I(s + C)(�).

Lemma 3 says that if we know how to integrate over simplices or simplicial cones, we can integrate over a polytope. We
are close to knowing how to do this. By elementary integration, and Proposition 1, we have the following.

Proposition 4. For a simplicial cone C generated by rays u1, u2, . . . , ud (with vertex 0) and for any point s

I(s + C)(�) = vol(ΠC )e〈�,s〉
d∏

i=1

1

〈−�, ui〉 . (3)

This identity holds as a meromorphic function of � and pointwise for every � such that 〈�, ui〉 	= 0 for all ui .

2.3. From exponentials to powers of linear forms

We now consider powers of linear forms instead of exponentials. Similar to I(P ), we now let LM(P ) be the meromorphic
extension of the function defined by

LM(P )(�) =
∫
P

〈�, x〉M dm

for those � such that the integral exists. To transfer what we know about integrals of exponentials to those of powers of
linear forms, we can consider the formula of Proposition 4 as a function of the auxiliary parameter t:

∫
s+C

e〈t�,x〉 dm = vol(ΠC )e〈t�,s〉
d∏

i=1

1

〈−t�, ui〉 . (4)

Using the series expansion of the left in the variable t , we wish to recover the value of the integral of 〈�, x〉M over the cone.
This is the coefficient of tM in the expansion; to compute it, we equate it to the Laurent series expansion around t = 0 of
the right-hand side expression, which is a meromorphic function of t . Clearly

vol(ΠC )e〈t�,s〉
d∏

i=1

1

〈−t�, ui〉 =
∞∑

n=0

tn−d 〈�, s〉n

n! · vol(ΠC )

d∏
i=1

1

〈−�, ui〉 .

We say that � is regular if 〈�, ui〉 	= 0 for every ray ui of the cone. With this, we can conclude the following.

Corollary 5. For a regular linear form � and a simplicial cone C generated by rays u1, u2, . . . , ud with vertex s

LM(s + C)(�) = M!
(M + d)! vol(ΠC )

(〈�, s〉)M+d∏d 〈−�, u 〉 . (5)

i=1 i
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Otherwise when � is not regular, there is a nearby perturbation which is regular. To obtain it, we use � + ε̂ where ε̂ = εa is any linear
form with a ∈ Rn such that 〈−� − ε̂, ui〉 	= 0 for all ui , to define a new linear form (depending of a) on the space of meromorphic
functions in the variable ε. Then, applying (5) on the limit as ε goes to zero we obtain:

LM(s + C)(�) = M!
(M + d)! vol(ΠC )Resε=0

(〈� + ε̂, s〉)M+d

ε
∏d

i=1〈−� − ε̂, ui〉
. (6)

We recall some useful facts on complex analysis (see, e.g., [30] for details). As we observed, there is a pole at ε = 0
for our univariate rational function given in formula (6) of Corollary 5. Recall that if a univariate rational function f (ε) =
p(ε)/q(ε) has a Laurent series expansion f (ε) = ∑∞

k=−m akε
k , the residue is defined as a−1. Given a rational function f (ε)

with a pole at ε = 0 there are a variety of well-known techniques to extract the value of the residue. For example, if ε = 0 is
a simple pole (m = 1), then Resε=0( f ) = p(0)

q′(0)
. Otherwise, when ε = 0 is a pole of order m > 1, we can write f (ε) = p(ε)

εmq1(ε)
.

Then expand p,q1 in powers of ε with p(ε) = a0 + a1ε + a2ε
2 + · · · and q1(ε) = b0 + b1ε + b2ε

2 + · · · . This way the Taylor
expansion of p(ε)/q1(ε) at ε0 is c0 + c1ε + c2ε

2 + c3ε
3 + · · · , where c0 = a0

b0
, and ck = 1

b0
(ak − b1ck−1 − b2ck−2 − · · · −

bkc0). Thus we recover the residue Resε=0( f ) = cm−1. We must stress that the special structure of the rational functions in
Corollary 5 can be exploited to speed up computation further rather than using this general methodology. For more on this
see [31,22,15] and the following discussion.

Finally, we have all the tools necessary to write down our formula for integration using cone decompositions.

Corollary 6. For any triangulation Ds of the tangent cone Cs(P ) at each of the vertices s of the polytope P we have

LM(P )(�) =
∑

s∈V (P )

∑
C∈Ds

LM(s + C)(�). (7)

2.4. The formula for the simplex

Suppose now that � ⊂ Rn is a d-dimensional simplex (as it may appear in a triangulation of the polytope P ), and � is a
linear form on Rn . We say that the linear form � is regular for the simplex � if it is not orthogonal to any of the edges of
the simplex. If � is regular for �, then it is regular for all tangent cones at each of the vertices. We then find the following
result as a special case of Corollary 6.

Corollary 7. (Brion, see [19].) Let � be a d-simplex with vertices s1, . . . , sd+1 ∈ Rd. Let � be a linear form which is regular w.r.t. �, i.e.,
〈�, si〉 	= 〈�, s j〉 for any pair i 	= j. Then we have the following relation.

LM(�)(�) =
∫
�

〈�, x〉M dm = d!vol(�,dm)
M!

(M + d)!

(
d+1∑
i=1

〈�, si〉M+d∏
j 	=i〈�, si − s j〉

)
. (8)

When � is regular, Brion’s formula is very short; it is a sum of d + 1 terms. When � is not regular, we can again use a
perturbation � + ε̂ where ε̂ = εa as in Corollary 5, so that the expression of the integral over the simplex reduces to a sum
of residues as in (6). However, in the special case of a simplex, there exists a computationally more efficient method that
avoids the calculation of a perturbation a; see [15].

Here is how it works. From [15, Theorem 10] we find that LM(�)(�) is the coefficient of the term tM in the Laurent
series of the rational function

d!vol(�,dm)
M!

(M + d)!
1∏d+1

j=1(1 − t〈�, s j〉)
(9)

in the variable t ∈ C. This rational function can be expanded into partial fractions. To this end, let K ⊆ {1, . . . ,d + 1} be an
index set of the different poles t = tk := 1/〈�, sk〉, and for k ∈ K let mk denote the order of the pole, i.e.,

mk = #
{

i ∈ {1, . . . ,d + 1}: 〈�, si〉 = 〈�, sk〉
}
.

Then the rational function can be written as

∑
k∈K

(
ak,1

1 − t〈�, sk〉 + ak,2

(1 − t〈�, sk〉)2
+ · · · + ak,mk

(1 − t〈�, sk〉)mk

)
,

where the coefficients ak,r are given by certain residues about the pole t = tk . After a change of variables, t = tk + ε, one
obtains the following formula.
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Fig. 1. A pentagon.

Corollary 8. (See Corollary 13 in [15].) Let � be a d-dimensional simplex. Then for an arbitrary power 〈�, x〉M of a linear form, we
have: ∫

�

〈�, x〉M dm = d!vol(�,dm)
M!

(M + d)!
∑
k∈K

Resε=0
(ε + 〈�, sk〉)M+d

εmk
∏

i∈K
i 	=k

(ε + 〈�, sk − si〉)mi
. (10)

To conclude we note that one can even extend the formula above on integrating a power of a linear form to the case of
a product of powers of several linear forms (see [15]).

2.5. Should one triangulate or cone decompose?

One could triangulate the whole polytope, or integrate over each tangent cone. However, each cone must be decomposed
into simplicial cones. This is the trade-off: we can get away with not doing one large polytope triangulation, but we might
have to do many smaller cone triangulations.

The number of simplices in a triangulation and the number of simplicial cones in a polytope decomposition can signifi-
cantly differ. Depending on the polytope, choosing the right method can determine its practicality. Our experimental results
agree with [16] in showing that triangulating the polytope is better for polytopes that are “almost simplicial” while cone
decomposition is faster for simple polytopes. The details will be discussed in Section 4.

Lemma 3 together with the formulas we stated for integration over simplices and cones give a general process for
computing integrals:

• Decompose a polynomial as a sum of powers of linear forms.
• Select a decomposition of the polyhedron in question, either a triangulation or a cone decomposition.
• Apply the formulas to each piece and add up the results via the above results.

2.6. Examples

2.6.1. Integral values encoded by rational function identities
Before working out a simple integration example, let us highlight the fact that for regular linear forms the integra-

tion formulas are given by sums of rational functions which we read from the geometry at vertices and possibly a cone
decomposition method: Consider a pentagon P with vertices (0,0), (2,0), (0,2), (3,1), and (1,3) as in Fig. 1.

Then the rational function giving the value of
∫

P (c1x + c2 y)M dx dy is

M!
(M + 2)!

(
(2c1)

M+2

c1(−c1 − c2)
+ 4

(3c1 + c2)
M+2

(c1 + c2)(2c1 − 2c2)
+ 4

(c1 + 3c2)
M+2

(c1 + c2)(−2c1 + 2c2)
+ (2c2)

M+2

(−c1 − c2)c2

)
.

This rational function expression encodes every integral of the form
∫

P (c1x + c2 y)M dx dy. For example, if we let M = 0,
then the integral is equal to the area of the pentagon, and the rational function simplifies to a number by simple high-school
algebra:

1

2

(
4

c1

−c1 − c2
+ 4

(3c1 + c2)
2

(c1 + c2)(2c1 − 2c2)
+ 4

(c1 + 3c2)
2

(c1 + c2)(−2c1 + 2c2)
+ 4

c2

−c1 − c2

)
= 6.

Hence the area is 6. When M and (c1, c2) are given and (c1, c2) is not perpendicular to any of the edge directions we can
simply plug in numbers to the rational function. For instance, when M = 100 and (c1 = 3, c2 = 5) the answer is a fraction
with numerator equal to

227276369386899663893588867403220233833167842959382265474194585

3115019517044815807828554973991981183769557979672803164125396992
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Fig. 2. Example polytopes.

and denominator equal to 1717. When (c1, c2) is perpendicular to an edge direction, we encounter (removable) singularities
in the rational functions, thus using complex residues we can do the evaluation. Note that those linear forms that are
perpendicular to some edge direction form a measure zero set inside a hyperplane arrangement.

2.6.2. Using the triangulation method
Take the problem of integrating the polynomial x + y over the triangle � with vertices s1 = (1,1), s2 = (0,1), and

s3 = (1,0) in Fig. 2a.
The polynomial is already a power of a linear form, and the polytope is a simplex. Because � = (1,1) is not regular (it

is perpendicular to the edge spanned by s2 and s3), we have to build the index set K . Note 〈�, s1〉 = 2, 〈�, s2〉 = 1, and
〈�, s3〉 = 1; pick K = {1,2} with m1 = 1, m2 = 2. We proceed below with this choice, but note that we have a choice in
picking the indices and we could have instead K = {1,3}. This would yield a different decomposition of the generating
function. Note also that the decomposition of the power of a linear form is not necessarily unique either. We now need to
compute two values:

Vertex s1: We are not dividing by zero, we can simply plug vectors into Corollary 7, 〈�,s1〉3

〈�,s1−s2〉2 = 8.

Vertex s2: Here, we need to compute a residue.

Resε=0
(ε + 〈�, s2〉)1+2

ε2(ε + 〈�, s2 − s1〉) = Resε=0
(ε + 1)1+2

ε2(ε − 1)
= −4.

Finally,
∫
�

(x + y)dx dy = 2! × 1
2 × 1!

3! (8 − 4) = 2/3.

2.6.3. Using the cone decomposition method
Next, integrate the polynomial x over the unit square in Fig. 2b using the cone decomposition algorithm. The polynomial

is already a power of a linear form so � = (1,0). The polytope has four vertices that we need to consider, and each tangent
cone is already simplicial. The linear form � is not regular at vertices s1, s2. We let the reader verify in these cases the
residue-based calculation gives the value of the integrals on the corresponding cones to be zero. We only do in detail the
same calculation for vertex s3 = (1,0). At this vertex, the rays are u1 = (0,1), u2 = (−1,0). Because 〈�, u1〉 = 0, we need a
perturbation vector ε̂ so that when � := � + ε̂, we do not divide by zero on any cone (we have to check this cone and the
next one). Pick ε̂ = (ε, ε). Then the integral on this cone is

M!
(M + d)! vol(ΠC )Resε=0

(1 + ε)1+2

ε(−ε)(1 + ε)
= 1!

(1 + 2)! × 1 × −2 = −2/6.

Vertex s4 = (1,1): The rays are u1 = (−1,0), u2 = (0,−1). Again, we divide by zero, so we perturbate � by the same ε̂.
The integral on this cone is

M!
(M + d)! vol(ΠC )Resε=0

(1 + 2ε)1+2

ε(ε)(1 + ε)
= 1!

(1 + 2)! × 1 × 5 = 5/6.

The integral
∫

x dx dy = 0 + 0 − 2/6 + 5/6 = 1/2 as it should be.
P
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3. How the software works

LattE was originally developed in 2001 as software to study lattice points of convex polytopes [32]. The algorithms
used combinations of geometric and symbolic computation. Two key data structures are rational generating functions and
cone decompositions, and it was the first ever implementation of Barvinok’s algorithm. LattE was improved in 2007 with
various software and theoretical modifications, which increased speed dramatically. This version was released under the
name LattE macchiato; see [33]. Now in 2011, our new release LattE integrale has extended its capabilities to
include the computation of exact integrals of polynomial functions over convex polyhedra. The new integration functions
are C++ implementations of the algorithms provided in [15] with additional technical improvements (including an important
new set of data structures for the manipulation of truncated series). A key distinction between LattE integrale and
other software tools is that our algorithms give the exact evaluation of the integral since our implementation uses exact
rational arithmetic. The code of this software is freely available at [14] under the GNU license.

The new implementation of LattE integrale allows us to calculate the integral of a sum of powers of linear forms
over an arbitrary polytope. Alternatively, we can calculate the integral of a sum of monomials by decomposing each mono-
mial into a sum of powers of linear forms using formula (1), then integrating these powers of linear forms.

This section starts with a discussion of our new data structure for manipulating polynomials and linear forms, then we
describe the format LattE integrale expects for the input polytopes, and we end with a detailed explanation of the
two main algorithms.

3.1. Input format and data structures

The input format for the polynomials is identical to that of the Maple programs of [15]:

• A polynomial is represented as a list of its monomials in the form

[monomial1, monomial2, . . .],

where monomiali is represented by

[coefficient,[exponent-vector]].

For example, 3x2
0x4

1x6
2 + 7x3

1x5
2 is input as [[3,[2,4,6]], [7,[0,3,5]]].

• To deal directly with powers of linear forms, the input format is

[linear-term1, linear-term2, . . .],

where linear-termi is represented by

[coefficient,[power,[coefficient-vector]]].

For example, 3(2x0 + 4x1 + 6x2)
10 + 7(3x1 + 5x2)

12 is input as [[3,[10,[2,4,6]]], [7,[12,[0,3,5]]]].

In [15], the integration over simplices was first implemented in Maple, and so there was no control over the data
structures used to store the data. We have implemented the simplex integration algorithm in C++ with a sophisticated data
structure and have developed a new algorithm that integrates over the tangent cones of a polytope. Currently, we are using
burst tries, a data structure designed to have cache-efficient storage and search, due to the fact that they are prefix trees
with sorted arrays of stored elements as leaves [34]. Such a data structure is performance-critical when computing residues,
as a comparison with a linked-list implementation showed. In our implementation, each node corresponds to a particular
dimension or variable and contains the maximal and minimal values of the exponent on this dimension. The node either
points to another node a level deeper in the tree or a list of sorted elements.

The input rational polytope P could be given to LattE integrale by an h-representation or v-representation. The
input format is the same as in the previous versions and it is explained in [14]. Although the theory we presented earlier
works for both full-dimensional and non-full-dimensional rational polytopes, the current release of LattE integrale
is only guaranteed to do integration and volume computation in full-dimensional polyhedra. It is worth stressing the old
capabilities for counting lattice points still work for polytopes of all dimensions and we impose no arbitrary limit on the size
or dimension of the input. LattE integrale relies on Cddlib [35] or 4ti2 [36] for all basic polyhedral calculations
such as computation of dimension.

Our data structures are specialized for polytopes with vertices of integer coordinates. In order to integrate over rational
polytopes, we first dilate them and perform a change of variables. If P is a d-dimensional rational polytope and αP is a
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dilation by α > 0 that makes P integer, then our software operates on the vertices of αP and rescales the final integral by
the following well-known change of variables:∫

P

xmi
i . . . xmd

d dm = 1

αd

∫
αP

1

αm1+···+md
xm1

1 . . . xmd
d dm.

After this transformation, we apply formula (1) to transform the polynomial into powers of linear forms.
When integrating polytopes other than simplices, there are two options based on the formulas presented in Section 2:

(i) Triangulate the polytope and apply the algorithm for each simplices individually, or (ii) triangulate each tangent cone
and integrate each one using the cone decomposition algorithm. Therefore, a key step in all our computations is to find
either a triangulation of the polytope or a triangulation of each of its tangent cones. Once more, this step relies on Cddlib
or 4ti2, because when we triangulate we compute a regular triangulation via a convex hull [32,33]. We now explore the
two integration algorithms in greater detail.

3.2. Integrating powers of linear forms by polytope triangulation

After we decompose the polynomial to a sum of powers of linear forms and after finding a triangulation of the polytope,
Algorithm 1 loops over these two sets and integrates each linear form/simplex pair individually using Corollaries 7 and 8.

Algorithm 1 Integrate using polytope triangulation.
Input: F = ∑

c j〈� j , x〉M j , sum of powers of linear forms.
Input: P , a full-dimensional polytope.
Output: integral of the linear forms F over the polytope P .

integral ← 0 { integral is a rational data type}
let T be a list of simplices that form a triangulation of P
for all simplices � in T do

for all linear forms c〈�, x〉M in F do
if � is regular on � then

integral ← integral + c × integrateSimplexRegular(�, M,�)

else
integral ← integral + c × integrateSimplexResidue(�, M,�)

end if
end for

end for
return integral

In Algorithm 1, the linear forms are represented as a burst trie, the triangulations are stored in a linked list, and each
simplex is a simple two-dimensional array containing the vertices s1, . . . , sd+1.

When � is regular on �, the integrateSimplexRegular function plugs in numbers and vectors into Corollary 7. Also, the
terms in the numerator and denominator are evaluated in a rational data type, and so no floating-point divisions are
performed.

When � is not regular, the integrateSimplexResidue function (Algorithm 2) applies Corollary 8 and must find an index set
K ⊂ {1, . . . ,d + 1} of different poles t = 1/〈�, sk〉, and compute |K | residues. Let k ∈ K and let mk denote the order of the
pole, i.e.,

mk = #
{

i ∈ {1, . . . ,d + 1}: 〈�, si〉 = 〈�, sk〉
}
.

The problem has now been reduced to evaluating formula (11).

Resε=0
(ε + 〈�, sk〉)M+d

εmk
∏

i∈K
i 	=k

(ε + 〈�, sk − si〉)mi
= [

εmk−1] (ε + 〈�, sk〉)M+d∏
i∈K
i 	=k

(ε + 〈�, sk − si〉)mi
, (11)

where [εa]p means the coefficient of εa in the Laurent series of expression p.
To compute formula (11), we expand the polynomial in terms of ε in the numerator truncated to degree mk − 1. We

then find the first mk terms in the polynomial expansion of each 1/(ε +〈�, sk − si〉)mi , i 	= k term using the general binomial
theorem. To make the notation easy, let b = 〈�, sk − si〉 ∈ Z, then the degree mk − 1 polynomial of (ε + b)−mk is

p̂(ε) = α0ε
0b−mi + α1ε

1b−mi−1 + · · · + αmk−1ε
mk−1b−mi−mk+1, α j =

(
mi + j − 1

mi − 1

)
(−1) j .

This is a polynomial in ε with rational coefficients. For efficiency reasons, we factor p̂(ε) = 1
bmi+mk−1 p(ε), p ∈ Z[ε]. The

integrateSimplexResidue and truncatedMultiply functions both implement these ideas.
Finally, Algorithm truncatedMultiply(p, q, k) takes two polynomials p,q ∈ Z[ε] and returns their product up to and in-

cluding terms of degree k. Our implementation is very simple (e.g., not using any special multiplication algorithms) but the
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Algorithm 2 integrateSimplexResidue.
Input: �, coefficients of a linear form and M , integer power.
Input: �, simplex with vertices s1, . . . , sd+1.
Output: The integral of 〈�, x〉M over �.

Let p1 ← 1, p2 ← 1 be polynomials in ε.
Let rf ← 1 be a rational data type.
Let sumResidue ← 0 be a rational data type.
Make the index set K of unique poles.
for all k in K do

rf ← 1
p1 ← the expansion of (ε + 〈�, sk〉)M+d up to degree mk − 1 {p1 ∈ Z[ε]}
for all i in K and i 	= k do

rf ← rf × 〈�, sk〉−(mi+mk−1)

p2 ← the expansion of (ε + 〈�, sk − si〉)−mi up to degree mk − 1 with 〈�, sk〉−(mi+mk−1) factored out. {p2 ∈ Z[ε]}
p1 ← truncatedMultiply(p1, p2,mk − 1)

end for
Let c be the coefficient of the degree mk − 1 term in p1(ε).
sumResidue ← sumResidue + rf × c

end for
return abs(det(s1 − sd+1, . . . , sd − sd+1)) × M!

(M+d)! × sumResidue

cache-efficient use of the burst tries leads to speed-ups when compared to a naive implementation with arrays. We note
that asymptotically faster multiplication algorithms exists (see, e.g., [37]), which might lead to further improvements.

3.3. Integrating powers of linear forms by cone decomposition

After triangulating each tangent cone into simplicial cones, the computation is very similar to the polytope-triangulation
case: if � is regular on the rays of the cone, we plug in values into Corollary 5, else we perturb � and perform a residue
calculation. Algorithm 3 implements this idea.

Algorithm 3 Integrate using the cone decomposition method.
Input: F = ∑

c j〈� j , x〉M j , powers of linear forms.
Input: P , a full-dimensional polytope.
Output: integral of the linear forms over P .

integral ← 0 { integral is a rational data type}
Let C be a list of tangent cones P .
Make T be a list of triangulated cones in C . {A cone in T is in the form (s; u1, . . . , ud), where s is a vertex and ui are rays}
for all linear forms c〈�, x〉M in F do

Let R ⊆ T be cones that � is regular on.
for all (s; u1, . . . , ud) in R do

integral ← integral + c × integrateConeRegular(�, M, s, u1, . . . , ud)

end for
Pick ε̂ = ε(a1, . . . ,ad) where ai ∈ Z so that we do not divide by zero.
for all (s; u1, . . . , ud) in T \ R do

integral ← integral + c × integrateConeResidue(�, M, ε̂, s, u1, . . . , ud)

end for
end for
return integral

In integrateConeResidue, � is perturbed by setting � := �+ ε̂, where ε̂ is a vector in terms of ε with coefficients picked on
the moment curve with alternating signs. We repeatedly pick a random t ∈ Z+ and set ε̂i = ti−1(−1)i−1ε for i = 1,2, . . . ,d
until 〈−(� + ε̂), ui〉 is non-zero for every simple cone at every vertex in Corollary 5. Then the residues are computed using
the general binomial theorem and truncated series multiplication like in integrateSimplexResidue.

3.4. A special case: computing volumes

Computing the volume of a polytope is equivalent to integrating the monomial 1 over the polytope. We again have the
two same options when computing volumes as we did when computing integrals. Instead of using the algorithms above,
we can simplify the computation. In the triangulation based approach, we find a triangulation of the polytope and sum the
volume of each simplex. The volume of a specific simplex is obtained by taking a determinant. In the cone decomposition
approach, we triangulate each tangent cone and apply Corollary 5 with M = 0 and any random vector �. If we do divide by
zero, instead of finding residues, we simply pick a new random � and start the computation over.
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Table 2
Average integration time plus or minus one standard deviation when integrating a power of a linear form over a random d-simplex (in seconds over 50
random forms).

Dimension d Exponent M

2 10 20 50 100 300 1000

10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
20 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
50 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.01 ± 0.00 0.03 ± 0.01

100 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.09 ± 0.00
300 0.35 ± 0.01 0.36 ± 0.01 0.36 ± 0.01 0.36 ± 0.01 0.38 ± 0.01 0.42 ± 0.01 0.66 ± 0.02
400 0.78 ± 0.02 0.79 ± 0.03 0.79 ± 0.02 0.80 ± 0.03 0.82 ± 0.03 0.90 ± 0.03 1.25 ± 0.04

4. Experiments

We did thorough testing of the implementation and performed new computational benchmarks. We report on four
different test classes:

1. We expand the computational limits for integrating over simplices described in [15].
2. Next, we integrate random monomials over three families of polytopes: (1) simple, (2) simplicial, and (3) neither simple

nor simplicial.
3. Because our volume methods are optimized versions of the integration methods, we also compute the volumes of the

same polytopes in the last case above.
4. Finally, we compare LattE integrale to other software tools and computational studies [16,38,39,3].

Our integration and volume experiments input data, along with running times and the results of integration and volumes
are available on the LattE website [14].

4.1. Integration over simplices

In [15], the theory of integration over simplices was developed and a fair amount of Maple experiments were carried
out to show the potential of the methods. In this section, the experiments we performed clearly indicate that this C++
implementation is at least two orders of magnitude faster than the preceding Maple code; compare Tables 5 and 6 in [15]
with Tables 2 and 3 in this paper. In Table 2, we used Maple to generate powers of random linear forms and randomly
generated simplices. The coefficients of each linear form were picked uniformly over [0,100] ∩ Z. We did the integration
using LattE integrale.

Next, in Table 3, we used Maple to generate monomials and simplices. We again integrate using LattE integrale.
We measure time from the start of program execution to termination, which includes file I/O, system calls, child process
time, the time to find tangent-cones, and triangulation time. All triangulations were computed with the software package
cddlib version 0.94f [35]. All computations were performed on a 64-bit Ubuntu machine with 64 GB of RAM and eight
Dual Core AMD Opteron 880 processors. We applied a 600-second maximum running time to this program; tasks taking
longer are not benchmarked.

4.2. Integration over general polytopes

We tested the triangulation and cone decomposition integration methods on polytopes and their duals across dimension,
vertex counts, and over monomials with different degrees. For each polytope dimension and vertex count we constructed 50
random polytopes by taking the convex hull of random points using Polymake [40]. For primal polytopes of dimension d,
the number of vertices considered goes from d + 2 to d + 25. When zero is not in the interior of the polytope, we translated
the centroid to the origin before constructing the dual polytope. Then we integrated each polytope and its corresponding
dual polytope over a new random monomial of a set degree. Because of the construction method, most primal polytopes
are simplicial and the duals are mostly simple polytopes. We also integrated over G.M. Ziegler’s database of polytopes [41],
which contains polytopes that are not simplicial nor simple.

Simple and simplicial polytopes We present the results for dimensions 5, 6, and 7. We tested both algorithms on the
primal polytopes starting with their v-representation. For their duals we tested the triangulation and cone de-
composition methods starting from their h-representations. We also did experiments in dimension 3 and 4 but
the numbers are too close to each other to show a clear trend of which is the fastest method (see [42]). We
only report those test classes for which every polytope in the test class finished under 600 seconds for both the
triangulation and the cone decomposition method. We define the relative time difference as the time taken by the
triangulation method minus the time taken by the cone decomposition method, all divided by the time of the
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Table 3
Average and standard deviation of integration time in seconds of a random monomial of prescribed degree by decomposition into linear forms over a
d-simplex (average over 50 random forms).

Dimension d Degree

1 2 5 10 20 30 40 50 100 200 300

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.0 3.8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.7

3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 2.3 38.7 162.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.4 24.2 130.7

4 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.7 22.1 – –
0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.7 16.7 – –

5 0.0 0.0 0.0 0.0 0.1 0.3 1.6 4.4 – – –
0.0 0.0 0.0 0.0 0.0 0.2 1.3 3.5 – – –

6 0.0 0.0 0.0 0.0 0.1 1.1 4.7 15.6 – – –
0.0 0.0 0.0 0.0 0.1 1.0 4.3 14.2 – – –

7 0.0 0.0 0.0 0.0 0.2 2.2 12.3 63.2 – – –
0.0 0.0 0.0 0.0 0.2 1.7 12.6 66.9 – – –

8 0.0 0.0 0.0 0.0 0.4 4.2 30.6 141.4 – – –
0.0 0.0 0.0 0.0 0.3 3.0 31.8 127.6 – – –

10 0.0 0.0 0.0 0.0 1.3 19.6 – – – – –
0.0 0.0 0.0 0.0 1.4 19.4 – – – – –

15 0.0 0.0 0.0 0.1 5.7 – – – – – –
0.0 0.0 0.0 0.0 3.6 – – – – – –

20 0.0 0.0 0.0 0.2 23.3 – – – – – –
0.0 0.0 0.0 1.3 164.8 – – – – – –

30 0.0 0.0 0.0 0.6 110.2 – – – – – –
0.0 0.0 0.1 4.0 779.1 – – – – – –

40 0.0 0.0 0.0 1.0 – – – – – – –
0.0 0.0 0.3 7.0 – – – – – – –

50 0.0 0.0 0.1 1.8 – – – – – – –
0.0 0.1 0.5 12.9 – – – – – – –

triangulation method. Note that when the triangulation method is faster we obtain a negative number. We will
use this quantity throughout.

In Figs. 3, 4, and 5, we display histograms on three axes. The first horizontal axis is the relative time difference
between the two integration methods. The second horizontal axis shows the degrees of monomials and finally
the vertical axis presents the number of random polytopes (in the respective dimensions 5, 6, 7). The height
of a particular solid bar in position (ak,b∗) tallies the number of random polytopes for which the relative time
difference between the two algorithms, when integrating a monomial of degree b∗ , was between ak−1 and ak
with ak included in that bar. Thus, the bars with relative time difference zero should be counted as experiments
where triangulation is faster. Note that the left-most bar a0 on the graph always contains values from −∞ to a0.
Also note that when the right-most bar is at position 1 it then accounts for relative time differences between the
second-to-last relative time difference and 1.

Each figure has one histogram for the primal polytopes and one for the dual polytopes of respective dimensions.
For example, Fig. 3 is for polytopes of dimension 5. On the top part of the figure (primal), there are eight colors
on the bars, one for each degree (corresponds to a row). Note that large majority of the bars for monomials of
degrees 20 or less have a negative relative time difference. This indicates the triangulation method was faster
when integrating low degree monomials. In contrast, for higher degrees, say the bars in the degree 50 row, we
see the relative time difference in some cases was positive, this shows that the cone method was faster for those
simplicial problems, but it is a minority of cases. Similar trends were observed in higher dimensions (see the
other figures). On the bottom of Fig. 3 (dual), all the bars have positive relative time difference, which indicates
the cone method wins over the triangulation method for the integration of higher degree monomials. More tables
are available online [42].

In conclusion, our experiments for dimension higher than four on integrating monomials have the same qual-
itative behavior as those of [16] for volume computation (polynomial of degree zero): the triangulation method
is faster for simplicial polytopes (mass on histograms is highly concentrated on negative relative time differences)
while the cone decomposition is faster for simple polytopes (mass on histograms is concentrated on positive rel-
ative time differences). The trends are very clear while in dimension less than four, the timings are too close to
each other to give a clear-cut trend.

Zero-one polytopes In Fig. 6, we present another histogram comparing the cone decomposition and triangulation methods
on Ziegler’s database of polytopes [41], which contains many zero-one polytopes and a few other polytopes. We
translate each polytope so that its centroid is the origin, thus its dual is well-defined. Then for each polytope and
its dual, we integrate 50 random monomials of a set degree. We skipped non-full-dimensional polytopes and a
few others that did not finish within 30 minutes. The figure displays the histogram of the relative time differences
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Fig. 3. Histogram of the relative time difference between the triangulation and cone decomposition methods for integrating over random polytopes in
dimension 5.

between the two integration methods for monomials of eight different degrees (1, 2, 5, 10, 20, 30, 40, and 50).
The description of all the histograms is the same as in the histograms for Figs. 3, 4, and 5.

The behavior we observed before for simple vs. simplicial polytopes still mostly holds for these tests, except
we see that the two methods are closer to each other as the degree grows (the positive mass and the negative
mass are comparable). The variation is then not as strong as before, but the polytopes are also not separated by
simpliciality.

4.3. Volume experiments

Volume computation is an important special case of integration that has received attention by several researchers, thus
we also tested the triangulation and cone decomposition methods on the same database of random polytopes and their
duals, and on Ziegler’s database to see the performance of volume evaluation.

Simple and simplicial polytopes Each test class contains 50 polytopes for each dimension and we only considered tests
where both methods finished within 600 seconds for the same polytope. The histograms in Fig. 7 indicate the
triangulation method is still faster for simplicial polytopes and the cone decomposition method is faster for simple
polytopes (the mass of the histogram is concentrated in the positive part).

Zero-one polytopes Note that Tables 4 and 5 show running times for each method. Each row of the tables contains running
times for a polytope and its dual, their numbers of vertices, and their dimension. The columns of the tables are
roughly separated in half by the primal and dual information. We apply the triangulation and cone decomposition
volume methods to Ziegler’s database [41] and their duals. If a polytope did not contain the origin, we centered it
so that its dual is defined. Again, we skipped non-full-dimensional polytopes and a few others that did not finish
within 30 minutes. For each instance the faster timings are shown in bold. When computing volumes of primal
polytopes in Ziegler’s database, triangulation is faster more often. For finding the volume of the dual polytopes
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Fig. 4. Histogram of the relative time difference between the triangulation and cone decomposition methods for integrating over random polytopes in
dimension 6.

there is no clear faster method if we just look at the number of times cone decomposition won, but even when it
lost, it did not loose by much.

4.4. Comparison to other software

There are two general classes of algorithms for finding volumes and integrals over polytopes: numerical and exact.
Numerical algorithms approximate the valuation on the polytope and involve error bounds, whereas exact algorithms do
not contain a theoretical error term. However, exact algorithms may contain errors when they use finite digit integers or
use floating-point arithmetic. In order to sidestep this problem, LattE integrale uses NTL’s arbitrary length integer and
rational arithmetic [43] compiled with the GNU Multiple Precision Arithmetic Library [44]. The obvious downside to exact
arithmetic is speed, but this cost is necessary to obtain exact answers. In this section, we compare our exact algorithms
with other software tools and algorithms that use numerical algorithms or non-exact arithmetic.

Vinci contains different algorithms for finding polytope volumes and in fact implemented the same decompositions we
used in our software (see [16]).

We tested against Vinci 1.0.5, and Table 6 shows comparison of LattE’s cone decomposition method with Vinci’s
HOT method (Hybrid Orthonormalisation Technique). We did not compare with Lasserre’s method in Vinci because we
found that Vinci’s Lasserre’s method contained a bug: Vinci found the correct volumes for the cubes and random-
hyperplane polytopes, but reported incorrect or negative volumes for most other polytopes in the Vinci database.

We ran LattE’s cone decomposition method starting from the h-representation. Because the HOT method requires both
an h- and v-representation of the polytope, we also report the time used by CDD [26] to convert an h-representation to
a v-representation. We also break down time spent in LattE for finding the vertices, finding the rays at each vertex,
triangulation, and the time spent in the main cone decomposition integration method. The timings are, for Vinci, the sum
of the entries in the first two columns and for LattE, the sum of the entries in the last four columns. We should note
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Fig. 5. Histogram of the relative time difference between the triangulation and cone decomposition methods for integrating over random polytopes in
dimension 7.

that LattE and Vinci use different algorithms for finding the vertices, except in three cases ccp5, cross 8, cross 9
where both use CDDlib, then numbers are essentially the same.

It is clear that the HOT method is faster and usually accurate when applied on the Vinci database (these polytopes are
available from [16]), but because of non-exact arithmetic, it can give incorrect results. To explore the difference between
exact and non-exact arithmetic we also tested how well Vinci can compute volumes of polytopes where each vertex
contains small and large positive numbers. In Table 7, we tested the accuracy of Vinci’s HOT method on cyclic polytopes.
We constructed these d-dimensional polytopes by taking the convex hull of k + d points (t, t2, t3, . . . , td) ∈ Zd for t =
5,6, . . . ,5 + k + d − 1. For very small dimensions, the HOT method does well, but gives incorrect or zero volumes already
in dimension six.

Another comparison we made was to the paper [3], where it is claimed that exact volumes are computed by integration.
The authors report seven volumes for different polytopes. LattE integrale’s triangulation and cone decomposition
method agree with their calculations except in the last case. For P7 the correct volume is 1/622080 ≈ 1.607510 × 10−6 but
they calculate 1.56439 × 10−6. Presumably, because of non-exact arithmetic, their answer has only one digit of accuracy.

4.5. Numerical methods

M. Korenblit and E. Shmerling present a numerical integration algorithm in [39] which is based on a special decom-
position of the integral into regions that have well-defined upper and lower limits of integration that, on an ordering of
the variables, x1, x2, . . . , xd , xi is expressed only in terms of x1, . . . , xi−1. It is known that achieving such a decomposition
is equivalent to the so-called Fourier–Motzkin elimination procedure [45] and as such it is of exponential complexity. The
paper [39] gives an application to finding the probability a random-coefficient polynomial has one or two real roots in the
interval [−1,1]. To do this, they use their software to find the volume of a polytope. They calculate 2.79167; however, we
verified that the correct volume is 31/12 = 2.583̄ which gives their method one digit of accuracy.
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Fig. 6. Histogram of the relative time difference between the triangulation and cone decomposition methods for integrating over the polytopes in Ziegler’s
database.

A more interesting comparison is to CUBPACK, a Fortran 90 library which estimates the integral of a function (or vector
of functions) over a collection of d-dimensional hyper-rectangles and simplices [38]. This comparison is very interesting
because CUBPACK uses an adaptive grid to seek better performance and accuracy. All integration tests with CUBPACK
in dimension d were done with a product of linear forms with a constant term over a random d-dimensional simplex
where the absolute value of any coordinate in any vertex does not exceed 10. For example, we integrated a product of
inhomogeneous linear forms such as ( 1

5 + 2x − 37
100 y)(2 − 5x) over the simplex with vertices (10,0), (9,9), (1,1). In Table 8,

LattE was run 100 times to get the average running time, while CUBPACK was run 1000 times due to variance. Both the
dimension and number of linear forms multiplied to construct the integrand were varied.

As shown in Table 8, LattE integrale tends to take less time, especially when the number of forms and dimension
increases. The table does not show the high variance that CUBPACK has in its run times. For example, the 5-dimensional
test case with 6 linear forms had a maximum running time of 2874.48 seconds, while the minimum running time was 0.05
seconds on a different random simplex. This contrasted starkly with LattE integrale, which had every test be within
0.01 (the minimum time discrepancy recognized by its timer) of every other test case.

CUBPACK differs from LattE integrale in that since it is based on numerical approximations, one can ask for
different levels of precision. Table 9 illustrates how CUBPACK scales with requested precision on a single, 4-dimensional,
10 linear form test case. It seems that CUBPACK scales linearly with the inverse of the requested precision—10 times the
precision requires about 3 times the work. All reported tests were done by expanding the multiplication of linear forms,
and coding a Fortran 90 function to read in the resulting polynomial and evaluate it for specific points.

5. One application: Voting theory

Computation of integrals of polynomials over polyhedral regions is fundamental for many applications, including com-
binatorics, probability and statistics. In this last section we wish to demonstrate the power of LattE integrale by
attacking problems arising in the social sciences. In the mathematical theory of voting it was observed that the probability
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Fig. 7. Histogram of the relative time difference between the triangulation and cone decomposition methods for finding the volume of random polytopes.

Table 4
The triangulation vs. cone decomposition method for finding volumes in Ziegler’s database: Part I.

Polytope Dimension Primal Dual

Vertices Time (s) Vertices Time (s)

Cone Triang. Cone Triang.

3simp3simp.vrep.latte 6 44 5.61 6.10 32 1.11 1.15
cyclic_4_8.vrep.latte 4 8 0.09 0.06 20 0.02 0.10
neighborly_4_8.vrep.latte 4 8 0.12 0.03 20 0.03 0.06
SharirCube.vrep.latte 3 8 0.03 0.03 6 0.11 0.02
HC_6-32.vrep.latte 6 32 2.29 2.06 44 3.25 3.22
HC_7-64.vrep.latte 7 64 13.42 75.85 78 61.68 762.12
HC_8-128.vrep.latte 8 128 85.85 – 144 15 007.50 –
MJ_16-17.vrep.latte 16 17 2.60 2.48 17 0.07 0.04
OA_5-10.vrep.latte 5 10 0.22 0.08 22 0.18 0.11
OA_5-18.vrep.latte 5 18 0.46 0.32 19 0.34 0.10
OA_5-24.vrep.latte 5 24 0.81 0.58 18 0.22 0.13
OA_6-13.vrep.latte 6 13 0.53 0.20 56 0.52 5.37
OA_7-18.vrep.latte 7 18 3.36 0.82 146 13.96 1827.83
OA_8-25.vrep.latte 8 25 38.55 10.44 524 4116.93 –
OA_9-33.vrep.latte 9 33 – 648.77 1870 – –
AS_6-18.vrep.latte 6 18 1.26 0.52 121 1.40 65.63
BIR3_4-6.vrep.latte 4 6 0.12 0.02 9 0.01 0.01
BIR4_9-24.vrep.latte 9 24 6.26 2.22 16 1.42 0.17
BIR5_16-120.vrep.latte 16 120 – – 25 – 488.78
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Table 5
The triangulation vs. cone decomposition method for finding volumes in Ziegler’s database: Part II.

Polytope Dimension Primal Dual

Vertices Time (s) Vertices Time (s)

Cone Triang. Cone Triang.

CF_10-11.vrep.latte 10 11 0.37 0.33 11 0.03 0.00
CF_4-5.vrep.latte 4 5 0.01 0.02 5 0.02 0.02
CF_5-6.vrep.latte 5 6 0.04 0.03 6 0.00 0.00
CF_6-7.vrep.latte 6 7 0.04 0.05 7 0.01 0.00
CF_7-8.vrep.latte 7 8 0.08 0.09 8 0.02 0.02
CF_8-9.vrep.latte 8 9 0.14 0.13 9 0.02 0.01
CF_9-10.vrep.latte 9 10 0.22 0.20 10 0.01 0.02
CRO_3-6.vrep.latte 3 6 0.04 0.01 8 0.00 0.02
CRO_4-8.vrep.latte 4 8 0.12 0.05 16 0.00 0.03
CRO_5-10.vrep.latte 5 10 0.17 0.10 32 0.01 0.33
CUT3_3-4.vrep.latte 3 4 0.00 0.01 4 0.01 0.01
CUT4_6-8.vrep.latte 6 8 0.16 0.06 16 0.00 0.05
CUT5_10-16.vrep.latte 10 16 2.72 0.94 56 38.38 2046.74
CYC_5-8.vrep.latte 5 8 0.11 0.05 20 0.00 0.10
EG_5-12.vrep.latte 5 12 0.32 0.13 40 0.15 0.79
EQU_5-7a.vrep.latte 5 7 0.06 0.05 10 0.01 0.04
EQU_5-7b.vrep.latte 5 7 0.09 0.05 10 0.01 0.00
HAM_8-16.vrep.latte 8 16 1.57 0.60 256 0.15 –
HC_3-4.vrep.latte 3 4 0.03 0.00 4 0 0
HC_4-8.vrep.latte 4 8 0.15 0.05 16 0.02 0.04
HC_5-16.vrep.latte 5 16 0.48 0.24 26 0.32 0.25
CNG_5-6a.vrep.latte 5 6 0.04 0.03 6 0.02 0.01
MJ_32-33.vrep.latte 32 33 82.90 83.86 33 1.44 0.14
CNG_5-6b.vrep.latte 5 6 0.02 0.03 6 0.01 0.02

Table 6
Time breakdown between LattE integrale’s cone decomposition and Vinci’s HOT method with CDD.

Polytope Vinci LattE

HOT Cddlib Vertices Rays Triang. Cone

cube-9 0.03 0.08 0.021 0.06 0.02 0.02
cube-10 0.11 0.18 0.041 0.15 0.02 0.06
cube-14 141.65 7.99 1.241 4.67 0.69 1.26

rh-8-20 0.13 0.89 0.111 0.49 0.04 7.00
rh-8-25 0.43 2.63 0.321 1.14 0.14 80.25
rh-10-20 0.96 2.21 0.251 1.80 0.14 98.26
rh-10-25 5.71 12.49 1.071 8.80 0.44 3989.25

CC8(9) 0.04 0.22 0.071 0.12 0.39 0.40
CC8(10) 0.08 0.52 0.161 0.22 0.97 0.88
CC8(11) 0.18 1.18 0.031 0.42 1.84 1.76

ccp 5 0.00 0.07 0.092 0.00 0.10 0.09

cross 8 0.00 0.39 0.502 0.00 0.06 0.04
cross 9 0.00 1.57 2.152 0.00 0.12 0.11

rv-8-10 0.00 0.08 0.001 0.03 0.02 0.00
rv-8-11 0.00 1.99 0.081 0.23 0.03 0.01
rv-10-12 0.00 0.12 0.021 0.09 0.04 0.01
rv-10-14 0.00 1061.49 29.501 64.96 0.10 0.07

1 Computed with 4ti2.
2 Computed with Cddlib.

of events that can lead to singular election outcomes can be modeled as the number of lattice points inside a polytope
divided by the number of lattice points of a simplex (see [46] and the references therein). Note that both the polytope
and the simplex dilate proportional to the number n of voters. It is very well-known from the theory of Ehrhart functions
that the counting functions are quasipolynomials (polynomials with periodic coefficients) that depend on n [22]. Thus when
the quotient is evaluated the answer is asymptotically equal to the quotient of the leading coefficients of the two Ehrhart
quasipolynomials involved.
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Table 7
Comparison between LattE integrale and Vinci on finding the volume of cyclic polytopes.

Dimension Tool k

1 2 3 4 5

2
LattE 1 4 10 20 35
Vinci 1 4 10 20 35

3
LattE 2 16 70 224 588
Vinci 1.999999999988 15.99999999999 69.99999999991 224.0000000006 587.9999999986

4
LattE 12 192 1512 8064 33 264
Vinci 11.99999993201 191.9999999913 1511.99999999 8063.999999892 33 263.99999989

5
LattE 288 9216 133 056 1 216 512 8 154 432
Vinci 287.9996545868 9216.000252236 133 055.9883262 1 216 511.998301 8 154 431.872519

6
LattE 34 560 2 211 840 59 304 960 948 879 360 10 600 761 600
Vinci 34 561.951223 1 935 359.822684 58 060 819.63341 885 910 920.3761 10 336 274 212.34

7
LattE 24 883 200 3 185 049 600 160 123 392 000 4 554 620 928 000 86 502 214 656 000
Vinci 25 744 201.0524 0 0 0 0

Table 8
Average time for LattE integrale and CUBPACK for integrating products of inhomogeneous linear forms over simplices.

Dimension Tool Number of linear factors

1 2 3 4 5 6 7 8 9 10

2
LattE 0.0001 0.0002 0.0005 0.0008 0.0009 0.0019 0.0038 0.0048 0.0058 0.0089
CUBPACK 0.0027 0.0014 0.0016 0.0022 0.0064 0.0052 0.0014 0.0002 0.0026 0.0213

3
LattE 0.0002 0.0005 0.0009 0.0016 0.0043 0.0073 0.0144 0.0266 0.0453 0.0748
CUBPACK 0.0134 0.0145 0.0018 0.0054 0.0234 0.0219 0.0445 0.0699 0.1170 0.2420

4
LattE 0.0003 0.0012 0.0018 0.0044 0.0121 0.0274 0.0569 0.1094 0.2247 0.4171
CUBPACK 0.0042 0.0134 0.0028 0.0019 0.0076 0.5788 4.7837 4.3778 22.3530 54.3878

5
LattE 0.0005 0.0008 0.0048 0.0108 0.0305 0.0780 0.0800 – – –
CUBPACK 0.0013 0.0145 0.0048 0.0217 0.0027 37.0252 128.2242 – – –

Table 9
CUBPACK scaling with increased relative accuracy. “Relative Error” is a user-specified parameter of CUBPACK; “Expected Error” is an estimate of the
absolute error, produced by CUBPACK’s error estimators. Finally, the “Actual Error” is the difference of CUBPACK’s result to the exact integral computed
with LattE integrale.

Relative Error Result Expected Error Actual Error # Evaluations Time (s)

10−2 1 260 422 511.762 9 185 366.414 94 536.015 4467 0.00
10−3 1 260 507 955.807 1 173 478.333 9091.974 9820 0.01
10−4 1 260 516 650.281 123 541.490 397.496 34 411 0.04
10−5 1 260 517 042.311 12 588.455 5.466 104 330 0.10
10−6 1 260 517 047.653 1257.553 0.124 357 917 0.31
10−7 1 260 517 047.691 126.042 0.086 1 344 826 1.16
10−8 1 260 517 047.775 12.601 0.002 4 707 078 4.15
10−9 1 260 517 047.777 1.260 < 10−3 16 224 509 14.09
10−10 1 260 517 047.777 0.126 < 10−3 55 598 639 48.73

To illustrate this, consider the following example from [46]: There are three candidates a, b and c, and let the preference
orders of the n = ∑6

i=1 ni voters be

abc(n1), acb(n2), bac(n3), bca(n4), cab(n5), cba(n6).

Here, there are n1 voters who rank candidate a as first, b second, and c third, n2 voters who rank b first, a second, c
third, etc. Under simple plurality voting, the candidate with the most votes wins. But in a plurality runoff system, if no
candidate wins more than 50% of the vote, the two candidates with the highest vote count advance to a second voting
round. In [46], the authors compute the probability that the simple plurality and plurality runoff systems give different
winners. This requires setting up a system of equations that describes the situation that a wins by plurality but, using
plurality runoff b obtains higher score than c and a majority of voters then prefer b to a.

0 < n1 + n2 − n3 − n4,

0 < n3 + n4 − n5 − n6,
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−1

2
< −n1 − n2 − n5,

1 = n1 + n2 + n3 + n4 + n5 + n6,

0 � ni, i = 1, . . . ,6.

This is done by computing the Ehrhart quasipolynomial of the above polyhedron and dividing by the Ehrhart quasipoly-
nomial of the simplex {(n1,n2, . . . ,n6): n1 + n2 + · · · + n6 = 1,ni � 0} (which is the space of all possible voting possibilities
assuming that all 6 rankings of three candidates are equally likely). All must be multiplied by 6 because the plurality winner
may be a, b or c and the second position could be c not just b. As the authors observed, asymptotically, the leading coeffi-
cients of these two quasipolynomials is all that matter. In the concluding remarks the authors then posed the challenge of
pushing the limit of such calculations for four-candidate elections which they observed is too big for their calculations.

However, we have observed their calculation can be further simplified and accelerated because it is very well known
(see [22]) that the leading coefficient of the quasipolynomial is always equal to the volume of the polytope with n = 1, thus
one can directly perform the calculation of the volume (the volume of the simplex is well known) and do a quotient of
two numbers. The key step in finding the probabilities requires only finding the volume directly. Our algorithm corroborates
that for the previous example the volume is 71

414 720 , and when multiplied by 6 × 120 gives the probability these two voting
systems give different winners for a large population: 12.33%.

Using our code for exact integration we tackled the same problem for four candidates. In this case we have 24 variables
associated to the orderings

abcd(n1),abdc(n2),acbd(n3),acdb(n4),adbc(n5),adcb(n6),

bacd(n7),badc(n8),bcad(n9),bcda(n10),bdac(n11),bdca(n12),

cabd(n13), cadb(n14), cbad(n15), cbda(n16), cdab(n17), cdba(n18),

dabc(n19),dacb(n20),dbac(n21),dbca(n22),dcab(n23),dcba(n24).

The equations and inequalities associated to the problem codify the following facts: The sum of all variables ni must be
equal to the total number of voters. We have four inequalities expressing that when a is the plurality winner, b obtained a
score higher than c, and c obtained a score higher than d, thus

n1 + n2 + n3 + n4 + n5 + n6 > n7 + n8 + n9 + n10 + n11 + n12,

n7 + n8 + n9 + n10 + n11 + n12 > n13 + n14 + n15 + n16 + n17 + n18,

n13 + n14 + n15 + n16 + n17 + n18 > n19 + n20 + n21 + n22 + n23 + n24.

These inequalities assume that the order was a > b > c > d but the answer we get should be multiplied by 4! = 24 to
take into account other possible orders. Finally, we have to express the fact that but a majority of voters prefer b over a and
that a did not achieve more than 50 percent of the vote (n1 +n2 +n3 +n4 +n5 +n6 +n13 +n14 +n17 +n19 +n20 +n23 < n/2).
The volume of this polytope when n = 1 is

2 988 379 676 768 359

7 552 997 065 814 637 134 660 504 411 827 077 120 000
.

The probability is then the volume times 4! divided by the volume of the simplex{
(n1,n2, . . . ,n24):

∑
i

ni = 1, ni � 0

}
,

which equals 1
23! . After a minute of computation using the cone decomposition method, we obtain the probability is 12.27%.

We can continue the example by considering the same problem for five candidates. The five-candidate polytope has
5! = 120 variables. However, after LRS [25] enumerated over 12.5 million vertices, we terminated the program and decided
the polytope is beyond our limits. We close by mentioning that after the first version of this paper was made available other
authors proposed new ideas to compute these values using symmetries of the problem. See [47].
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