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Provan and Billera defined the notion of weak k-decomposability for pure simplicial complexes in the hopes of bounding
the diameter of convex polytopes. They showed the diameter of a weakly k-decomposable simplicial complex ã is bounded
above by a polynomial function of the number of k-faces in ã and its dimension. For weakly 0-decomposable complexes,
this bound is linear in the number of vertices and the dimension. In this paper we exhibit the first examples of non-weakly
0-decomposable simplicial polytopes. Our examples are in fact polar to certain transportation polytopes.
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1. Introduction. Due to its relevance to the theoretical performance of the simplex method for linear pro-
gramming, a lot of effort has been invested in bounding the diameter of convex polyhedra (see De Loera [4],
Todd [17] and references therein). The 1957 Hirsch conjecture for polytopes became one of the most important
problems in combinatorial geometry. For simple polytopes, the Hirsch conjecture stated that any two vertices in
a simple d-polytope with n facets can be connected by an edge path of length at most n− d. In this paper we
will work in the polar setting where the Hirsch conjecture for simplicial polytopes asserts that if P is a simpli-
cial d-polytope with n vertices, then any pair of facets in P can be connected by a facet-ridge path of length
at most n− d. The Hirsch conjecture remained open until 2010 when F. Santos constructed a 43-dimensional
counterexample to the Hirsch conjecture with 86 vertices. (See Santos [14] and its improvement in Matschke
et al. [12].)

Despite this great success the best-known counterexamples to the Hirsch conjecture have diameter 41 + �5 ·

4n − d5, while the best-known upper bounds on diameter are quasi-exponential in n and d (Kalai and
Kleitman [5]) or linear in fixed dimension but exponential in d (Barnette [2], Larman [10]). Unfortunately, today
we do not even know whether there exists a polynomial bound on the diameter of a polytope in terms of its
dimension and number of vertices (see De Loera [4] and references therein for more information). Thus studying
diameters of simplicial spheres and polytopes is still the subject of great interest.

Motivated by the famous Hirsch conjecture, Provan and Billera [13] defined two notions of k-decomposability
for pure simplicial complexes. First, they showed any 0-decomposable simplicial complex satisfies the linear
diameter bound posed by the Hirsch conjecture. Moreover, 0-decomposability is strong enough to imply shella-
bility of the complex. Unfortunately, Lockeberg [11] gave an example of a simplicial 4-polytope on 12 vertices
that is not 0-decomposable (this was first made explicit in Klee and Kleinschmidt [8]; Lockeberg had con-
structed his polytope for other reasons). Similarly, it is worth remarking that Santos’ counterexample to the
Hirsch conjecture cannot be 0-decomposable.

Provan and Billera also showed in (Provan and Billera [13]) that for fixed k, the diameter of a weakly
k-decomposable simplicial complex ã is bounded above by a linear function of the number of k-faces in ã.
Thus one approach to proving a linear upper bound on the diameter of a simplicial polytope in terms of its
dimension and number of vertices would be to show that every simplicial polytope is weakly 0-decomposable.
This question was first raised in Provan and Billera [13] and repeated in Klee and Kleinschmidt [8], but has
remained opened since then (see Klee and Kleinschmidt [8, §§5, 6, and 8] for a discussion on decomposability
and weak decomposability).

The purpose of this note is to provide the first examples of simplicial polytopes that are not weakly
0-decomposable. Our examples are polars to simple transportation polytopes whose duals are not weakly
0-decomposable. This is also noteworthy for two reasons: First, because transportation polytopes are perhaps
among the most well-behaved linear programs, and second, because prior work has given linear bounds on their
diameter (see discussion below).

In §2, we give the necessary precise definitions pertaining to simplicial complexes, (weak) k-decomposability,
and transportation polytopes. In §3, we give our main results (Theorems 5 and 6) which provide explicit
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transportation polytopes in all dimensions d ≥ 5 whose polar simplicial polytopes are not weakly vertex-
decomposable.

2. Definitions and background.

2.1. (Weak) k-decomposability of simplicial complexes. We recall some basic facts about simplicial com-
plexes; for more details, see Stanley [15]. A simplicial complex ã on vertex set V = V 4ã5 is a collection of
subsets F ⊆ V , called faces, such that if F ∈ ã and G ⊆ F , then G ∈ ã. The dimension of a face F ∈ ã is
dim4F 5 = �F � − 1 and the dimension of ã is dim4ã5 = max8dim4F 52 F ∈ ã9. A facet of ã is a maximal face
under inclusion. We say ã is pure if all of its facets have the same dimension.

The link of a face F in a simplicial complex ã is the subcomplex lkã4F 5= 8G ∈ã2 F ∩G= �1 F ∪G ∈ã90
The antistar (or deletion) of the face F in ã is the subcomplex ã− F = 8G ∈ã2 F *G90

Given a pure simplicial complex ã and facets F 1F ′ ∈ã, the distance from F to F ′ is the length of the shortest
path F = F01 F11 : : : 1 Ft = F ′, where the Fi are facets and Fi intersects Fi+1 along a ridge (a codimension-one
face) for all 0 ≤ i < t0 The diameter of a pure simplicial complex, denoted diam4ã5, is the maximum distance
between any two facets in ã.

One approach to trying to establish (polynomial) diameter bounds is to study decompositions of simplicial
complexes. Provan and Billera [13] defined a notion of k-decomposability for simplicial complexes and showed
that k-decomposable complexes satisfy nice diameter bounds.

Definition 1 (Provan and Billera [13, Definition 2.1]). Let ã be a 4d − 15-dimensional simplicial
complex and let 0 ≤ k ≤ d− 1. We say that ã is k-decomposable if ã is pure and either

1. ã is a 4d− 15-simplex, or
2. there exists a face � ∈ã (called a shedding face) with dim4�5≤ k such that

(a) ã− � is 4d− 15-dimensional and k-decomposable, and
(b) lkã4�5 is 4d− ��� − 15-dimensional and k-decomposable.

Theorem 1 (Provan and Billera [13, Theorem 2.10]). Let ã be a k-decomposable simplicial complex of
dimension d− 1. Then

diam4ã5≤ fk4ã5−

(

d

k+ 1

)

1

where fk4ã5 denotes the number of k-dimensional faces in ã.

In particular, a 0-decomposable complex (also called vertex-decomposable) satisfies the Hirsch bound. One
approach to trying to prove the Hirsch conjecture would be to try to show that any simplicial polytope is
vertex-decomposable. In his thesis, Lockeberg [11] constructed a simplicial 4-polytope on 12 vertices that is not
vertex-decomposable (see also Klee and Kleinschmidt [8, Proposition 6.3]1). Of course, Santos’ counterexample
to the Hirsch conjecture provides another example of a simplicial polytope that is not vertex-decomposable.

In addition, Provan and Billera defined a weaker notion of k-decomposability that does not require any
condition on links but still provides bounds on the diameter of the simplicial complex.

Definition 2 (Provan and Billera [13, Definition 4.2.1]). Let ã be a 4d − 15-dimensional simplicial
complex and let 0 ≤ k ≤ d− 1. We say that ã is weakly k-decomposable if ã is pure and either

1. ã is a 4d− 15-simplex, or
2. there exists a face � ∈ ã with dim4�5 ≤ k such that ã − � is 4d − 15-dimensional and weakly

k-decomposable.

Theorem 2 (Provan and Billera [13, Theorem 4.2.3]). Let ã be a weakly k-decomposable simplicial
complex of dimension d− 1. Then

diam4ã5≤ 2fk4ã50

Again, we say that a weakly 0-decomposable complex is weakly vertex-decomposable, abbreviated wvd.
Based on the hope that diameters of simplicial polytopes have linear upper bounds, it would be natural to try to
prove that any simplicial d-polytope is weakly vertex-decomposable. In §3, we will provide a family of simple
transportation polytopes whose polars are not weakly vertex-decomposable.

1 There is a small typo in Klee and Kleinschmidt [8, Proposition 6.3]. The listed facet aejk should be aehk instead. We found this error by
entering the listed polytope into Sage (Stein et al. [16]) and realizing that some of its ridges were contained in a unique facet.
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2.2. Transportation polytopes. Our counterexamples are found within the family of transportation prob-
lems. These are classical polytopes that play an important role in combinatorial optimization and the theory
of networks (Yemelichev et al. [18]). For general notions about polytopes see Ziegler [19]. For fixed vectors
a = 4a11 : : : 1 am5 ∈ �m and b = 4b11 : : : 1 bn5 ∈ �n, the classical m× n transportation polytope P4a1b5 is the
collection of all nonnegative matrices X = 4xi1 j5 with

∑m
i=1 xi1 j = bj for all 1 ≤ j ≤ n and

∑n
j=1 xi1 j = ai for all

1 ≤ i ≤m. The vectors a1b are often called the margins of the transportation problem.
There is a natural way to associate a complete bipartite graph Km1n with weighted edges to each matrix X ∈

P4a1b5 by placing a weight of xi1 j on the edge 4i1 j5 ∈ 6m7× 6n7. We summarize the properties of transportation
polytopes that we will use in the following theorem. These results and their proofs can be found in Klee and
Witzgall [9] and Yemelichev et al. [18, Chapter 6].

Theorem 3. Let a ∈�m and b ∈�n with mn> 4.
1. The set P4a1b5 is nonempty if and only if

∑m
i=1 ai =

∑n
j=1 bj 0

2. The dimension of P4a1b5 is 4m− 154n− 15.
3. The transportation polytope P4a1b5 is non-degenerate (hence simple) if and only if the only nonempty

sets S ⊆ 6m7 and T ⊆ 6n7 for which
∑

i∈S ai =
∑

j∈T bj are S = 6m7 and T = 6n7.
4. Let P4a1b5 be non-degenerate. The set

Fp1q = Fp1q4a1b5 2= 8X ∈ P4a1b52 xp1q = 091

is a facet of P4a1b5 if and only if ap + bq <
∑m

i=1 ai0
5. Let P4a1b5 be non-degenerate. The matrix X ∈ P4a1b5 is a vertex of P4a1b5 if and only if the edges

84i1 j5 ∈Km1n2 xi1 j > 09 form a spanning tree of Km1n.

In Figure 1 we show an example of a 2 × 4 transportation polytope. This example demonstrates the content
of the above theorem and at the same time it demonstrates that the complexes we discuss in the next section
are vertex decomposable in dimension smaller than four. On the left side of the figure we show a Schlegel
diagram of the three-dimensional transportation polytope with margins 421212125 and 43155. Its vertices are
labeled by 2 × 4 tables, but we only represent the three upper left entries since they determine the rest of the
values automatically (see the middle example for the vertex 012). The right side of the figure shows the dual
simplicial complex which is clearly vertex decomposable.

It is worth remarking to the reader that transportation polytopes have been heavily studied regarding the
diameter of their graphs or 1-skeleton. Unlike the present paper, in most of the literature on the subject, paths
move from vertex to vertex along the edges of the polytope instead of moving from facet to facet across ridges,
and the Hirsch bound takes the form of n − d where n is the number of facets, instead of vertices for the
simplicial set up of this paper. The best bound for the diameter of the graph of a general transportation polytope
is linear, but still not equal to the Hirsch bound (see Brightwell et al. [3], Kim and Santos [7]). For our purposes
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Figure 1. A 2 × 4 transportation polytope and its polar simplicial complex.
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here the most relevant result is about the diameter of 2×p transportation problems because our counterexamples
are polars of those polytopes (a result independently obtained in unpublished work of L. Stougie).

Theorem 4 (Kim [6, Theorem 3.5.1]). Let P be a classical transportation polytope of size p×2 with n≤ 2p
facets. Then, the dimension of P is d = p−1 and the diameter of P is at most n−d; thus P satisfies the Hirsch
conjecture.

Once more we stress that the bounds on the diameters of the graphs of transportation polytopes are equivalent
to the simplicial diameter for the polars of transportation polytopes. Thus the result above is quite relevant to this
paper; on the other hand, although the diameters for the graphs of the linear programming duals of transportation
polytopes were proved to satisfy the Hirsch conjecture in Balinski [1], those results have no direct relation to
our simplicial investigations.

3. Examples of non-wvd simplicial polytopes. Now we are ready to present a family of d-dimensional
transportation polytopes ãd for all d ≥ 4 whose polar (simplicial) polytopes are not weakly vertex-decomposable.
We must consider two cases based on the parity of d.

Theorem 5. For all m ≥ 2, let ã2m be the simplicial polytope polar to the 2 × 42m + 15 transportation
polytope P4a1b5 with margins a = 42m + 112m + 15 and b = 42121 : : : 125. Then ã2m is not weakly vertex-
decomposable.

Proof. Let ui (respectively vi) denote the vertex in ã2m corresponding to the facet F11 i (respectively F21 i) of
P4a1b5. Let U = 8u11 : : : 1 u2m+19 and V = 8v11 : : : 1 v2m+19. We claim that the facets of ã2m are precisely those
sets of the form A∪B where

• A⊆U ,
• B ⊆ V ,
• �A� = �B� =m, and
• A∪B contains at most one element from each set 8uj1 vj9.
Any facet of ã2m can be decomposed as A∪B with A⊆U and B ⊆ V and �A∪B� = 2m. Suppose that there

is a facet A∪ B of ã2m with �A� >m. We may assume without loss of generality that u11 : : : 1 um+1 ∈ A. This
means there is a matrix X ∈ P4a1b5 with x1111 x1121 : : : 1 x11m+1 = 0. Thus x211 = x212 = · · · = x21m+1 = 2 and the
sum of the elements in the second row of X exceeds 2m+ 1. Similarly, no facet of ã2m can contain both uj

and vj since P4a1b5 does not contain a matrix in which x11 j = x21 j = 0.
Suppose that ã2m is weakly vertex-decomposable and its vertices can be shed in the order z11 z21 z31 : : : 1 zt .

We will show that the complex obtained from ã2m by removing either z1 and z2 or z1, z2, and z3 is not pure. By
the pigeonhole principle, two of the vertices among 8z11 z21 z39 come from either U or V , and we may assume
without loss of generality that these two vertices come from U . Furthermore, since the symmetric group 32m+1

acts transitively on the columns of the 2 × 42m+ 15 contingency table defining P4a1b5, we need only consider
two possibilities: either 8z11 z29= 8u11 u29 or 8z11 z21 z39= 8u11 v1 u29 for some v ∈ 8v11 v21 v39.

In the former case, let â1 be the simplicial complex obtained from ã2m by removing vertices z1 and z2, and
consider the following facets of ã2m:

F = 8u11 u31 u41 : : : 1 um+11 vm+21 : : : 1 v2m+191

F ′
= 8u21 u31 u41 : : : 1 um+11 vm+21 : : : 1 v2m+191 and

G= 8v21 v31 : : : 1 vm+11 um+21 : : : 1 u2m+190

Then â1 is 42m− 15-dimensional since it contains G as a facet, but F − 8u19= F ′ − 8u29 is a 42m− 25-face
of â1 that is not contained in a 42m− 15-face. Thus â1 is not pure. The following partially filled contingency
table shows that F and F ′ are the only facets of ã2m that contain F − 8u19= F ′ − 8u29.

1 2 3 · · · m m+ 1 m+ 2 · · · 2m+ 1

x111 x112 0 · · · 0 0 2 · · · 2 2m+ 1

x211 x212 2 · · · 2 2 0 · · · 0 2m+ 1

2 2 2 2 2 2 2 2 2

In the latter case, let â2 be the simplicial complex obtained from ã2m by removing vertices z1, z2, and z3.
Again, â2 is 42m− 15-dimensional since it contains the facet

G′
= 8v11 v21 : : : 1 vm+11 um+21 : : : 1 u2m+19− 8v9
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of ã2m, but â2 is not pure since the face F − 8u19= F ′ − 8u29 is not contained in any 42m− 15-face of â2.
A similar construction provides odd-dimensional transportation polytopes whose polars are simple and non-

wvd. We must tweak the construction presented in Theorem 5 because the margins a = 42m12m5 and b =

42121 : : : 125 yield a degenerate transportation polytope by Theorem 3(3); however, the proof of the following
theorem is identical to that of Theorem 5.

Theorem 6. For all m≥ 3, let ã2m−1 be the simplicial polytope dual to the 2 × 2m transportation polytope
P4a1b5 with a = 42m− 112m+ 15 and b = 42121 : : : 125. Then ã2m−1 is not weakly vertex-decomposable.

Despite the fact that the polars to these transportation polytopes are not weakly vertex-decomposable, we see
from Theorem 4 that the polytopes P4a1b5 in Theorems 5 and 6 still satisfy the Hirsch bound. Note that our
counterexamples yield an infinite family of nonvertex decomposable polytopes.
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