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Abstract

We present a polynomial transformation from the satisfiability problem to the problem of finding
a triangulation of a convex 3-polytope that uses a small number of tetrahedra. We also discuss other
complexity results related to optimal triangulations.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

A triangulation of a d-dimensional convex polytopg is a set ofd-simplices whose
union is the polytope, their vertices are extreme point® pand any two simplices in it
intersect in a common (possibly empty) face. Himeof a triangulation is the number of
its full-dimensional simplices. In this paper we discuss the computational complexity of
finding small size triangulations of a convex polytope. We discuss in particular the case of
minimal triangulationsi.e., those with smallest possible size.

This geometric minimization problem arises in several contexts. For example, minimal
triangulations of thed-cube have been extensively studied (see references in [11,15,
16,19,25]) due to connections with the simplicial approximation of fixed points of
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continuous maps [29]. Optimal size triangulations appear also in the polyhedral techniques
in Algebraic Geometry [28]. Understanding minimal triangulations of convex polytopes
is related to the problem of characterizing tlievectors of triangulations of balls and
polytopes (see open problems in [7]). In fact, the study of minimal triangulations of
topological balls also received attention due to its connections to data structures, in the
calculation of rotation distance of binary trees [27].

The computational geometry literature has several papers interested in finding triangula-
tions of optimal size [4,13]. In 1992 Bern and Eppstein asked whether there is a polynomial
time algorithm to compute a minimal triangulation of a 3-dimensional convex polytope
(open problem 12 in [6, Section 3.2]). Our main result shows that, under the hypothesis
P £ NP, such an algorithm cannot exist:

Theorem 1.1. Given a conve8-polytopeP and a positive integek, deciding whetheP
has a triangulation of siz& or less is an NP-complete problem.

We give a transformation to the Satisfiability (SAT) problem (cf. [14]): given an instance
S of C logical clauses iV boolean variables, is there a truth assignment to the variables
such that all clauses are simultaneously satisfied? We will give a nukhlaed construct
the vertices of a convex 3-polytopa,logical polytope of size polynomial inC and V
(polynomial size pertains to the binary encoding length), which has a triangulation of size
at mostK if and only if there is a satisfying truth assignment. In fact, we can restrict our
discussion to the special case of the SAT problem where each variable appears in three
clauses, two of the times negated (see [14, p. 259]).

Itis straightforward to derive some interesting conclusions from the main theorem. First,
consider the logical polytopes we have constructed. If we could find thegizéor their
minimal triangulations in polynomial time, eith@pin < K, in which case we have indeed
a triangulation smaller or equal &, or K < smin, in Which case we can be sure there is
no triangulation for the logical polytope of siZ€ or less. This proves it must be NP-hard
to find a minimal triangulation in dimension 3. Second, notice that the hardness result can
be extended for polytopes of any fixed dimension that are given by its vertices. Simply
note that by taking a pyramid over the logical polytopes we create a 4-dimensional logical
polytope whose possible sizes of triangulations are those of the original 3-dimensional
logical polytope. Thus, it is at least as hard to find the size of smallest triangulations
in four dimensions as it is in three. Repeating the pyramid construction enough times,
adding a new dimension each time, we have the following corollaries (the second result
was obtained in [21] via a direct transformation to 3-SAT):

Corollary 1.2. (1) Letd be a fixed positive integer witth > 3. Finding a minimal-size
triangulation of a convex-polytope is NP-hard.

(2) Letd be a fixed positive integer with> 4. Finding a minimal-size triangulation of
the boundary of a convekpolytope is NP-hard.

We should remark that since these results are given in fixed dimension it is unnecessary
to specify how the polytope is presented (by its facets inequalities or by its vertices) as the
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transformation to the vertex representation, or vice versa, takes polynomial time when the
dimension is fixed [10].

It is useful to remind the reader of a few known results about the sizes of triangulations
of polytopes and the relevant literature before we discuss the details. It is known that the
sizes of triangulations for @-dimensional polytope with vertices lie between — d and
fa(@C(n+1,d+1))—d—1,wheref;(0C(n+1,d+1)) is the number ofl-dimensional
facets of a{ + 1)-dimensional cyclic polytope with + 1 vertices [22]. In particular, for
3-polytopes the possible number of tetrahedra ranges fren8 to (’;) — 2n + 3. Both
bounds are known to be tight for three dimensions [13]. It is also known that the size of a
minimal triangulation of a convex 3-polytope must lie between 3 and 22 — 10, when
n > 12 [13]. That the upper bound is tight was proved in [27] using hyperbolic geometry.
It is worth noticing at this point that the size of the const&ntve construct in the proof
of Theorem 1.1 satisfies the inequalities- 3 < K < 2n. More will be said about this
in the final section. Now we discuss the general structure and main ideas of the proof of
Theorem 1.1.

Two elementary properties of triangulations will be useful to reach our goal:

(1) Everyboundary triangular fac&tof a polytope is contained in exactly one tetrahedron
of a triangulation. The fourth vertex of that tetrahedron is satdisgmgulate F'.
(2) Simplices of a triangulation cannot intersect in their relative interiors.

We will primarily see this behavior in triangles being pierced by an edge of the
triangulation, a so-callebad intersectionOur proof combines techniques presented in
the articles [5,23].

Consider a long vertex-edge chain on the boundary of a polytope such that the adjacent
triangular faces all meet in two pointgsandb (see Fig. 1).

Lemma 1.3. Let P be a convex3-polytope such that the triangleg:, g;, ¢i+1) and
(b,qi,qi+1) for i =0,...,m are among its facets, with the additional restriction that
cona, b} N conqo, ..., gm+1} = 9. Letn be the number of vertices &*.

Then, for each triangulation a? that does not use th@nterior) edge(a, b) the number
of tetrahedra is at least +m — 3.

The proof of this lemma, which can be found in [5, Section 2], involves an inductive
argument for counting interior edges of a triangulation and the use of Euler’s relations for

q2

qm
dm+1

Fig. 1. The vertex-edge chain of Lemma 1.3.
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2-spheres and 3-balls that yield a simple formula between the number of interior edges and
the number of tetrahedra of a triangulation.

For us, the quantitys + m — 3 will be a relatively large number, forcing that
a triangulation not usingda, b) cannot be small. When using the ed@e ) we can
triangulate Pchain= con{a, b, qo, . . ., gm+1} USINg them + 1 tetrahedrda, b, q;, gi+1)
fori =0, ..., m. Call Q the (non-convex) polytope we get after cutting all these tetrahedra
out of P. Letng denote the number of vertices Of. Note that: = ng + m. Suppose the
number of tetrahedra in any triangulation@f(if there is one at all) is bounded above by
some number. Then we can bound the size of a minimal triangulatiorPafising (a, b)
by ¢ +m. Note thatr does not depend on the lengthof the vertex-edge chain. Hence, by
choosingn large enough (leavin@ as it is) makes

size of minimal triangulations t + m <ng +2m —3=n+m — 3,

and any close-to-minimal triangulation whiave to usea, b). This argument still holds
when we have many vertex-edge chains of the same lemgttesent in other parts of the
boundary of the polytop®. If m is large enough, a small triangulation is forced to use the
edgeda, b) of all these vertex-edge chains.

We also use the famous non-con&shodnhardt polytopgs,17,18,20,23,24]. Roughly
speaking, a Schoénhardt polytope can be obtained by “twisting” the top face of a triangular
prism in a clockwise direction (see Fig. 2). The three quadrangular sides are then broken up
and “bentin,” thus creating the non-convesf(eX edgeg B;, A;+1) that we caldiagonals
The resulting polytope is non-convex and we distinguish the two triangular faces without
reflex edgesthe bottom(Aj, A2, A3), and thetop or skylight(B1, B2, B3). Whenever
dealing with vertices of a Schdnhardt polytope, abusing the notation, by an ingéx
we mean(i mod 3 + 1. For example, 3 1 gives 1.

The reader can easily verify that Schénhardt polytopes cannot be triangulated using
only its six vertices. Imagine the Schénhardt polytope is glued along its bottom face to
a bigger polytope. Again, the resulting non-convex polytope can only be triangulated if
its top triangle (the skylight) igisible by another vertex (we will rigorously define visible

B B,

SN

2

A

Fig. 2. A Schonhardt polytope.
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Fig. 4. Cupola.

later, but it does correspond to the intuition that every point of the skylight can be joined to
the vertex by a straight line segment. We will show that the triangular cone defined by the
planes containing the facés;, B; 11, A;+1) contains exactly the points that can view the
skylight. For this reason we will call this cone thisibility cone

Now we convexify the Schénhardt polytope by attaching three circular vertex-edge
chains opposite to the concavities. Thus, we create a convex polytope that satisfies the
hypothesis of Lemma 1.3, and that we will catt@polg see Fig. 4. The cupola is usually
glued along its bottom face to a bigger convex polytope and obtain a convex polgtope
We can combine what we know about vertex-edge chains and about Schénhardt polytopes.
Namely, in order to have a small triangulation®f the three diagonals of the Schénhardt
polytope inside the cupola have to be used. But then, the vertex triangulating the skylight
of the cupola must not be obstructed from seeing the skylight by the diagonals. Hence, the
vertex has to lie in the visibility cone of the cupola.

In [23] Ruppert and Seidel used SAT to prove that it is NP-complete to decide whether
a non-convex polyhedron admits a triangulation. Their constructions used Schoénhardt
polytopes, and in particular their visibility cones, to do the transformation. In our case,
because we need convexity, we glue cupolas, instead of Schénhardt polytopes. They are
glued to a biggeframepolytope along their bottom faces. Similar to [23], we have variable
cupolas and clause cupolas. The visibility cones of the variable cupolas contain only two
truth-settingvertices, one foffalse and one fortrue. The visibility cones of the clause
cupolas contain as madiferal vertices as there are literals in the logical clause. Each
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variable must choose between a “true” or “false” value. Inside each clause at least one
variable will be chosen to be true (to satisfy the clause). We model these logical choices
by the geometric choices of which vertex in the visibility cone of a (variable/clause)
cupola is used to triangulate the skylight. In addition, our polytope satisfies Isloeieéng
conditions: the tetrahedron spanned by the top face of a clause cupola and a literal vertex
coming from a negated variah}g will improperly intersect the tetrahedron spanned by the

top face of the cupola of variablé; and the truth-setting vertex correspondingrtee. In

this way the choices made for the truth values of the variables and for the literals satisfying
the clauses will beonsistentWe will call our polytope thdogical polytopebecause it
comes from a logical formula.

For the polynomial transformation (from SAT) we need to give an algorithm to compute
the coordinates of the vertices of the logical polytope. The binary encoding length of the
polytope, as well as the runtime of the algorithm, have to be polynomial in the encoding
length of the SAT instance. Each step of the construction will be polynomial; this is a
delicate point in the formalism of our argument. We apply a sequence of these constructions
(polynomially many). The coordinates of the vertices of the polytope are potentially singly-
exponential, but their binary encoding length is guaranteed to be polynomial.

Elementary steps of the construction include operations such as taking the join of two
or three points, intersecting planes and lines, putting points on polynomial curves, etc. The
coordinates of the resulting construction elements are therefore polynomials in coordinates
of the input elements. On the other hand, we will have requirements on the positions of the
points with respect to some planes or other points on lines etc. All these conditions can be
formulated as strict polynomial inequalities in coordinates of the construction elements. An
essential element of our construction is that our systems of strict polynomial inequalities
will depend onone single parametet. All these polynomial inequalities are satisfied
at e = 0, but an additional requirement for usds> 0. The following lemma describes
a polynomial algorithm to find a numbeg such that all O< € < ¢p solve the inequality
system.

Lemma 1.4. (1) Suppose (¢) = age? + - - - 4 aze + ag is a polynomial withp (0) > 0. Let

. agp
= 1, .
op) m'n( 2arl -1 |ad|)>

Then for0 < € < eg(p) we havep(e) > 0.

Hence, the construction ef can be done in time polynomial in the encoding length of
the coefficients o, andep has polynomial encoding length.

(2) p1, - .., p; are univariate polynomials such tha§ (0) > 0, ..., p;(0) > Othen there
is a rational numberep > 0, such thatpi(e) > 0,..., p;(e) > 0 for all 0 < € < ¢p.
Moreover, the encoding length ef is bounded by a polynomial in the encoding length
of the coefficients ofy, ..., p;.

Proof. ForO<e <1we have that;e’ > —|a;|e. The reason s that fat; > 0,a;¢! > 0>
—|aile, and fora; <0, a;€' > aje = —Ial le. Hence, for 0< € < eo(p)
d
p(e)>2—|az|e+ao>—2| il-—g—— +a0>0.

i=1 22 1|al
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For the second part, take the valggpi, ..., p;) := min(eg(p1), ..., €o(pr)). Nowall
the conditions are simultaneously satisfied

Of course, in general the real solutions of a multivariate system of inequalities
coming from geometric requirements may be empty, but our steps of construction reduce
everything to sequentially solving easy univariate systems of inequalities.

Here is the organization of our paper. In Section 2 we discuss useful properties of
Schénhardt polytopes and of cupolas. Later in the section we explain how to construct
and glue cupolas that have a prescribed visibility cone and how to construct visibility cones
that fit our purposes. The polynomial transformation to SAT is presented in Section 3. From
a given SAT instance we construct a frame polytope to which we then glue the cupolas. In
the final Section 4, as a complement of our main theorem, we present a family of polytopes
(the so-called stacked polytopes) for which the decision problem of Theorem 1.1 can be
solved in polynomial time. We end the paper with a few open questions.

2. Basic building blocks

We recall the notion obeyond a facésee [30, p. 78]): A poinp is beyonda faceF of
a polytoper if it (strictly) violates all inequalities defining facets &f containingF, but it
strictly satisfies all other inequalities that define other face®.dfthe polytopePpeyondr is
the (closure of the) set of all points beyoAdWe denote by \ F the polyhedron defined
by all facet-defining inequalities that do not hold with equality for all point&'inThis is
exactly P U Ppeyondr. In our constructions we will often put one or more points beyond
some face, and then take the convex hull. This will only destroy the facets containing
this face, and introduce new ones containing the new points. We will sagttaehone
polytope P to anotherQ along a facetsFp of P and Fg of Q if P C QOpeyondr, and
O C Poeyondr, - Itis important to observe that the convex hull of their union contains both
the face lattices oP and Q without, of courseFp andFg.

2.1. The Schdénhardt polytope

Let us turn to a well-known example of a non-convex non-triangulable polytope, the
so-called Schénhardt polytope (named after its first occurrence in [24]. See also [20]). For
the notion of non-convex polytope and what it means to triangulate them we refer to [9].

Definition 2.1. A Schénhardtpolytope (Fig. 2) is a non-convex polytope with six
verticesA1, Ay, Az, B1, B2, and B3 and facet A4, Ao, A3), (B1, B2, B3), (A1, B1, A2),
(B1, A2, B2), (A2, B2, A3), (B2, A3, B3), (A3, B3, B1), and (B3, B1, A1). At exactly the
edges(B1, A2), (B2, A3), (B3, A1) the corresponding facets are to span an interior angle
greater thanr (the edges are said to bbefleX). These edges are called tmgonalsof
the Schénhardt polytope. The top fa@, B>, B3) is called theskylightof the Schénhardt
polytope.

Six points are said to be Bchdnhardt positioif they are the vertices of a Schénhardt
polytope. We say that the skylightvssiblefrom a pointx (or x is able to seehe skylight,
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or x is aviewpointof the skylight) if the tetrahedron spannedbgnd the skylight does not
intersect any of the diagonals in their relative interior. Visgility coneof the Schéonhardt
polytope is the triangular cone bounded by the plaBg® A,, BoB3A3, andB3zB1A1. See
Fig. 3.

The use of the word “skylight” is motivated by the idea that the skylight triangle is
a glass window and light comes through it illuminating the interior of the Schénhardt
polytope defining a cone of light. It is obvious that this non-convex polytope cannot be
triangulated (without adding new points): The fourth point of the tetrahedron containing
the skylight must be one of1, Az, or A3, but the diagonals “obstruct the view” of the
skylight from these vertices.

Itis our intention to patch the sides of the Schdnhardt polytope with vertex-edge chains
in order to convexify it (and then glue it to a frame polytope). According to Lemma 1.3,
a small triangulation of this convex polytope must necessarily contain the diagonals. In this
case, the fourth point of the tetrahedron containing the skylight also has to be able to see
the skylight. We will show where to place the vertex-edge chains in order for them not to be
visible from the skylight. Hence, the triangulating vertex has to lie beyendA», Az),
we will show that it has to lie in the visibility cone.

Lemma 2.2. Let A1, A2, A3, B1, B2, B3 be six points in Schdnhardt position. We denote
by C4 . g the convex hull of the six points. Then

(1) All orientations of simplices spanned by four of these six points are determined up to
one global sign change. As a consequence, the six points are in convex position, and
their convex hullC4_ p is an octahedron that ha&Ai, A2, A3) and (B1, Bz, B3) as
facets and it has edgé4;, B;+1) (i =1, 2, 3).

(2) There are no points that can see the skylight, B», B3) and, at the same timé) are
beyond either of the edgéd;, Bi+1) of C4 g, and(ii) are on the side of the plane
B1A2B3 opposite toB; or similarly for the analogous planeB; A3B2, BxA1 B3 and
the pointsB3, Bj, respectively.

(3) The visible points beyond the fadet1, A2, Az) of C4 p are exactly the points that
are also in the visibility cone of the Schénhardt polytope.

In what follows we will use the language of oriented matroids. For the theory of oriented
matroids we refer to [8,30]. Here we only sketch the necessary definitions and how they are
related to the notion of visibility. The orientation of a simplex, x2, x3, x4), is defined as

X1 X2 X3 x4)

[X1,X2,X3,X4]=Slgndef<l 1 1 1

All such orientations make up ttehirotopeof an oriented matroid (see [8, p. 123]).

Given the oriented matroid of points, ..., x, in d-space, its circuits are functions
C:{x1,...,x,} — {+,—, 0} that correspond to so-called minimal Radon patrtitions. This
means that the convex hulls 6f- = {x; | C(x;) = +} andC~ = {x; | C(x;) = —} intersect
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in their relative interiors, and'* andC~ are minimal at that. It is easy to check that the
function

omit x;
Cx)= (—1)io[x1,...,xd+1] if x €{x1,...,xq41},
0 otherwise,

defines a circuit if it is not identical 0. In fact, all circuits can be obtained this way. We will
compute circuits to use an argument of the following fommdoes not see the skylight
if and only if there is a circuit such that the positive part is one of the diagonals and
negative part is the set containingand a subset of vertices of the skylight. Since then
the tetrahedron spanned byand the skylight is pierced by the diagonal.

Important tools to compute simplex orientations are the Grassmann—Pliicker relations
(see [8, Section 2.4]): For poinds b, x1, ..., x4 they state that the set of signs

{[av bs X1, XZ] : [a7 bs X3, -x4]7 _[a7 bs X1, x3] : [a7 bs X2, -x4]1
[a7 ba X1, x4] : [a7 ba X2, XS]}

is either identical O or contains both-a and a—. The typical use of the Grassmann-—
Plucker relations is to deduce one orientation when the others are known. We can read
the orientations of some of the different tetrahedra from two-dimensional projections
(drawings) of the point configurations as in Fig. 2. We use a left-handed rule system,
i.e., we decide whether the triangles, x», x3) is oriented counterclockwiseH) or not

(-), also if x4 is on our side of the plane spannedy x2, andxsz (+) or not (), and
multiply these two signs to obtain the orientation, x2, x3, x4].

Proof of Lemma 2.2. (1) In a Schonhardt polytope, the simplice$:, A2, Az, B1) and
(A1, A2, A3z, B2) have the same orientation since edgas, A2) and (A2, A3) are both
incident to facet A1, A2, A3) and they are both non-reflex edges.

By the above argument, going around the boundary of a Schénhardt polytope, keeping
in mind which edges are reflex, we can determine the orientation of 12 simplices
up to one global sign change (there are 12 edges). But theréﬁ)aﬁe 15 simplices
formed by the vertices of the Schoénhardt polytope. The remaining three simplices
are (A1, A2, B2, B3), (A2, A3, B1, B3), (A1, A3, B1, B2). The signs are determined by
the following Grassmann—Plucker relations: for1, A2, B2, B3) takea = A1, b = Ay,
x1= Az, x2 = B1, x3= B2, x4 = B3 (the other two by circular index shift). Then

(= 2= =4 — ) 2+, -)

the equation forcegAs, Az, B2, B3] = +. From the chirotope information it is easy to
check that all vertices are in convex position (see description of how to read the facets of
the convex hull from the chirotope in [8, Chapter 3]), and that their convex@wl is
indeed an octahedron.

(2) We will show that if a pointr lies beyondA1B, of C4 g, on the side 0iB1A2B3
opposite toBy, then(B1, A2) and the triangl€B», B3, x) form a minimal Radon partition
in the set of verticesA;, Az, Az, B1, B2, B3, andx, hence have an interior point in
common. This means cannot see the skylight. For this, we compute the following
orientations:



A. Below et al. / Journal of Algorithms 50 (2004) 134-167 143

—[B1, B2, B3, x] =+, since(B1, Bz, B3) is afacetofC, 5 \ (A1, B2),

[
+[A2, B2, B3, x] =+, since(Az, By, B) is afacetofCx p \ (A1, B2),
[A2, B1, B3, x]=—, fromthe assumption on,

[

+
—[Ap, B1, B2, B3] =—, from part (1).

Az, B1, B2, x]=—, fromthe Grassmann—Puicker relation below,

The necessary Grassmann-Pllcker relation is the oneandthBy, b = B2, x1 = Bs,
x2 = A1, x3= A, andx4 = x such that

forces[B1, B2, A, x] = —.

(3) If x is in the visibility coneV, then it is, by part (2) of this lemma, on the same
side asBz with respect to the plan8; A2 B>. Hence, A, is on opposite side oBz with
respect to the plandi Box. Therefore, the relative interior of the convex hull Bf and
Ay lies strictly on one side of the plar® Box, and the tetrahedrofB1, B2, B3, x) on the
other side of this plane. Therefore, those two point sets cannot have points in common.
By symmetry it follows that the other two diagonals do not obstruct any poimt fbm
seeing the skylight either.

Assume now that a point is beyond face A1, Az, A3), but outside ofV, i.e., for
instance on thet; side of the planeB1 B> A2. We claim that the paifB1, Az}, {B2, B3, x}
forms a circuit in the oriented matroid of the point configuration of the verticeS0f
andx. This means that the triang(®>, B3, x) is pierced by the diagon&Bi, A») in the
relative interior, hence is not visible.

—[B2, B3, A2, x]=—, since(Bz, B3, A1) is afacetofC, g\ (A1, A2, A3),

+[B1, B3, A2, x] =+, from the Grassmann—Pliicker relations below,

—[B1, B2, A2, x] =+, from the assumption on,

+[B1, B2, B3, x]=—, since(Bi, Bz, B3) is afacetofC, g\ (A1, A2, A3),
—[B1, B2, B3, A2l =+, from part (1).

In this case, we have to apply the Grassmann—Pllcker relations twice {Bgeis,
Az, x] = +. First, we deduc¢Aq, Ao, B3, x] = — from the Grassmann—Pliicker relation
witha = A1, b= Ay, x1 = A3, x2 = x, x3= By, x4 = B3:

(—mm 424 2 ()

Now we use this orientation to formulate= A», b = B3, x1 = A1, x2 = B1, x3 = Bo,
X4=X.

in order to get the desirddi,, B3, B1,x]=—. O
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B3

B,
cupola C

A
As

Ay

polytope P

Fig. 5. A cupola as part of a larger convex polytape

2.2. The cupola

Definition 2.3. A polytope C is called anm-cupola(or for short a cupola) if it has the
following properties:

(1) the vertices ofC are A1, A2, A3, B1, B2, B3, andq,i’j (k=0,....m+1, @4, J) e
{(1,2),(2,3),(3,1)}), whereq,’ = A; andg,’, , = B; are identified;

(2) the verticesA, Az, A3, B1, B2, B3 are in Schonhardt position, arid 1, A2, A3) (the
bottom facet) andBi, Bz, B3) (the skylight) are facets af;

(3) the other facets areB;. q,’. g;{,) and(A;. ¢, . gl fork=0,....m+1,(. j) €
{1,2), @2, 3),1(12%, D}

(4) the vertices,”” (k =1,...,m) lie on the side of the planB; A2 B3 opposite toB;.
Similar conditions must hold fajkz’3 andq,f’l.

Proposition 2.4. Let C be anm-cupola which is part of a larger polytope (i.e., the set
Q = P — C is a convex polytope an@ andC share the common facéf1, Ay, A3)). Let
n be the number of vertices #f andn’ be the number of vertices ¢f.

If T is a triangulation of P with the property that the fourth point of the tetrahedron
containing the skylight o is not in the visibility cone ofC, then there are at least
n+m — 3=n’ + 4m tetrahedra in the triangulation.

Proof. If the vertex triangulating the skylight @ is a vertex on a vertex-edge chain@f
then it does not see the skylight by Definition 2.3(4) and Lemma 2.2(2). If itgsimstead,
then it has to be beyond the fa¢a1, A2, A3) of C. Hence, by Lemma 2.2(3) it cannot
see the skylight either. Therefore, the triangulatividoes not use one of the diagonals.
By Lemma 1.3 the number of tetrahedra is at least m — 3. Since by construction
n=n'+ 3(m + 1), the number of tetrahedra is also at ledst 4m. O

This means that any “badly” triangulated cupola gives rise to a high number of
tetrahedra in the triangulation. The way we are going to use this is to constargt
cupolas and apply the proposition to all of them.
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2.3. Constructing a cupola from a visibility cone

In this subsection we will show that cupolas can be attached to any face of a frame
polytope using intermediate polytopes and that the visibility cone can be prescribed.
The following theorem does not have the full strength we need for the construction. In
Section 3, we will use a slightly stronger version which we will present at the end of this
section. However, this theorem captures the main ideas used to construct a cupola.

Theorem 2.5 (Cupola construction from a given visibility cond)et F be a facet of
a 3-polytopeP, andV be a triangular cone such that N V is a triangle in the relative
interior of F, andm be a positive integer. Then there ismancupolaC beyondF of P such
that P is beyond A1, A2, A3) of C and such tha¥ is the visibility cone of”. Moreover,
the input length o€ is polynomial in the input lengths &f, V, andm.

Before we come to the proof, we will exhibit a necessary condition of the visibility cone
V of a cupolaC and the facet the cupola is being glued upon. It will imply that we cannot
directly attach a cupola to a face (as in [23]), but we have to construct an intermediate
polytope first.

Lemma2.6.LetAj, Ay, Az, B1, B2, B3 be vertices in Schénhardt position. Defin¢o be
the intersection line of planeBz B1 A1 and B1 B2A, linesl, and/z are defined accordingly
(Fig. 6, note that they contain the extreme raysigf The linedy, I, andlz intersect the
relative interior of the bottom fac€Aj, A, A3) of a cupolaC. The intersection points
D1, D2, and D3 are forced to have the following collinearitied1 D1 D>, A2D2D3, and
A3zD3Dg.

Proof. I1 enters the Schénhardt polytofén point B1, runs along facetA1, By, B3) until

it reaches the edgel 1, B3) where it goes into the interior ¢f. Then the relative interior of
(A1, A2, A3) contains the poinD1. In this way,D1, D2, A2 are all on the planed1A2A3
andB1B2A2. O

Fig. 6. Collinearity condition in the base triangle of a cupola.
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Proof of Theorem 2.5. We proceed in three steps. The lingslo, I3 are defined as in
Lemma 2.6.

The bottom triangle(A1, A2, As). We will now construct an intermediate polytope
beyondF which will have a triangular facetA1, A2, A3) which is (1) parallel toF, and
which is (2) intersected by the conéin a triangle(D1, D2, D3) in the relative interior
such that (3) the collinearity condition from Lemma 2.6 holds.

To do this, we place a plané parallel to and slightly abovg such that the intersection
points D; of H andl; (i =1, 2, 3). Also H has to be so close tb that thel; do not cross
betweenH and F. By prolonging the line segmem3 D; slightly beyondD; (staying in
P\ F) we obtain pointd1, analogously construct, and Az (Fig. 7). Taking the convex
hull of F and the pointsd1, A2, and A3 gives then the intermediate polytope, whose
face (A1, A2, A3) has the collinearity condition. These constructions are polynomially
constructible in the sense of Lemma 1.4.

The frame of the cupola.As in the construction of the bottom facets, Az, A3), we
place a plané?’ parallel and slightly above this facet. The intersectio#iéfandV is the
triangle(B1, B2, B3) (B1 is on the same extreme ray BfasD; and so on). See Fig. 8.

It is clear from the construction that triangle®1, D2, D3), (A1, A2, A3), and
(B1, B2, B3) are parallel and all oriented the same way. Therefore, it is not hard to check
that the pointsA, Az, A3, B1, Bz, and Bz are vertices of a Schénhardt polytope whose

Fig. 8. Building the frame of a cupola.
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Fig. 9. Construction of the vertex-edge chain.

visibility cone isV . Polynomiality of this part of the construction follows from Lemma 1.4
as well.

Attaching the vertex-edge chainsNow that the frame of a cupolais done, i.e., the vertices
A1, ..., Bz arein Schdnhardt position, it remains to patch the key structures of Lemma 1.3,
the vertex-edge chairaﬁ’k i=1,....,m,(J,k)e{(,2),(2,3),(3,1)}),tothe sides of the
frame conyP U {A1, ... B3}).

Given triangular facesa, qo, gm+1) and (b, go, gm+1) Of a convex polytopeP and
a planeG which (strictly) separates poingg andg,,+1. We claim that we can construct
pointsqs, ..., g, beyond the edgé&yo, ¢n+1) Of P such that the convex hull a? U {¢;}
has the properties of Lemma 1.3 and such that the pgints ., ¢,, lie on the same side
of G asqo. Moreover, the input length of the constructed points is polynomially bounded
in the input length ofP andG.

By applying our claim three times, we will conclude our proof. The vertilq’eéfrl are
placed beyond edg@l ;, B; 1), verticesB; and A ;1 take the roles of andb, G is the
plane spanned bB;, A; 1, andB; . Itis easy to check that this is exactly what we want
for Lemma 1.3 and for the cupola conditions.

Now we prove the claim. We will put the poings (i = 1, ..., m) on a parabola segment,
beyond the edg&yo, ¢»+1). Let H be a plane containingy andg,,+1 which also intersects
the interior of P. This plane has the property that it contains points beyond @d9&,,+1)-

Itis constructible in polynomial time. Latbe the sum of the two normal vectors of planes
aqogm+1 andbgogm+1, andH the plane containingo andg,,+1 parallel tov.

Let now D be the intersection point @ and(go, gm+1). Letw be a vector of direction
of the intersection line of; and H, such that starting ab it is pointing out of P. Now let
E. = D + ¢w for ¢ > 0 to be specified later. For small E, is beyond(¢o, ¢;n+1)- Hence,
the parabola defined according to Lemma 2.7, stated and proved belgnOby= qo,
p(1/2) = E,, and p(1) = g,,+1 lies entirely in H, and for arguments between 0 and 1
passes just beyon@o, gm+1)- Letg; = p(i/(4m)) fori =1, ..., m. For smalle all those
points are beyonéyo, ¢,,+1) @and on the same side 6f asgo (polynomial conditions, use
Lemma1.4). Also, they are in convex position such that the convex hBllLofg1, . . ., g}
has exactly the required face lattice
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Lemma 2.7. Let po, p1, p2 be three non-collinear points i3 and 1o, 11, 1> be three
distinct real numbers. Then there is a unique cup/eR — R3 such thatpg = p(to),

p1 = p(t1), andp2 = p(r2) which is quadratic in every coordinate. Furthermore, all points
on p(t) are in the plane spanned by, p1, and p2, and they are in convex position. Also
a plane containingp(r) and p(l) for somer # [ which does not contain all g has all
points betweehandr on one of its sides and all other points on the other side.

Proof. Sincepo, p1, p2 have to be on they, 71, > positions of the curve

Ay + byt + ¢, t?
p(t)= (ay + byt + cytz) ,
a; + b.t + c.12
we have the condition

ax by ¢y 1 1 1

(ay by cy) o n 2)=]|po p1 p2

a; b, c; [g tf t22 . . .

By the non-singularity of the Vandermonde matrices, there is a unigue solutionitoc.
given thep; ands;.

The curves which are quadratic in every coordinate are linear transforms of the moment
curvem(t) = (1, ¢, 12). This curve lies entirely in the = 1 plane, is convex, and has the
condition that it intersected by each plane at most twice (or it is in this plane). All these
properties are invariant under linear transformatiors.

Proposition 2.4 stated that we get a large triangulation if we triangulate the skylight of
a cupola by a vertex outside the visibility cone. Now we want to estimate how much smaller
a triangulation is if we use a vertaxin the visibility cone instead. We give a relatively
small triangulation of the cupola and of the space between the bottonmi4acd,, A3) of
the cupola and the triangular fa¢eof P with the help of the vertex.

Proposition 2.8. Let F' be triangular face of a polytop®, and C an m-cupola attached
to it according to Lemma.5. Letv be a vertex ofP in the visibility cone ofC. Then there
is a triangulation ofconu({v}, F, C) with at most3m + 16 tetrahedra.

Proof. First of all, we triangulate along the vertex-edge chains using the tetrahedra
(Bi, Air1, g, q;ﬁl) fori=1,2,3,andk=0,...,m.

After removing these tetrahedra, we are left with the union of the Schénhardt polytope
onthe vertices\1, Az, A3, B1, B2, B3, and the convex polytope co@iv}, F, (A1, A2, A3)).
This is a non-convex polytope with all edges, except the diagonals, being convex (easy con-
clusion from Lemma 2.2 and the construction). Since the specified verieinside the
visibility cone, it sees all facets of this polytope, except the three facets it is incident to,
from theinterior. In particular, we can form tetrahedra of all these facetsiaadd none
of them intersect badly. They are 7 tetrahedra for the facets of the Schdnhardt polytope
(since we do not count the bottom face) and at most 6 for the rest (the convex Audiraf
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(A1, A2, A3) has—by a planar graph argument—at most 2 4 = 8 facets, subtracting 2
for F and(A1, A2, A3) gives 6). O

It is this 3n in contrast to the 4 in Proposition 2.4 which makes this way of
triangulating optimal for large:. We give more details on the use of these propositions
in Section 3 when we actually construct a polytope with many cupolas.

2.4. Constructing a visibility cone

In order to use the cupola as a basic building block, we need to have a visibility cone
that contains a specified set of vertices and intersects the relative interior of some face.
Once we have that we can construct the cupola as described in the previous section. The
set will consist of all vertices lying in a specified plane.

Lemma 2.9. Let H be a plane which intersects the relative interior of some facef
a polytopeP, and letS = {v1, ..., v} be the set of vertices &f lying in H, not including
the vertices of". LetS’ = {w1, ..., wy} be a set of points imelint(F) N H. It is possible
to construct a triangular con& which intersects in a triangle that lies in the relative
interior of F andV containsS and S’ in its interior and no other vertex a?.

The reader may not see at this point the purpose of th€’seut we will justify it at
the end of this section.

Proof. P N H is a polygon. Without loss of generality, N H is horizontal and situated
on the top of the polygo® N H (see Fig. 10). Let be the line connecting the leftmost
point of S and leftmost vertex aof (the one encountered first when walking arouhd H
counterclockwise, starting & N H). Analogously, let- be the line connecting/ and the
rightmost vertex ofs.

The area betweehandr (in H) is already a cone containingyand no other vertices
of P. We will perturb it in a way that the other conditions are satisfied as well.

First, shift! andr parallely outwards, guaranteeing that they still interdéct H in
its relative interior (easy open conditions); we obtdiandr’. Also, let f’ be a line inH
parallel toF just outsideP, i.e., such that’ andr’ intersecty’ in the same order a8 N H
(again using Lemma 1.4).

Fig. 10. Construction of andr, then!’ andr’ (viewed in H).
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Fig. 11. Rotated hyperplanes, viewed by their intersections iith

Now, we will rotateH about/’ andr’ and f’, getting three planes bounding the desired
triangular cone. Let! be oriented in some way, afmgyx > by be its defining inequality.
Let v be some point which lies on the positive sidef Let G, be the plane through
andv. By construction, all vertices ifi lie on the same side @/, so we can orientit such
that S is on its positive side. Let;x > by be its defining inequality. Perform the same
construction for” and f” obtainingG,. andG ;, also orienting them in a way thatis on
their respective positive sides. L6Y, be the plane defined by + eay)x > by + eby.
This plane containg and for smalk it is very close toH. Hence, it is theotation of H
about!’ in the direction of plan&; . Also letG?, be defined byay +ca,)x > by +¢eb,,
andG’,, be defined by —an +eay)x > —by +eby.

Obviously, all points inS and in " are on the positive sides of the plang§, G¢,,
andG¢,. For smalle > 0, these planes do not “sweep” over verticesPolvhich are not
in S, and it is easy to see that in this case, there are no verticBstlodit satisfy all three
new inequalities. Also for small, the points inF satisfying all three inequalities define
a triangle in the relative interior of with endpointsG;, NG, N F, G}, N Gef, N F, and
Ggf, N Gj, N F. Hence, the set of all points satisfying the three inequalities is a triangular
coneV with the desired properties. The conditionssoare open polynomial conditions
accordingto Lemma 1.4.0

This lemma can be used to buittiecupola over the facel. However, there might be
problems if we keep on constructing around the polytope, like adding more cupolas over
other facets of. The visibility cone we just constructed might “catch” points we construct
later. But these constructions all hapg®yondfacets of P, so we can use the following
lemma to construct all cupolas one after the other without their visibility cones catching
extra vertices.

Lemma 2.10. Let Hy, ..., H, hyperplanes, intersecting facels, . . ., F,, of a polytopeP
with the restriction thatF; N H; =@ for all i # j. ThenPpeyondr; N H; =¥ for all i # j.

Proof. Assume there is a point in Poeyondr; N H; (i # j). Then this point also lies in
(P \ F}) N Hj, but on the non-positive side @f. Letv be a point inF; N H;, Thenv is
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alsoin(P\ F;) N H; (sinceF; C P C P\ F;), but on the positive side df;. Hence, there
must be a poiniv on the line segmeritz, v] which is on the hyperplane containirfg.
The whole segment lies iR \ F;, hence every point on it has to satisfy allB%& defining
inequalities except that af;. Sow liesin the facetF;. But it also lies inH; (the whole
line segment does), which contradicts the assumgijon H; =@. O

In Section 3.1 we will need an additional condition: given a set of lines in the gane
(of Lemma 2.9) that pierce the fadg we want to be sure that these lines also pierce the
skylight of the constructed cupola. (This condition will play an important role when we
want to force so-called blocking conditions, see Section 3: at some point two tetrahedra
spanned by two skylights and two respective visible verticasdv’ will have to intersect
in their interiors. This is already guaranteed if the corresponding gnaisd g’ intersect
inside the polytope.)

The next theorem specifies the way in which we will use all the preceding lemmas in
our construction in Section 3.

Theorem 2.11 (Full-strength cupola construction)et H; be planes that intersect fa-
cets F; of a polytopeP in their relative interiors such tha¥; N H; = ¢ for all i # j.
LetS; = {v{, ..., v} } == (ver(P) N H;) \ F;,andL; ={g}. ..., g;'_,} sets of lines. Assume
further that each of the lineg. pierces the relative interior of; and is incident to somﬁ(.

Then we can sequentiaIIJy construct all cupotagsbeyond the faces; such that in the
resulting polytope their visibility cones contati and no other vertices. In addition, the
skylight of the cupola over eadh is pierced by the lines if;.

Proof. The theorem follows from the ideas in Lemmas 2.5 and 2.9. In the construction
of the visibility cone over facetF;, we invoke Lemma 2.9 with the polytopg U

U#i Ppeyondr; - The sets; is, of course{l N F; | I € L;}. The cupola construction was
such that the cupolas over; were alwaydeyondhe facetF;, so the constructed visibility
cones contain no vertices of the other cupolas. In order to have the lingspierce the
skylight of cupola we have to alter the construction of the cupola in Lemma 2.5: when we
put the planes parallel t&, we do it in such a way that the trianglés;, A2, A3) and then

(B1, B2, B3) are pierced by these lines. These are both open conditions on the distance of
the planestdd. O

3. Thetransformation from SAT

It is our intention to model the well-known satisfiability problem (SAT) using the
visibility cones of cupola polytopes. Just as Ruppert and Seidel did in [23], from now
on we will restrict our attention tgpecial SAT instancesach variable appears exactly
three times, twice unnegated and once negaléds is not really necessary, but simplifies
explanations. We will argue in Section 3.1 why this restriction is valid. The formula

[f=X1VaXov X3V Xp)A(—=X1VXoV—=XaVX)A(X1V X2V X3V Xy)
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is such a special SAT formula. The figures in this section will correspond to this particular
instance.

In Section 3.1 we will introduce the formal definition of the familylogical polytopes
Pr.m associated to a given logical formufaand a natural numbes. This numbevn will
denote the length of the vertex-edge chains of the cupolas we use. In order to define logical
polytopes, we will specify the face lattice ofmme polytopereveal where the:-cupolas
are glued, and then give more conditions on the positions of the vertices relative to each
other. To achieve our goal of proving Theorem 1.1 we need two lemmas. The first lemma
ensures that logical polytopes exist and that we can construct them in polynomial time (see
the proof in Section 3.3). The second lemma assures that, among all logical polytopes of
a fixed logical formula, the size: of the vertex chains in cupolas can be adjusted to (1)
be polynomial in the number of logical variables and clauses, and (2) to be large enough
to guarantee the equivalence between logical satisfiability of the logical formula and small
triangulations of the logical polytope. We will prove this second lemma in Section 3.2.

Lemma 3.1. There is a polynomial algorithm that, given any positive integeand

a logical formula f containingC clauses and/ variables, produces a logical polytope
P € Py, with m vertices on each vertex-edge chain. The number of vertice?® isf
bounded by a polynomial im, C, andV . Also, the coordinates of the vertices have binary
encoding length polynomial im, C, and V.

Lemma 3.2. Let f be a logical formula containing” clauses andV variables. There
exists a polynomialn(C, V) with integer coefficients such that far = m(C, V) and

for any logical polytopeP € Py, the following is true P admits a triangulation with

< K =n +m — 4 tetrahedra if and only if there is a satisfying truth assignment to the
variables of the formulg’ .

Finally, using these two properties, we are ready for the proof of the main result.

Proof of Theorem 1.1. The problem is clearly in NP: checking whether a collection of
tetrahedra is indeed a triangulation of the polyt@paeeds only a polynomial number of
calculations. Every pair of tetrahedra is checked for proper intersection (in a common face
or not at all), and the sum of the volumes equals the volunte @omputable for instance
by the Delaunay triangulation of the polytope). Also the size of triangulations of a given
polytope is bounded by a polynomialanof degree two (this follows from the well-known
upper bound theorem, for details see [22]).

By Lemma 3.1, from a given logical formulaon V logical variables and’ clauses, we
can construct a logical polytope € Py ., (c,v) of encoding length polynomial i andC.
Hence, by Lemma 3.2 there is a polynomial transformation that establishes the polynomial
equivalence of a solution for the SAT problem and the existence of small triangulations
of P (small means of size less thdh as given in the statement). This completes the
proof. O
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3.1. Logical polytopes

First of all, we want to argue why the restriction to thigecial SAT formulagevery
variable appears exactly twice unnegated and once negated) is NP-complete: the SAT
problem remains NP-complete even for instances where each variable or its negation
appear at most three times (see references in [14, p. 259]). In addition, a change of variables
can be used to change a non-negated variable into a negated variable if necessary. Also
note that if a variable appears only negated or only positive the variable and the clauses
that contain it can be discarded. Finally, if a variable appears exactly once positive and
exactly once negated then it can be eliminated by combining the two clauses that contain
the two variables into one.

Now, we want to define the family of logical polytop®s,, for a given logical formula
f and a given positive integer number We start by describing its face lattice. To prevent
a possible confusion we remark that our vertices will be labeled by the leftersen they
are related to logical clauses; when they are related to logical variables, andvhen
the vertex is auxiliary. Points always have subscripts and/or superscripts thus should not be
confused with their coordinate-entries y, z).

In a logical polytope there will be an-cupola for each clause and one for each variable
and its negation. The cupolas will be glued tivame polytopavhich resembles a wedge.
Look carefully at Fig. 12 for an example of the overall structure.

Figure 13 gives a view of the lower hull of the frame polytope. The sharp part of the
wedge consists of 2 + 1 vertices (where” is the number of clauses), ..., coc. We
call this part of the frame polytope tlspine We attach thelause cupolassociated with
clausei to the triangle(cy;, c2i+1, c2i+2) (Shaded in the picture).

On top of this wedge structure we will put a seriesaiffs They are triangular prisms,
spanned by the two triangles), z\, z',) and(z} , 2k, z%;), one for every variabl&; of the
logical formula. Thevariable cupolaswill be attached to the triangular facet, , 2%, z5),
theback gablegthe triangular faces are shaded in Fig. 14).

The variable cupola of variablg; is such that its visibility cone contains exactly the
front verticest;. andz’.. We will use these cupolas to read from a small triangulation of the
polytope the logical value of variables according with the following rule: if the truth-setting
vertexz,. associated to théth logical variable is used to triangulate the skylight of the

S L

4 variables

3 clauses

Fig. 12. Sketch of a logical polytope.
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Fig. 14. The roofs, back gables shaded.

Fig. 15. A roof, back gable shadedcoordinate superelevated.

cupola for variable, then we sefX; = true. If the truth-setting vertex used to triangulate
the skylight of the cupola for variableis insteadz’; thenX; =false

Beyond the quadrilateral face containitigwe will place theliteral verticesx} andx}
which corresponds to the positive occurrencexpfin the logical formula. Beyond the
other quadrilateral face we will place the other literal vert§>which correspond to the
negated occurrence &f;. These vertices are in the visibility cones of the three cupolas of
the clause where variabl; or its negation appears.

We list the five conditions on logical polytopes which are necessary for the transforma-
tion to work in both ways, i.e., a small triangulation yields a satisfying truth assignment
for our logical formula and vice versa.
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Definition 3.3. For a given logical formula, the famil;,, of logical polytopess the set
of all three-dimensional polytopé3 that satisfy the following conditions:

(1) (Convexity and face lattigelhe logical polytope must be convex, and the face lattice
is as we just described it. In particular, severatupolas are part of the polytope, one
for each clause and variable jh

(2) (Visibility) The literal verticesx], x}, and x5 are vertices in the visibility cone
associated to their respective clauseupolas, but of no other clause visibility cone.
The verticesz)., zi. are the only vertices in the visibility cones of thth variable
m-cupola.

(3) (Blocking This constraint ensures that the assignment of true or false values for
variables is done consistently, i.e., the positive (negative) literals can be used to make
their clauses true if and only if the variable is set true (false).

Concretely, the tetrahedron spannedzbyand the skylight of the:-cupola of variable
X; intersects the interior of the tetrahedron spannedib@by xé) and the skylight of
the clausen-cupola corresponding tdl (to xé). Also the tetrahedron spanned ti;y
and the skylight of the:-cupola of variableX; intersects the interior of the tetrahedron
spanned bycé and the skylight of the clause-cupola corresponding to it. See Fig. 16
for an example.

(4) (Non-blocking Using the vertex!. to triangulate the interior of theth variablem-
cupola should not prevent the non-negated literal vertices from seeing their associated
m-cupolas. Concretely, ij is the clause corresponding to the literal verinilixthen
tetrahedra(z}, % , 2%, z5) and (xi, c2j_2, c2j—1,¢c2;) do not intersect at all. The
canonical analogue shall hold fe§ andx} (for x} replacezr by zf).

(5) (SweepinyBecause we intend to follow the same triangulation procedure which was
proposed by Ruppert and Seidel [23], and which we will explain in Section 3.2, we
will need that

skylight of variable X;

skylight of clause j

Fig. 16. Blocking for consistent logical values.
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(a) the variablexi is to the “left” (negativex direction) of the planeSZk,chkz;,
CokC2% 412, andegy ek 112 for0 <k < C — 1.
(b) x'z is to the “left” of the plane&-Zk_1Cka’l, C2kC2k+1xlli and C2k—1C2k+1Xll for

0<k<C-1.
(© xé is to the “left” of the p|anei‘2k_162kz;, C2k62k+1zlf, and C2k_162k+1zlf for
0<k<C—-1.

(d) ZiT is to the “left” of the planegzk,lczmg, c2k62k+1xé, CZk—1C2k+lx£, c2k,1c2kxé,
Cch2k+1xé, andC%,102k+1xé forO<k<C-1.

3.2. Using the logical polytope

Proof of Lemma 3.2. If atriangulationT of the polytope has: n +m — 4 tetrahedra, then

by Proposition 2.4 the skylight of each cupola is triangulated by a vertex in the visibility
cone of the cupola. In particular, one d} and ziT is chosen to triangulate the cupola
corresponding to variabl&; for eachi. We claim that assigning t&; the truth value
according to this choice f +— false z7 > true) satisfies all clauses of the formula.

Each clause cupola skylight is triangulated by one of the literal vertices, say glause
by the positive literal vertexi (or xé). By the blocking conditions, it cannot be the case
that the variable skylight oX; is triangulated by. since these tetrahedra would intersect
badly. So we had seX; to true. Having x} (or x5) in clausej’s visibility cone meant
that variableX; appears unnegated in this clause. If the skylight of clause cup@da

triangulated bycé, by the same argumen; was set to false, and claugesatisfied by the
literal —=X;. Hence, all clauses are satisfied.

Now we need to prove the converse. If there iBue—false assignment that satisfies
all logical clauses we must find a triangulation that has no more khaetrahedra. For
that we construct a “small” triangulation. There are three different kinds of tetrahedra: the
ones triangulating the cupolas, the ones triangulating the roofs, and the ones triangulating
of the rest of the wedge. We know how to triangulate a cupola if we know a vertex in its
visibility cone (see the proof of Proposition 2.8). For the rest we will now foll@weaeping
procedurewhich was first described by Ruppert and Seidel [23].

The sweeping triangulation proceeds by triangulating “slices” that correspond to the
different variablesX; to Xy, i.e., from right to left. The variable roofs are arranged
sequentially for exactly this purpose. A slice is roughly speaking the part of the tetrahedra
between a roof and vertices of the spine. After ikie step of the process the partial
triangulation will have triangulated the firsslices. The part of the boundary of the partial
triangulation that is inside the logical polytope will form a triangulated disk. We will call
it the interfacefollowing the convention of Ruppert and Seidel. It contains the following
triangles:

(24, c2j-2, c2;)
i i if clausej is satisfied by one of the firstvariables, or
(2. c2c.2zy) and _ )
(. c2j—2.c2j-1) and (zh,c2j-1.c2))
otherwise,

forall j =1,..., C. Before the first step, the partial triangulation is empty. After the last



A. Below et al. / Journal of Algorithms 50 (2004) 134-167 157

0

Fig. 18. Removing the tetrahedra spanned pyand the shaded triangles.

step the partial triangulation will cover the whole logical polytope. In general, the vertices
of theith roof will see all triangles of the interface and will be used as apexes to form new
tetrahedra to add to the current partial triangulation. This way the interface will slowly
move from right to left.

Now we describe in detail the triangulation step for ttte variableX;. Since we are
only concerned with roof vertices in robfwe will drop all superscripts. The triangulation
step depends on wheth¥y is settrue or falsein the satisfying assignment. Let us consider
first the caseX; = true.

The pointzr is used to triangulate the interior of the variable cupola associated
to X; according to Proposition 2.8. Fromy we also form six tetrahedra with the
following triangles:(zz, X3, zp), (¥3, 2. z24), (2B, 24, X2), (2B, X2, ZR), (24, X1, x2), and
(x1,24,2F).

Now we come to the part of the triangulation which gave the sweeping procedure
its name. We form the tetrahedra betwegnand the current interface triangles. This is
possible by part (a) of condition (5). We also use the tetrahe@ronr, co, zr). This is
illustrated in the transition from (a) to (b) in Fig. 19. The interface advances,tioe., if
(zF, cj, cx) was an interface triangle before, naw, c;, cx) is an interface triangle. Also
(zF, c2c, zR) is replaced by the trianglec, coc, zR)-

Since X; is set totrue we can usex; to triangulate its clause cupola according to
Proposition 2.8. We only do this if the clause cupola has not been previously triangulated
using an other literal vertex. Condition (2) ensures thais in the visibility cone of the
clause cupola coming from the clause that contains the unnegatedXtefairthermore,
condition (4) ensures that we can actually perform this triangulation of the clause cupola
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zT 2T ZT

Co ¢y C2 o ¢y C2

Fig. 19. The sweep.

ZL

ZT

Fig. 20. The sweep fok; = false

without badly intersecting the tetrahedra of the variable cupola. In Fig. 19(c) we see that
if x1 is used to triangule clausgs cupola, then the interface triangley, c2;—2, c2;) is
replaced by the two trianglésy, c2;—2, c2j—1) and(x1, c2j—1, ¢2;).

We repeat this procedure wita, i.e., form tetrahedra with, and the current interface
triangles, and then use to triangulate its clause cupola if necessary (Fig. 19(d)). This
is possible by part (b) of condition (5). We continue by forming tetrahedra usinas
apex (Fig. 19(e), possible by condition (5), part (d)). At last, we will include the triangle
(c2c, zL, zB). All these triangles are visible by part (d) of condition (6). After all these
tetrahedra are added the interface is ready for the next variable.

Let us now consider the triangulation step in the cisés set to befalse we use the
vertexzp to triangulate the variable cupola as well as seven faces of the roof (see Fig. 20):
(27, X3,24), (X3, 24, 28B), (X3, 2L, 2B), (2B, 24, X2), (2B, X2, ZR)s (A, X2, X1), (X2, X1, ZR)-

The reader can see that on the roof we are leaving only the vestélext the tetrahedron
(zr,zL,ZR,C2c) IS cut out. Hereby, the interface triangler, zr, c2¢) is replaced by
(zr, zL, c2¢) (Fig. 20(c)). Therkz will be used as apex with the triangles in the interface. If
the negated literaX; is used to satisfy its clause the jth clause cupola is triangulated by
x3. The interface advances as in thee-case. Then; can be used to form tetrahedra with
the triangles in the interface. In the end the interface is again ready for the next variable.
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How many tetrahedra can such a triangulation have? Triangulating all cupolas
with a vertex in their visibility cones yields at mo$8m + 16)(C + V) tetrahedra
(Proposition 2.8). In one step of the sweeping triangulation the tops of the roofs are
each triangulated using six or seven tetrahedra (if the variable is unnegated or negated,
respectively). Furthermore, the interface is triangulated by some vertices three times (in
the positive case by}, by x5, and byz}.) or two times (in the negative case by and
by ziT). The interface contains in each step betwéeand 2 triangles. Eventually, in
either case there is one more tetrahedron (see above). An upper bound for the size of this
triangulation is therefore

#T < (3m +16)(C+ V) +7V +3CV +1
—m(3C +3V) +16C +23V +3CV + 1.

pr(V.0)

What is the number of the vertices of the logical polytope in terms of the number of
clauses and variables? We havdogical variables and’ clauses in the SAT instance. We
havem interior points each of the vertex-edge chains we added (later we will determine the
value ofm as a polynomial function of andC). We observe that we have:3t 6 vertices
in each cupola, hence we hai&n + 6)(V + C) for all cupolas. We have in each roof nine
vertices, two of them are shared with the subsequent roof except for the last roof. Hence,
the total number of vertices in roofs i¥A4- 2. We have left only the@ + 1 vertices along
the spine. In conclusion, the number of verticeas

n=CBm+6)(V+C)+7V+24+2C+1=m(3C+3V)+8C+ 13V +3.
——
pn(C,V)

We had said before that a “bad” triangulation (where at least one cupola skylight
is triangulated by a vertex not lying in its visibility cone) has at least m — 3 =
m(3C + 3V + 1) + p,(C, V) tetrahedra. On the other hand, a “good” triangulation has
at mostm (3C +3V) + pr(C, V) tetrahedra. We can now set=m(C, V) = py(C, V) —
pn(C, V) + 1. Then, if a good triangulation exists, its size is smaller than or equal to
K =n+m — 4, and if not, all triangulations are larger th&n O

3.3. Constructing a logical polytope

Proof of Lemma 3.1. The construction will be carried out in five stages. By the time we
end the construction all five requirements of the definition of logical polytopes must be
satisfied, but three of the conditions will not be met until the last stage.

(1) Give coordinates of the basic wedge, with rectangular faces on top for each variable.

(2) Attach the roofs for each variable, giving preliminary coordinates for the literal vertices
and preliminary coordinates for the points on the lower edge (the spine of the wedge).

(3) Perturb the literal vertices to their final positions.

(4) Perturb the vertices on the spine of the wedge.

(5) Attaching the variable cupolas following the procedures of Section 2.
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In every step we will build a construction element (a point, a line, or a plane) whose
coordinates are polynomials in the construction elements up to that particular moment.
Hence, the encoding length of each new construction element is bounded by a linear
function of the encoding length of the construction so far. The number of construction steps
is polynomially bounded il andV . Hence, the encoding length of the whole construction
is also polynomially bounded i and V. Note however, that the coordinates themselves
will in general be exponentially large.

Instead of writing explicit (and highly cumbersome) coordinates for the construction
elements, we rely on Lemma 1.4 to ensure that such coordinates can be found if one has
really the desire to see a particular logical polytope. A key property of stages (2)—(4) in
the construction is that the geometric conditions we want to determine a finite collection
of strict polynomial inequalities a single variableThen, by Lemma 1.4, we know there
is an appropriate polynomial size solution. In subsequent stages of the construction similar
new systems, for other independent parameters, will be solved, preserving what we had so
far, but building up new properties.

Stage(1). The basic wedge. Consider the triangular prism which is the convex hull of
the six pointsco = (0,0, 0), c2c = (0,1,0), zy = (0,0,1), z3 = (1,0,1), z; = (0,1, 1),
andz}q =(1,1,1). See Fig. 21(a). In order to obtain a convex structure on the top of the
wedge, we consider the functigiix) = x(1 — x) + 1. The vertices of each roof boundary
(thatisz}. andz’. as well ax’, andz’ ) will lie on the surface: = £ (x). More specifically,
=2 =(i/V,0, f(i/V)) andzl, = yitt = (i/V, 1, f(i/V)) fori =0,...,n. By the
concavity of f, the points are indeed in convex position and their convex huliywerige
has the desired face lattice (see Fig. 21(b)).

So far none of the conditions we want are satisfied (not even partially).

Stage(2). The roofs. We will first attach the pointsi\ andziB to the quadrilateral face
(2%, 2%, 7%, Z%). Then we give preliminary coordinates to the literal vertices and to the
vertices on the spine.

Let 2, = 1/2- (2% + z%) + (0,1/3, troof) @andzly = 1/2- (25 + z%) + (0, 2/3, troof)
wherezoof IS @ Non-negative parameter that is called nhef height That is the points
have the same coordinate as the midpoint betwes'lnandz}, y coordinate ¥3 and 23,

Fig. 21. Construction of the wedge.
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respectively, and heightoor over the face(z’, z%, % , z%). We want to choos@qor in a
way thatz’, andz’, are beyond the facet’., z\., 2% , z%,) (see Fig. 21(c)). We can easily
achieve this by the technique presented in Lemma 1.4: The only possibly concave edges are
the (z%-, 71 ). One restriction is therefore that all determinantgdetz’ , 2/, %, z/,) have to
be positive. These are finitely many open quadratic conditiongegi For #roof = O the
points 7/, an z; are inside the facet&’., 2}, 2} . z%), hence the edges in question are
trivially convex. We will get more polynomial constraints gsvbr below and then solve all
simultaneously to find the suitable roof height.

The spine of the wedge is still a line. We now put preliminary paipts. ., coc on this
line. Let

L1
u(j) = 52C
andc; = (0,u(j),0) for j =0,...,2C — 1, andczc = (0,1,0) (see Fig. 22). As an
auxiliary point, letb; be the barycenter of the pointg_», c—1, andey (I=1,...,C).
At this moment, this poink; = ¢ —1. Later, as we perturb the spine vertiggsvill move
accordingly, alway®$; = 1/3(c21—2 + ¢c21—1 + ¢2).

Now we want to give initial positions to the literal vertices. Say varia¥leoccurs
unnegated in clausés and/, and negated ifs. Note that/; depend on the variable we
are considering. For instance, in our example logical formula on p. 151, for vaable
l1=1,1> =3, andl3 = 2. But for variableX,, 1 =2, = 3, andlz = 1.

The preliminary literal vertexi is the intersection of the = u(2/1 — 1) plane with the
line connecting. andz’;. We do the same for the other positive occurrencelofind
obtain the preliminaryré. For the negative occurrence &f, we take the line connecting

zh andzh, intersect it with they = u(2/3 — 1) plane, and obtain the preliminaxy. We

w €1 €3 €5 C7 cs =z

cu. C2 €4 Cg 1 . L»'y
0 = 1 &

2

Fig. 22. Preliminary coordinates for the spine vertices.

y = u(2l, — 1) plane

Fig. 23. Construction of the literal vertices in tie slice of the wedge.
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Fig. 24. Construction off’ andg}.

join the preliminaryx] andby, by a lined; (this line lies in they = u(2/1 — 1) plane). Do
the analogue process fof andx}, obtainingd} anddj. Later we will move the vertices
x}, x5, x5 along their respective lined, d3, a3 a little out of polytope in order to turn them
into extreme points. The Iines;. will also be used for blocking conditions.

Let H' be the plane that containg andz}. and the midpoint of the edge) . z5)
(Fig. 24). The only vertices abové’ arex!, xb, xi, z',, andz}, and the only verticemn
H' arez?, andz',. This follows from the convexity of the current polytope.

Let ¢! (g5) be the line in the plané/’ which is incident toz}. and intersects the line
di(dé). Note that this intersection point lies in the segmerit c2,—1) (the line segment
(x5, c21,-1)), thus in the interior of the constructed polytope. Analogouslygiebe the

line in the planeH’ which is incident toz. and intersects the line segment, c2,—1).
It can be verified that if the roof height is smad’ ,zR,zB) is pierced by th%r’ in its
relative mtenor This is another strict polynomial inequalityzjgbs. It will be the planes
H' and I|neSg (i=1,...,V)fromwhich we make the visibility cones for the cupolas of
variablesX; accordlng to Theorem 2.11.

It is important to note right now that the non-blocking conditions are satisfied for
this special position of the vertices. We do not want the tetrahegfor} , i, ;) and
the triangle(x], ¢, -2, c2i;) to intersect. From this we get strict polynomial inequalities
on toof- They are satisfied forgor = O since they coordinates of the spine vertices
¢; are smaller than /2. A suitable value ofyoot can be found solving the univariate
inequality system we accumulated in our discussion (Lemma 1.4). It is easy to check
that the sweeping conditions are also satisfied for the preliminary position of the points

xi, xb, xé. So far we have met two of the five required conditions to have a logical polytope.

Stagg(3). Literal vertices. Now we put the finaki (j =1, 2, 3) alittle outward on Iineii

(Fig. 23). Alittle forxl andx2 means that the posmve literal vertices lie in a plane parallel
to the face(zy, 2, 7'y, zi) very close to it. We treat}, similarly. If the three literal vertices
are moved a sufficiently small distangg ) the face lattice of what we get after taking the
convex hull is as Fig. 15(a) in all roofs. See also the Schlegel diagram in Fig. 15(b).

By constructionH; containsZ; and z;, and they = u(2j — 1) planes contain all
literal vertices corresponding to clauge This will become important for the visibility
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conditions (see stage (5)). Also, for sm@ftra the non-blocking and sweeping conditions
are satisfied.
Although we do not have the blocking condition yet auxiliary lines can be set up. As

above, letls, I, I3 be the clauses to which the literal vertek x5, x5 belong. We made
sure that the line segmentsy,—1, x}) and (z%., z5) intersect in their respective relative
interiors. Hence, by the construction of ligg, it is also pierced byxj, c2,—1) between
zr and the facéz , 2%, z'5). (Analogously(ca,—1, x5) and(z’, 5N (2} , 2, 25)) as well
as(ca,—1, x5) and(zh., gh N (2, 2%, 1)) intersect in their relative interiors.) Later on this
intersection will evolve into the real blocking conditions using Theorem 2.11.

Stage(4). Perturbing the vertices on the spine of the wedgé/e now perturb the points
c¢j on the spine of the wedge. Every even-indexgds changed to lie on a parabola, and
for the moment the odd-indexed verticeg_; are changed to lie on the line connecting
c21—2 andcy. They coordinates of all points stay the same

o= Ly =12 —1)2
2 = 2()’ ) - teven ¥, (¥ )< - feven -

Note that by the 12 in thex coordinate, the points are movedo the polytope. The
changes (parametefen) must be small enough that the convex hull now has the desired
appearance (Fig. 25) and the non-blocking conditions and the sweeping conditions are still
satisfied. Once more we appeal to Lemma 1.4. The polynomials inequalities are now on
the variableeyenand the sweeping and non-blocking were satisfied,at—= 0. The reader
should note that while the constructed vertices in the roofs do not change coordinates,
dependent construction elements like the Iid}e@connectingx; andcy, 1) andg; (lying

in H" and intersectingl;'.) change when the spine vertices move. However, the parameter
tevenhas to be small enough that the preliminary blocking conditions are stillgﬁnestﬁll

pierce the facetz] , 2%, zjp) in its relative interior, ang’; andd;, intersect in the interior of
the polytope.

Now we move the odd points;_; beyond the fac&; = (cz—2, 2, z‘%): to this end, we
choose a poinp; beyondG; and move t@ 1 + fodd(pr — c21—1). Such a poinp; is easily
found by taking a normal t6;; through its barycenter and moving outwards while staying
beyond the face (note that this involves again Lemma 1.4, see the definitimyoifd.

The parameterqqis chosen small enough: convexity and the correctness of the face lattice
are easily achieved. Also the sweeping conditions are valid for slight moves. Kegging
small also guarantees the non-blocking conditions: the tetrahedimll_z, €21,—1, €21;)

C2 €4 Co €1 c3 ¢s5

Fig. 25. Perturbation of the vertices on the spine.
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is only slightly bigger than just the triangtei, c21,—2, c21,) Which did not intersect the
tetrahedron(z}., 2 . 2%. 25) (x5 andxj).

For the blocking conditions, leX; be thejth logical variable in clausk Note that now
the Iined; intersects the trianglé 22, c;—1, c2) in its relative interior. The Iineg; are

updated as the Iineﬁj'. move. Sinceyqqis small,g; still pierces the facetz} , 2%, z5) inits

relative interior, and’; andd’, intersect in the interior of the polytope. Note tiftis still
inthey =u(2l — 1) pfane because thecoordinates of the spine vertices were conserved.

Stage(5). Attaching the cupolas. It remains to construct all the cupolas. Over the facets
(zi,z},ziB) (i =1,...,V) we construct cupolas using the plands and sets of lines
{8}, g5, g5}, and over the facet&y_2, c—1.c2) (i = 1,..., C) we construct the clause
cupolas using the = g(2/ — 1) planes and the sets of Iin(aﬁ;l | X;'s jth occurrenceis in
clausel}. We invoke Theorem 2.11 and get the final polytope. By this construction, it is
convex, has the correct face lattice, and the visibility conditions are satisfied.

The reader will recall thagj. anddj. intersect in the interior of the polytope. Say again

variableX; occurs unnegated in clausgsand/, and negated ifg. By Theorem 2.1Jg§-
pierces the skylight of the cupola corresponding to varia&blandd;l pierces the skylight

corresponding to its claugg. Hence, the tetrahedron spannec:hyand the variablex;’s
skylight together with the tetrahedron spannedx’@y(xé) and clausdi’s skylight (2's
skylight) intersect in their interiors. Analogously, the tetrahedron spanne(;t land the

variableX;’s skylight and the tetrahedron spanned@and clauses’s skylight intersect
in their interiors. These are exactly the blocking conditions.

All other conditions concerned only points we constructed before, so they are still
satisfied. The final polytope is therefore a logical polytope.

4. Final remarksand conclusions

It is worth noticing at this point that the size of the const&htwe constructed in
Section 3.2 satisfies in fagt— 3 < K < 21n. Now we discuss an interesting justification of
why the lower bound is strict.

We say that a convex polytope $sackedif it has a triangulation whose dual graph
is a tree (the dual graph of a simplicial complex is the graph that has one vertex for
each maximal-dimensional simplex and two vertices are connected precisely when the
corresponding simplices are adjacent via a common facet). The reader should be aware that
in the literature the terminology stacked polytope is often restricted to simplicial polytopes.
Here, of course, we use it allowing that the stacking of simplices may give coplanarities.
For example, any 3-cube or triangular prism is a stacked polytope under our definition.

It turns out that a convex-polytopeP with n vertices has a triangulation of size- d
precisely whenP is a stacked polytope (see [22]). It is natural to ask which polytopes are
stacked. If it were NP-hard to recognize stacked polytopes then this would provide another
proof that the problem of finding minimal triangulations is also in the same class. However,
we can prove:
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Theorem 4.1. (1) For a convexd-polytope P, presented by its: vertices, there is
a 0(n34®) algorithm to decided whetheP is stacked(i.e., P has a triangulation with
n — d maximal simplices The algorithm uses only theskeleton of the polytope. The
size of a minimal triangulation of a stacked polytope does not depend on the particular
coordinatization, but only depends on its face lattice.

(2) A convex3-dimensional polytopeP is stacked if and only if its graph does not
contain as a minor the graph of an octahedron or a pentagonal prism.

Proof. We need some definitions that have been introduced earlier in the graph theory
literature [1,2,12]. We say a grahis k-decomposablié G hask + 1 or fewer vertices or
there is a subset of verticdsof G with at mostk vertices such that (ij is acut, i.e.,G—S

is disconnected, and (ii) each of the connected componen@s-§thas the property that
when the vertices of are added back together with the complete graph on those vertices,
the resulting graph is againdecomposable.

Itwas shown in [1, Theorem 2.7] that the clas& afecomposable graphs is the same as
the class of partial-trees: a graph is&treeif it can be reduced to the complete grakh,
by a finite sequence of removals of degkeeertices with completely connected neighbors
(i.e., neighbors of the vertex induce a complete gr&ph A partial k-treeis simply an
edge-subgraph of &xtree.

Now we claim that a/-dimensional convex polytop# is stacked, if and only if its
1-skeleton is a partial-tree. Here is the proof: the “only if” implication is clear from the
definition of stacked polytope. We can prove the “if” implication by inductiomoiThe
theorem is trivial ifn = d + 1 because ther® is a simplex and its graph is a complete
graph, thus is a-tree. Assume then > d + 1 and that the result is true for polytopes
with fewer tham vertices. Remember that if 1-skeletGi{ P) is a partiald-tree then it is
d-decomposable. Thus, there is a Subf cardinality at most/. The setS must have in
fact cardinalityd becausé5 (P) is d-connected by Balinski's theorem. If one has a vertex-
cutsetS of cardinalityd in G(P), then the hyperplané/ (S) spanned byS intersects
G(P) only in the vertices ofG(P) N S and in no edges (otherwisg is not a cut). In
conclusion,H (S) N P is a (d — 1)-simplex and becaus€(P) is d-decomposable we
can apply induction hypothesis to prove the polytopgs)™ N P and H(S)™ N P are
d-decomposable, and thus they are pardidtees with fewer vertices thaR, so both
polytopes are stacked. Finally, note that their stacked triangulations match well at the
common boundary simplicial facéf (S) N P, proving thatP is stacked.

There is an algorithm that, for fixed values lof decides whether a given graph is
a partialk-tree in running timeO (n) [3]. Computing the 1-skeleton of &polytope P
can be computed with some more effort. Two verticegndv, are adjacent irP if and
only if there isa € R? andb € R such thata” vy =a’vo = b anda” p < b for all p in
P — {v1, v2}. That is, there is a halfspace which supports P at exactly two points.
Clearly, O (n?) of these LP calculations suffice. From the well-known Ellipsoid method
each such LP can be solved innd®) operations. This, together with the above claim
about detecting partidl-trees, completes the proof of the first part of the theorem.

For the second part we observe that paidgiees form a minor closed family. This
means that the set of partiatrees is closed under taking edge-deletion or edge-contraction
operations. The famous results of [26] imply that they can be characterized by a finite set
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of forbidden minors. El-Mallah and Colbourn [12] proved that a graph is a planar 3-tree if
and only if it has no minor isomorphic to the graph of an octahedron or a pentagonal prism.
This fact together with our claim complete the proof of the second part.

Final remarks.

(1) The “coning” triangulation proposed in [13] provides an algorithm which is polyno-
mial on the number of vertices and gives a 2-approximation of the minimal triangula-
tion as it produces a triangulation of size less than or equal te 2.

(2) Given a 3-dimensional convex polytope a proper subsef of tetrahedra with ver-
tices in vertice6P), and a positive integek . Deciding whether there is a triangulation
of P that useX simplices fromS can also be proved to be an NP-hard problem using
the constructions we explained.

(3) It is interesting to note that the constructions presented in [5] prove also that
coveringa convex 3-polytope with tetrahedra can be done with fewer pieces than
triangulating. A cover is a collection of simplices whose union is the whole polytope,
but the elements can intersect in their interi@psiestion what is the computational
complexity of finding minimal simplicial covers?

(4) Questionwhat is the complexity of deciding whether a triangulation of the boundary
of convex non-simplicial 3-polytope extends to a triangulation of the whole polytope
without adding new interior points? If NP-hard, this could be used to establish another
proof our results. The curious reader can easily prove that already for a triangular prism
not all triangulations of the boundary extend to a triangulation of the whole polytope.
Even more interesting. The triangulations of the boundary of a 3-cube extend or not
depending on the coordinates of its vertices.
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