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Abstract

We present a polynomial transformation from the satisfiability problem to the problem of fin
a triangulation of a convex 3-polytope that uses a small number of tetrahedra. We also discu
complexity results related to optimal triangulations.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

A triangulationof a d-dimensional convex polytopeP is a set ofd-simplices whose
union is the polytope, their vertices are extreme points ofP , and any two simplices in i
intersect in a common (possibly empty) face. Thesizeof a triangulation is the number o
its full-dimensional simplices. In this paper we discuss the computational complex
finding small size triangulations of a convex polytope. We discuss in particular the c
minimal triangulations, i.e., those with smallest possible size.

This geometric minimization problem arises in several contexts. For example, mi
triangulations of thed-cube have been extensively studied (see references in [1
16,19,25]) due to connections with the simplicial approximation of fixed point
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continuous maps [29]. Optimal size triangulations appear also in the polyhedral tech
in Algebraic Geometry [28]. Understanding minimal triangulations of convex polyt
is related to the problem of characterizing thef -vectors of triangulations of balls an
polytopes (see open problems in [7]). In fact, the study of minimal triangulation
topological balls also received attention due to its connections to data structures,
calculation of rotation distance of binary trees [27].

The computational geometry literature has several papers interested in finding tria
tions of optimal size [4,13]. In 1992 Bern and Eppstein asked whether there is a polyn
time algorithm to compute a minimal triangulation of a 3-dimensional convex poly
(open problem 12 in [6, Section 3.2]). Our main result shows that, under the hypo
P �= NP, such an algorithm cannot exist:

Theorem 1.1. Given a convex3-polytopeP and a positive integerK, deciding whetherP
has a triangulation of sizeK or less is an NP-complete problem.

We give a transformation to the Satisfiability (SAT) problem (cf. [14]): given an insta
S of C logical clauses inV boolean variables, is there a truth assignment to the varia
such that all clauses are simultaneously satisfied? We will give a numberK and construc
the vertices of a convex 3-polytope,a logical polytope, of size polynomial inC andV
(polynomial size pertains to the binary encoding length), which has a triangulation o
at mostK if and only if there is a satisfying truth assignment. In fact, we can restric
discussion to the special case of the SAT problem where each variable appears i
clauses, two of the times negated (see [14, p. 259]).

It is straightforward to derive some interesting conclusions from the main theorem.
consider the logical polytopes we have constructed. If we could find the sizesmin for their
minimal triangulations in polynomial time, eithersmin �K, in which case we have indee
a triangulation smaller or equal toK, orK < smin, in which case we can be sure there
no triangulation for the logical polytope of sizeK or less. This proves it must be NP-ha
to find a minimal triangulation in dimension 3. Second, notice that the hardness res
be extended for polytopes of any fixed dimension that are given by its vertices. S
note that by taking a pyramid over the logical polytopes we create a 4-dimensional l
polytope whose possible sizes of triangulations are those of the original 3-dimen
logical polytope. Thus, it is at least as hard to find the size of smallest triangula
in four dimensions as it is in three. Repeating the pyramid construction enough
adding a new dimension each time, we have the following corollaries (the second
was obtained in [21] via a direct transformation to 3-SAT):

Corollary 1.2. (1) Let d be a fixed positive integer withd � 3. Finding a minimal-size
triangulation of a convexd-polytope is NP-hard.

(2) Letd be a fixed positive integer withd � 4. Finding a minimal-size triangulation o
the boundary of a convexd-polytope is NP-hard.

We should remark that since these results are given in fixed dimension it is unnec
to specify how the polytope is presented (by its facets inequalities or by its vertices)
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transformation to the vertex representation, or vice versa, takes polynomial time wh
dimension is fixed [10].

It is useful to remind the reader of a few known results about the sizes of triangul
of polytopes and the relevant literature before we discuss the details. It is known th
sizes of triangulations for ad-dimensional polytope withn vertices lie betweenn− d and
fd(∂C(n+1, d+1))−d−1, wherefd(∂C(n+1, d+1)) is the number ofd-dimensional
facets of a (d + 1)-dimensional cyclic polytope withn+ 1 vertices [22]. In particular, fo
3-polytopes the possible number of tetrahedra ranges fromn − 3 to

(
n
2

) − 2n + 3. Both
bounds are known to be tight for three dimensions [13]. It is also known that the siz
minimal triangulation of a convex 3-polytope must lie betweenn− 3 and 2n− 10, when
n > 12 [13]. That the upper bound is tight was proved in [27] using hyperbolic geom
It is worth noticing at this point that the size of the constantK we construct in the proo
of Theorem 1.1 satisfies the inequalitiesn − 3< K < 2n. More will be said about this
in the final section. Now we discuss the general structure and main ideas of the p
Theorem 1.1.

Two elementary properties of triangulations will be useful to reach our goal:

(1) Every boundary triangular facetF of a polytope is contained in exactly one tetrahed
of a triangulation. The fourth vertex of that tetrahedron is said totriangulateF .

(2) Simplices of a triangulation cannot intersect in their relative interiors.

We will primarily see this behavior in triangles being pierced by an edge of
triangulation, a so-calledbad intersection. Our proof combines techniques presented
the articles [5,23].

Consider a long vertex-edge chain on the boundary of a polytope such that the a
triangular faces all meet in two pointsa andb (see Fig. 1).

Lemma 1.3. Let P be a convex3-polytope such that the triangles(a, qi, qi+1) and
(b, qi, qi+1) for i = 0, . . . ,m are among its facets, with the additional restriction th
conv{a, b} ∩ conv{q0, . . . , qm+1} = ∅. Letn be the number of vertices ofP .

Then, for each triangulation ofP that does not use the(interior) edge(a, b) the number
of tetrahedra is at leastn+m− 3.

The proof of this lemma, which can be found in [5, Section 2], involves an indu
argument for counting interior edges of a triangulation and the use of Euler’s relatio

Fig. 1. The vertex-edge chain of Lemma 1.3.
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2-spheres and 3-balls that yield a simple formula between the number of interior edg
the number of tetrahedra of a triangulation.

For us, the quantityn + m − 3 will be a relatively large number, forcing th
a triangulation not using(a, b) cannot be small. When using the edge(a, b) we can
triangulatePchain = conv{a, b, q0, . . . , qm+1} using them + 1 tetrahedra(a, b, qi, qi+1)

for i = 0, . . . ,m. CallQ the (non-convex) polytope we get after cutting all these tetrah
out ofP . Let nQ denote the number of vertices ofQ. Note thatn= nQ +m. Suppose the
number of tetrahedra in any triangulation ofQ (if there is one at all) is bounded above
some numbert . Then we can bound the size of a minimal triangulation ofP using(a, b)
by t +m. Note thatt does not depend on the lengthm of the vertex-edge chain. Hence,
choosingm large enough (leavingQ as it is) makes

size of minimal triangulations� t +m< nQ + 2m− 3 = n+m− 3,

and any close-to-minimal triangulation willhave to use(a, b). This argument still holds
when we have many vertex-edge chains of the same lengthm present in other parts of th
boundary of the polytopeP . If m is large enough, a small triangulation is forced to use
edges(a, b) of all these vertex-edge chains.

We also use the famous non-convexSchönhardt polytope[6,17,18,20,23,24]. Roughl
speaking, a Schönhardt polytope can be obtained by “twisting” the top face of a trian
prism in a clockwise direction (see Fig. 2). The three quadrangular sides are then bro
and “bent in,” thus creating the non-convex (reflex) edges(Bi,Ai+1) that we calldiagonals.
The resulting polytope is non-convex and we distinguish the two triangular faces w
reflex edges:the bottom(A1,A2,A3), and thetop or skylight(B1,B2,B3). Whenever
dealing with vertices of a Schönhardt polytope, abusing the notation, by an indexi + 1
we mean(i mod 3)+ 1. For example, 3+ 1 gives 1.

The reader can easily verify that Schönhardt polytopes cannot be triangulated
only its six vertices. Imagine the Schönhardt polytope is glued along its bottom fa
a bigger polytope. Again, the resulting non-convex polytope can only be triangula
its top triangle (the skylight) isvisibleby another vertex (we will rigorously define visib

Fig. 2. A Schönhardt polytope.
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Fig. 3. The visibility cone and an invisible vertex.

Fig. 4. Cupola.

later, but it does correspond to the intuition that every point of the skylight can be join
the vertex by a straight line segment. We will show that the triangular cone defined
planes containing the faces(Bi,Bi+1,Ai+1) contains exactly the points that can view t
skylight. For this reason we will call this cone thevisibility cone.

Now we convexify the Schönhardt polytope by attaching three circular vertex-
chains opposite to the concavities. Thus, we create a convex polytope that satis
hypothesis of Lemma 1.3, and that we will call acupola, see Fig. 4. The cupola is usua
glued along its bottom face to a bigger convex polytope and obtain a convex polytoP .
We can combine what we know about vertex-edge chains and about Schönhardt pol
Namely, in order to have a small triangulation ofP , the three diagonals of the Schönha
polytope inside the cupola have to be used. But then, the vertex triangulating the s
of the cupola must not be obstructed from seeing the skylight by the diagonals. Hen
vertex has to lie in the visibility cone of the cupola.

In [23] Ruppert and Seidel used SAT to prove that it is NP-complete to decide wh
a non-convex polyhedron admits a triangulation. Their constructions used Schö
polytopes, and in particular their visibility cones, to do the transformation. In our
because we need convexity, we glue cupolas, instead of Schönhardt polytopes. T
glued to a biggerframepolytope along their bottom faces. Similar to [23], we have varia
cupolas and clause cupolas. The visibility cones of the variable cupolas contain on
truth-settingvertices, one forfalse and one fortrue. The visibility cones of the claus
cupolas contain as manyliteral vertices as there are literals in the logical clause. E
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variable must choose between a “true” or “false” value. Inside each clause at lea
variable will be chosen to be true (to satisfy the clause). We model these logical c
by the geometric choices of which vertex in the visibility cone of a (variable/cla
cupola is used to triangulate the skylight. In addition, our polytope satisfies someblocking
conditions: the tetrahedron spanned by the top face of a clause cupola and a litera
coming from a negated variableXi will improperly intersect the tetrahedron spanned by
top face of the cupola of variableXi and the truth-setting vertex corresponding totrue. In
this way the choices made for the truth values of the variables and for the literals sati
the clauses will beconsistent. We will call our polytope thelogical polytopebecause it
comes from a logical formula.

For the polynomial transformation (from SAT) we need to give an algorithm to com
the coordinates of the vertices of the logical polytope. The binary encoding length
polytope, as well as the runtime of the algorithm, have to be polynomial in the enc
length of the SAT instance. Each step of the construction will be polynomial; this
delicate point in the formalism of our argument. We apply a sequence of these constru
(polynomially many). The coordinates of the vertices of the polytope are potentially si
exponential, but their binary encoding length is guaranteed to be polynomial.

Elementary steps of the construction include operations such as taking the join
or three points, intersecting planes and lines, putting points on polynomial curves, et
coordinates of the resulting construction elements are therefore polynomials in coord
of the input elements. On the other hand, we will have requirements on the positions
points with respect to some planes or other points on lines etc. All these conditions
formulated as strict polynomial inequalities in coordinates of the construction elemen
essential element of our construction is that our systems of strict polynomial inequ
will depend onone single parameterε. All these polynomial inequalities are satisfi
at ε = 0, but an additional requirement for us isε > 0. The following lemma describe
a polynomial algorithm to find a numberε0 such that all 0< ε � ε0 solve the inequality
system.

Lemma 1.4. (1) Supposep(ε)= adε
d + · · ·+ a1ε+ a0 is a polynomial withp(0) > 0. Let

ε0(p) := min

(
1,

a0

2(|a1| + · · · + |ad |)
)
.

Then for0 � ε � ε0(p) we havep(ε) > 0.
Hence, the construction ofε0 can be done in time polynomial in the encoding length

the coefficients ofp, andε0 has polynomial encoding length.
(2)p1, . . . , pl are univariate polynomials such thatp1(0) > 0, . . . , pl(0) > 0 then there

is a rational number,ε0 > 0, such thatp1(ε) > 0, . . . , pl(ε) > 0 for all 0 < ε � ε0.
Moreover, the encoding length ofε0 is bounded by a polynomial in the encoding len
of the coefficients ofp1, . . . , pl .

Proof. For 0� ε � 1 we have thataiεi � −|ai|ε. The reason is that forai � 0,aiεi � 0 �
−|ai|ε, and forai < 0, aiεi > aiε = −|ai|ε. Hence, for 0� ε � ε0(p)

p(ε)�
d∑

−|ai|ε + a0 >−
d∑

|ai| a0

2
∑d |ai |

+ a0 > 0.

i=1 i=1 i=1
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For the second part, take the valueε0(p1, . . . , pr ) := min(ε0(p1), . . . , ε0(pr)). Now all
the conditions are simultaneously satisfied.✷

Of course, in general the real solutions of a multivariate system of inequa
coming from geometric requirements may be empty, but our steps of construction r
everything to sequentially solving easy univariate systems of inequalities.

Here is the organization of our paper. In Section 2 we discuss useful propert
Schönhardt polytopes and of cupolas. Later in the section we explain how to con
and glue cupolas that have a prescribed visibility cone and how to construct visibility
that fit our purposes. The polynomial transformation to SAT is presented in Section 3.
a given SAT instance we construct a frame polytope to which we then glue the cupo
the final Section 4, as a complement of our main theorem, we present a family of pol
(the so-called stacked polytopes) for which the decision problem of Theorem 1.1 c
solved in polynomial time. We end the paper with a few open questions.

2. Basic building blocks

We recall the notion ofbeyond a face(see [30, p. 78]): A pointp is beyonda faceF of
a polytopeP if it (strictly) violates all inequalities defining facets ofP containingF , but it
strictly satisfies all other inequalities that define other facets ofP . The polytopePbeyondF is
the (closure of the) set of all points beyondF . We denote byP \F the polyhedron define
by all facet-defining inequalities that do not hold with equality for all points inF . This is
exactlyP ∪ PbeyondF . In our constructions we will often put one or more points bey
some face, and then take the convex hull. This will only destroy the facets conta
this face, and introduce new ones containing the new points. We will say weattachone
polytopeP to anotherQ along a facetsFP of P andFQ of Q if P ⊆ QbeyondFQ and
Q⊆ PbeyondFP . It is important to observe that the convex hull of their union contains
the face lattices ofP andQ without, of course,FP andFQ.

2.1. The Schönhardt polytope

Let us turn to a well-known example of a non-convex non-triangulable polytope
so-called Schönhardt polytope (named after its first occurrence in [24]. See also [20
the notion of non-convex polytope and what it means to triangulate them we refer to

Definition 2.1. A Schönhardtpolytope (Fig. 2) is a non-convex polytope with s
verticesA1, A2, A3, B1, B2, andB3 and facets(A1,A2,A3), (B1,B2,B3), (A1,B1,A2),
(B1,A2,B2), (A2,B2,A3), (B2,A3,B3), (A3,B3,B1), and(B3,B1,A1). At exactly the
edges(B1,A2), (B2,A3), (B3,A1) the corresponding facets are to span an interior a
greater thanπ (the edges are said to bereflex). These edges are called thediagonalsof
the Schönhardt polytope. The top face(B1,B2,B3) is called theskylightof the Schönhard
polytope.

Six points are said to be inSchönhardt positionif they are the vertices of a Schönha
polytope. We say that the skylight isvisiblefrom a pointx (or x is able to seethe skylight,
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or x is aviewpointof the skylight) if the tetrahedron spanned byx and the skylight does no
intersect any of the diagonals in their relative interior. Thevisibility coneof the Schönhard
polytope is the triangular cone bounded by the planesB1B2A2,B2B3A3, andB3B1A1. See
Fig. 3.

The use of the word “skylight” is motivated by the idea that the skylight triang
a glass window and light comes through it illuminating the interior of the Schönh
polytope defining a cone of light. It is obvious that this non-convex polytope cann
triangulated (without adding new points): The fourth point of the tetrahedron conta
the skylight must be one ofA1, A2, or A3, but the diagonals “obstruct the view” of th
skylight from these vertices.

It is our intention to patch the sides of the Schönhardt polytope with vertex-edge c
in order to convexify it (and then glue it to a frame polytope). According to Lemma
a small triangulation of this convex polytope must necessarily contain the diagonals.
case, the fourth point of the tetrahedron containing the skylight also has to be able
the skylight. We will show where to place the vertex-edge chains in order for them no
visible from the skylight. Hence, the triangulating vertex has to lie beyond(A1,A2,A3),
we will show that it has to lie in the visibility cone.

Lemma 2.2. LetA1, A2, A3, B1, B2, B3 be six points in Schönhardt position. We den
byCA,B the convex hull of the six points. Then

(1) All orientations of simplices spanned by four of these six points are determined
one global sign change. As a consequence, the six points are in convex positio
their convex hullCA,B is an octahedron that has(A1,A2,A3) and (B1,B2,B3) as
facets and it has edges(Ai,Bi+1) (i = 1,2,3).

(2) There are no points that can see the skylight(B1,B2,B3) and, at the same time,(i) are
beyond either of the edges(Ai,Bi+1) of CA,B , and (ii) are on the side of the plan
B1A2B3 opposite toB2 or similarly for the analogous planesB1A3B2, B2A1B3 and
the pointsB3, B1, respectively.

(3) The visible points beyond the facet(A1,A2,A3) of CA,B are exactly the points tha
are also in the visibility cone of the Schönhardt polytope.

In what follows we will use the language of oriented matroids. For the theory of orie
matroids we refer to [8,30]. Here we only sketch the necessary definitions and how th
related to the notion of visibility. The orientation of a simplex(x1, x2, x3, x4), is defined as

[x1, x2, x3, x4] = signdet

(
x1 x2 x3 x4
1 1 1 1

)
.

All such orientations make up thechirotopeof an oriented matroid (see [8, p. 123]).
Given the oriented matroid of pointsx1, . . . , xn in d-space, its circuits are function

C : {x1, . . . , xn} �→ {+,−,0} that correspond to so-called minimal Radon partitions. T
means that the convex hulls ofC+ = {xi | C(xi)= +} andC− = {xi | C(xi)= −} intersect
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in their relative interiors, andC+ andC− are minimal at that. It is easy to check that t
function

C(x)=

 (−1)i · [

omit xi︷ ︸︸ ︷
x1, . . . , xd+1 ] if x ∈ {x1, . . . , xd+1},

0 otherwise,

defines a circuit if it is not identical 0. In fact, all circuits can be obtained this way. We
compute circuits to use an argument of the following form:x does not see the skyligh
if and only if there is a circuit such that the positive part is one of the diagonals
negative part is the set containingx and a subset of vertices of the skylight. Since th
the tetrahedron spanned byx and the skylight is pierced by the diagonal.

Important tools to compute simplex orientations are the Grassmann–Plücker re
(see [8, Section 2.4]): For pointsa, b, x1, . . . , x4 they state that the set of signs{[a, b, x1, x2] · [a, b, x3, x4],−[a, b, x1, x3] · [a, b, x2, x4],

[a, b, x1, x4] · [a, b, x2, x3]
}

is either identical 0 or contains both a+ and a−. The typical use of the Grassman
Plücker relations is to deduce one orientation when the others are known. We ca
the orientations of some of the different tetrahedra from two-dimensional projec
(drawings) of the point configurations as in Fig. 2. We use a left-handed rule sy
i.e., we decide whether the triangle(x1, x2, x3) is oriented counterclockwise (+) or not
(−), also if x4 is on our side of the plane spanned byx1, x2, andx3 (+) or not (−), and
multiply these two signs to obtain the orientation[x1, x2, x3, x4].

Proof of Lemma 2.2. (1) In a Schönhardt polytope, the simplices(A1,A2,A3,B1) and
(A1,A2,A3,B2) have the same orientation since edges(A1,A2) and (A2,A3) are both
incident to facet(A1,A2,A3) and they are both non-reflex edges.

By the above argument, going around the boundary of a Schönhardt polytope, k
in mind which edges are reflex, we can determine the orientation of 12 simp
up to one global sign change (there are 12 edges). But there are

(6
4

) = 15 simplices
formed by the vertices of the Schönhardt polytope. The remaining three sim
are (A1,A2,B2,B3), (A2,A3,B1,B3), (A1,A3,B1,B2). The signs are determined b
the following Grassmann–Plücker relations: for(A1,A2,B2,B3) take a = A1, b = A2,
x1 =A3, x2 = B1, x3 = B2, x4 = B3 (the other two by circular index shift). Then

{− ·?,− · − · +,− · −} ⊇ {+,−}
the equation forces[A1,A2,B2,B3] = +. From the chirotope information it is easy
check that all vertices are in convex position (see description of how to read the fac
the convex hull from the chirotope in [8, Chapter 3]), and that their convex hullCA,B is
indeed an octahedron.

(2) We will show that if a pointx lies beyondA1B2 of CA,B , on the side ofB1A2B3
opposite toB2, then(B1,A2) and the triangle(B2,B3, x) form a minimal Radon partition
in the set of verticesA1, A2, A3, B1, B2, B3, and x, hence have an interior point
common. This meansx cannot see the skylight. For this, we compute the follow
orientations:
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−[B1,B2,B3, x] = +, since(B1,B2,B3) is a facet ofCA,B \ (A1,B2),

+[A2,B2,B3, x] = +, since(A2,B2,B3) is a facet ofCA,B \ (A1,B2),

−[A2,B1,B3, x] = −, from the assumption onx,

+[A2,B1,B2, x] = −, from the Grassmann–Pücker relation below,

−[A2,B1,B2,B3] = −, from part (1).

The necessary Grassmann–Plücker relation is the one witha = B1, b = B2, x1 = B3,
x2 =A1, x3 = A2, andx4 = x such that

{− · ?,− · − · −,− · +} ⊇ {+,−}
forces[B1,B2,A2, x] = −.

(3) If x is in the visibility coneV , then it is, by part (2) of this lemma, on the sam
side asB3 with respect to the planeB1A2B2. Hence,A2 is on opposite side ofB3 with
respect to the planeB1B2x. Therefore, the relative interior of the convex hull ofB1 and
A2 lies strictly on one side of the planeB1B2x, and the tetrahedron(B1,B2,B3, x) on the
other side of this plane. Therefore, those two point sets cannot have points in com
By symmetry it follows that the other two diagonals do not obstruct any point ofV from
seeing the skylight either.

Assume now that a pointx is beyond face(A1,A2,A3), but outside ofV , i.e., for
instance on theA1 side of the planeB1B2A2. We claim that the pair{B1,A2}, {B2,B3, x}
forms a circuit in the oriented matroid of the point configuration of the vertices ofCA,B
andx. This means that the triangle(B2,B3, x) is pierced by the diagonal(B1,A2) in the
relative interior, hencex is not visible.

−[B2,B3,A2, x] = −, since(B2,B3,A1) is a facet ofCA,B \ (A1,A2,A3),

+[B1,B3,A2, x] = +, from the Grassmann–Plücker relations below,

−[B1,B2,A2, x] = +, from the assumption onx,

+[B1,B2,B3, x] = −, since(B1,B2,B3) is a facet ofCA,B \ (A1,A2,A3),

−[B1,B2,B3,A2] = +, from part (1).

In this case, we have to apply the Grassmann–Plücker relations twice to get[B1,B3,

A2, x] = +. First, we deduce[A1,A2,B3, x] = − from the Grassmann–Plücker relati
with a =A1, b =A2, x1 =A3, x2 = x, x3 = B2, x4 = B3:

{− · −,− · + · ?,+ · +} ⊇ {+,−}.
Now we use this orientation to formulatea = A2, b = B3, x1 = A1, x2 = B1, x3 = B2,
x4 = x:

{+ · −,− · + · ?,− · +} ⊇ {+,−}
in order to get the desired[A2,B3,B1, x] = −. ✷
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Fig. 5. A cupola as part of a larger convex polytopeP .

2.2. The cupola

Definition 2.3. A polytopeC is called anm-cupola(or for short a cupola) if it has th
following properties:

(1) the vertices ofC areA1,A2,A3, B1,B2,B3, and qi,jk (k = 0, . . . ,m + 1, (i, j) ∈
{(1,2), (2,3), (3,1)}), whereqi,j0 =Ai andqi,jm+1 = Bj are identified;

(2) the verticesA1,A2,A3, B1,B2,B3 are in Schönhardt position, and(A1,A2,A3) (the
bottom facet) and(B1,B2,B3) (the skylight) are facets ofC;

(3) the other facets are(Bi, q
i,j

k , q
i,j

k+1) and(Aj , q
i,j

k , q
i,j

k+1) for k = 0, . . . ,m+ 1, (i, j) ∈
{(1,2), (2,3), (3,1)};

(4) the verticesq1,2
k (k = 1, . . . ,m) lie on the side of the planeB1A2B3 opposite toB2.

Similar conditions must hold forq2,3
k andq3,1

k .

Proposition 2.4. LetC be anm-cupola which is part of a larger polytopeP (i.e., the set
Q= P −C is a convex polytope andQ andC share the common facet(A1,A2,A3)). Let
n be the number of vertices ofP andn′ be the number of vertices ofQ.

If T is a triangulation ofP with the property that the fourth point of the tetrahedr
containing the skylight ofC is not in the visibility cone ofC, then there are at leas
n+m− 3 = n′ + 4m tetrahedra in the triangulation.

Proof. If the vertex triangulating the skylight ofC is a vertex on a vertex-edge chain ofC,
then it does not see the skylight by Definition 2.3(4) and Lemma 2.2(2). If it is inQ instead,
then it has to be beyond the face(A1,A2,A3) of C. Hence, by Lemma 2.2(3) it cann
see the skylight either. Therefore, the triangulationT does not use one of the diagona
By Lemma 1.3 the number of tetrahedra is at leastn + m − 3. Since by constructio
n= n′ + 3(m+ 1), the number of tetrahedra is also at leastn′ + 4m. ✷

This means that any “badly” triangulated cupola gives rise to a high numb
tetrahedra in the triangulation. The way we are going to use this is to constructmany
cupolas and apply the proposition to all of them.
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2.3. Constructing a cupola from a visibility cone

In this subsection we will show that cupolas can be attached to any face of a
polytope using intermediate polytopes and that the visibility cone can be presc
The following theorem does not have the full strength we need for the constructio
Section 3, we will use a slightly stronger version which we will present at the end o
section. However, this theorem captures the main ideas used to construct a cupola.

Theorem 2.5 (Cupola construction from a given visibility cone).Let F be a facet of
a 3-polytopeP , andV be a triangular cone such thatF ∩ V is a triangle in the relative
interior ofF , andm be a positive integer. Then there is anm-cupolaC beyondF ofP such
thatP is beyond(A1,A2,A3) of C and such thatV is the visibility cone ofC. Moreover,
the input length ofC is polynomial in the input lengths ofP , V , andm.

Before we come to the proof, we will exhibit a necessary condition of the visibility c
V of a cupolaC and the facet the cupola is being glued upon. It will imply that we can
directly attach a cupola to a face (as in [23]), but we have to construct an interm
polytope first.

Lemma 2.6. LetA1,A2,A3,B1,B2, B3 be vertices in Schönhardt position. Definel1 to be
the intersection line of planesB3B1A1 andB1B2A2, linesl2 andl3 are defined accordingl
(Fig. 6, note that they contain the extreme rays ofV ). The linesl1, l2, and l3 intersect the
relative interior of the bottom face(A1,A2,A3) of a cupolaC. The intersection point
D1, D2, andD3 are forced to have the following collinearities: A1D1D2, A2D2D3, and
A3D3D1.

Proof. l1 enters the Schönhardt polytopeS in pointB1, runs along facet(A1,B1,B3) until
it reaches the edge(A1,B3) where it goes into the interior ofS. Then the relative interior o
(A1,A2,A3) contains the pointD1. In this way,D1, D2, A2 are all on the planesA1A2A3
andB1B2A2. ✷

Fig. 6. Collinearity condition in the base triangle of a cupola.
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Proof of Theorem 2.5. We proceed in three steps. The linesl1, l2, l3 are defined as in
Lemma 2.6.

The bottom triangle(A1,A2,A3). We will now construct an intermediate polyto
beyondF which will have a triangular facet(A1,A2,A3) which is (1) parallel toF , and
which is (2) intersected by the coneV in a triangle(D1,D2,D3) in the relative interior
such that (3) the collinearity condition from Lemma 2.6 holds.

To do this, we place a planeH parallel to and slightly aboveF such that the intersectio
pointsDi of H andli (i = 1,2,3). AlsoH has to be so close toF that theli do not cross
betweenH andF . By prolonging the line segmentD3D1 slightly beyondD1 (staying in
P \ F ) we obtain pointA1, analogously constructA2 andA3 (Fig. 7). Taking the conve
hull of F and the pointsA1, A2, andA3 gives then the intermediate polytope, who
face (A1,A2,A3) has the collinearity condition. These constructions are polynom
constructible in the sense of Lemma 1.4.

The frame of the cupola.As in the construction of the bottom facet(A1,A2,A3), we
place a planeH ′ parallel and slightly above this facet. The intersection ofH ′ andV is the
triangle(B1,B2,B3) (B1 is on the same extreme ray ofV asD1 and so on). See Fig. 8.

It is clear from the construction that triangles(D1,D2,D3), (A1,A2,A3), and
(B1,B2,B3) are parallel and all oriented the same way. Therefore, it is not hard to c
that the pointsA1, A2, A3, B1, B2, andB3 are vertices of a Schönhardt polytope who

Fig. 7. Building the intermediate polytope for the cupola.

Fig. 8. Building the frame of a cupola.
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Fig. 9. Construction of the vertex-edge chain.

visibility cone isV . Polynomiality of this part of the construction follows from Lemma 1
as well.

Attaching the vertex-edge chains.Now that the frame of a cupola is done, i.e., the verti
A1, . . . ,B3 are in Schönhardt position, it remains to patch the key structures of Lemm
the vertex-edge chainsqj,ki (i = 1, . . . ,m, (j, k) ∈ {(1,2), (2,3), (3,1)}), to the sides of the
frame conv(P ∪ {A1, . . .B3}).

Given triangular faces(a, q0, qm+1) and (b, q0, qm+1) of a convex polytopeP and
a planeG which (strictly) separates pointsq0 andqm+1. We claim that we can constru
pointsq1, . . . , qm beyond the edge(q0, qm+1) of P such that the convex hull ofP ∪ {qi}
has the properties of Lemma 1.3 and such that the pointsq1, . . . , qm lie on the same sid
of G asq0. Moreover, the input length of the constructed points is polynomially boun
in the input length ofP andG.

By applying our claim three times, we will conclude our proof. The verticesq
j,j+1
i are

placed beyond edge(Aj ,Bj+1), verticesBj andAj+1 take the roles ofa andb, G is the
plane spanned byBj ,Aj+1, andBj+2. It is easy to check that this is exactly what we w
for Lemma 1.3 and for the cupola conditions.

Now we prove the claim. We will put the pointsqi (i = 1, . . . ,m) on a parabola segmen
beyond the edge(q0, qm+1). LetH be a plane containingq0 andqm+1 which also intersect
the interior ofP . This plane has the property that it contains points beyond edge(q0, qm+1).
It is constructible in polynomial time. Letv be the sum of the two normal vectors of plan
aq0qm+1 andbq0qm+1, andH the plane containingq0 andqm+1 parallel tov.

Let nowD be the intersection point ofG and(q0, qm+1). Letw be a vector of direction
of the intersection line ofG andH , such that starting atD it is pointing out ofP . Now let
Eε =D+ εw for ε > 0 to be specified later. For smallε, Eε is beyond(q0, qm+1). Hence,
the parabola defined according to Lemma 2.7, stated and proved below, byp(0) = q0,
p(1/2) = Eε , andp(1) = qm+1 lies entirely inH , and for arguments between 0 and
passes just beyond(q0, qm+1). Let qi = p(i/(4m)) for i = 1, . . . ,m. For smallε all those
points are beyond(q0, qm+1) and on the same side ofG asq0 (polynomial conditions, us
Lemma 1.4). Also, they are in convex position such that the convex hull ofP ∪{q1, . . . , qm}
has exactly the required face lattice.✷
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Lemma 2.7. Let p0, p1, p2 be three non-collinear points inR3 and t0, t1, t2 be three
distinct real numbers. Then there is a unique curvep :R → R

3 such thatp0 = p(t0),
p1 = p(t1), andp2 = p(t2) which is quadratic in every coordinate. Furthermore, all poi
onp(t) are in the plane spanned byp0, p1, andp2, and they are in convex position. Als
a plane containingp(r) andp(l) for somer �= l which does not contain all ofp has all
points betweenl andr on one of its sides and all other points on the other side.

Proof. Sincep0, p1, p2 have to be on thet0, t1, t2 positions of the curve

p(t)=
(
ax + bxt + cxt

2

ay + byt + cyt
2

az + bzt + czt
2

)
,

we have the condition(
ax bx cx
ay by cy
az bz cz

) 1 1 1
t0 t1 t2

t20 t21 t22


=




...
...

...

p0 p1 p2
...

...
...


 .

By the non-singularity of the Vandermonde matrices, there is a unique solution toa., b., c.
given thepi andti .

The curves which are quadratic in every coordinate are linear transforms of the m
curvem(t) = (1, t, t2). This curve lies entirely in thex = 1 plane, is convex, and has th
condition that it intersected by each plane at most twice (or it is in this plane). All t
properties are invariant under linear transformations.✷

Proposition 2.4 stated that we get a large triangulation if we triangulate the skylig
a cupola by a vertex outside the visibility cone. Now we want to estimate how much sm
a triangulation is if we use a vertexv in the visibility cone instead. We give a relative
small triangulation of the cupola and of the space between the bottom face(A1,A2,A3) of
the cupola and the triangular faceF of P with the help of the vertexv.

Proposition 2.8. LetF be triangular face of a polytopeP , andC anm-cupola attached
to it according to Lemma2.5. Letv be a vertex ofP in the visibility cone ofC. Then there
is a triangulation ofconv({v},F,C) with at most3m+ 16 tetrahedra.

Proof. First of all, we triangulate along the vertex-edge chains using the tetra
(Bi,Ai+1, q

i,i+1
k , q

i,i+1
k+1 ) for i = 1,2,3, andk = 0, . . . ,m.

After removing these tetrahedra, we are left with the union of the Schönhardt pol
on the verticesA1,A2,A3,B1,B2,B3, and the convex polytope conv({v},F, (A1,A2,A3)).
This is a non-convex polytope with all edges, except the diagonals, being convex (ea
clusion from Lemma 2.2 and the construction). Since the specified vertexv is inside the
visibility cone, it sees all facets of this polytope, except the three facets it is incide
from theinterior. In particular, we can form tetrahedra of all these facets andv and none
of them intersect badly. They are 7 tetrahedra for the facets of the Schönhardt po
(since we do not count the bottom face) and at most 6 for the rest (the convex hull ofF and
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(A1,A2,A3) has—by a planar graph argument—at most 2· 6− 4 = 8 facets, subtracting
for F and(A1,A2,A3) gives 6). ✷

It is this 3m in contrast to the 4m in Proposition 2.4 which makes this way
triangulating optimal for largem. We give more details on the use of these proposit
in Section 3 when we actually construct a polytope with many cupolas.

2.4. Constructing a visibility cone

In order to use the cupola as a basic building block, we need to have a visibility
that contains a specified set of vertices and intersects the relative interior of som
Once we have that we can construct the cupola as described in the previous secti
set will consist of all vertices lying in a specified plane.

Lemma 2.9. Let H be a plane which intersects the relative interior of some faceF of
a polytopeP , and letS = {v1, . . . , vs} be the set of vertices ofP lying inH , not including
the vertices ofF . LetS′ = {w1, . . . ,ws ′ } be a set of points inrelint(F ) ∩H . It is possible
to construct a triangular coneV which intersectsF in a triangle that lies in the relative
interior of F andV containsS andS′ in its interior and no other vertex ofP .

The reader may not see at this point the purpose of the setS′, but we will justify it at
the end of this section.

Proof. P ∩H is a polygon. Without loss of generality,F ∩H is horizontal and situate
on the top of the polygonP ∩H (see Fig. 10). Letl be the line connecting the leftmo
point ofS′ and leftmost vertex ofS (the one encountered first when walking aroundP ∩H
counterclockwise, starting atF ∩H ). Analogously, letr be the line connectingM and the
rightmost vertex ofS.

The area betweenl andr (in H ) is already a cone containingS and no other vertice
of P . We will perturb it in a way that the other conditions are satisfied as well.

First, shift l andr parallely outwards, guaranteeing that they still intersectF ∩ H in
its relative interior (easy open conditions); we obtainl′ andr ′. Also, letf ′ be a line inH
parallel toF just outsideP , i.e., such thatl′ andr ′ intersectf ′ in the same order asF ∩H
(again using Lemma 1.4).

Fig. 10. Construction ofl andr , thenl′ andr ′ (viewed inH ).
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Fig. 11. Rotated hyperplanes, viewed by their intersections withF .

Now, we will rotateH aboutl′ andr ′ andf ′, getting three planes bounding the desi
triangular cone. LetH be oriented in some way, andaHx � bH be its defining inequality
Let v be some point which lies on the positive side ofH . LetGl′ be the plane throughl′
andv. By construction, all vertices inS lie on the same side ofGl′ , so we can orient it suc
that S is on its positive side. Letal′x � bl′ be its defining inequality. Perform the sam
construction forr ′ andf ′ obtainingGr ′ andGf ′ , also orienting them in a way thatv is on
their respective positive sides. LetGε

l′ be the plane defined by(aH + εal′)x � bH + εbl′ .
This plane containsl′ and for smallε it is very close toH . Hence, it is therotation ofH
aboutl′ in the direction of planeGl′ . Also letGε

r ′ be defined by(aH + εar ′)x � bH + εbr ′ ,
andGε

f ′ be defined by(−aH + εaf ′)x � −bH + εbf ′ .
Obviously, all points inS and inS′ are on the positive sides of the planesGε

l′ , G
ε
r ′ ,

andGε
f ′ . For smallε > 0, these planes do not “sweep” over vertices ofP which are not

in S, and it is easy to see that in this case, there are no vertices ofP that satisfy all three
new inequalities. Also for smallε, the points inF satisfying all three inequalities defin
a triangle in the relative interior ofF with endpointsGε

l′ ∩Gε
r ′ ∩ F , Gε

r ′ ∩Gε
f ′ ∩ F , and

Gε
f ′ ∩Gε

l′ ∩ F . Hence, the set of all points satisfying the three inequalities is a trian
coneV with the desired properties. The conditions onε are open polynomial condition
according to Lemma 1.4.✷

This lemma can be used to buildonecupola over the facetF . However, there might b
problems if we keep on constructing around the polytope, like adding more cupola
other facets ofP . The visibility cone we just constructed might “catch” points we const
later. But these constructions all happenbeyondfacets ofP , so we can use the followin
lemma to construct all cupolas one after the other without their visibility cones cat
extra vertices.

Lemma 2.10. LetH1, . . . ,Hn hyperplanes, intersecting facetsF1, . . . ,Fn of a polytopeP
with the restriction thatFi ∩Hj = ∅ for all i �= j . ThenPbeyondFi ∩Hj = ∅ for all i �= j .

Proof. Assume there is a pointu in PbeyondFi ∩ Hj (i �= j ). Then this point also lies in
(P \ Fi) ∩Hj , but on the non-positive side ofFi . Let v be a point inFj ∩Hj , Thenv is
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also in(P \Fi)∩Hj (sinceFj ⊆ P ⊆ P \Fi ), but on the positive side ofFi . Hence, there
must be a pointw on the line segment[u,v] which is on the hyperplane containingFi .
The whole segment lies inP \Fi , hence every point on it has to satisfy all ofP ’s defining
inequalities except that ofFi . Sow lies in the facetFi . But it also lies inHj (the whole
line segment does), which contradicts the assumptionFi ∩Hj = ∅. ✷

In Section 3.1 we will need an additional condition: given a set of lines in the planH

(of Lemma 2.9) that pierce the faceF , we want to be sure that these lines also pierce
skylight of the constructed cupola. (This condition will play an important role when
want to force so-called blocking conditions, see Section 3: at some point two tetra
spanned by two skylights and two respective visible verticesv andv′ will have to intersect
in their interiors. This is already guaranteed if the corresponding linesg andg′ intersect
inside the polytope.)

The next theorem specifies the way in which we will use all the preceding lemm
our construction in Section 3.

Theorem 2.11 (Full-strength cupola construction).Let Hi be planes that intersect fa
cetsFi of a polytopeP in their relative interiors such thatFi ∩ Hj = ∅ for all i �= j .
Let Si = {vi1, . . . , visi } := (vert(P ) ∩Hi) \ Fi , andLi = {gi1, . . . , gis ′i } sets of lines. Assum

further that each of the linesgij pierces the relative interior ofFi and is incident to somevik .
Then we can sequentially construct all cupolasCi beyond the facesFi such that in the

resulting polytope their visibility cones containSi and no other vertices. In addition, th
skylight of the cupola over eachFi is pierced by the lines inLi .

Proof. The theorem follows from the ideas in Lemmas 2.5 and 2.9. In the constru
of the visibility cone over facetFi , we invoke Lemma 2.9 with the polytopeP ∪⋃

j �=i PbeyondFj . The setS′
i is, of course,{l ∩ Fi | l ∈ Li}. The cupola construction wa

such that the cupolas overFj were alwaysbeyondthe facetFj , so the constructed visibilit
cones contain no vertices of the other cupolas. In order to have the lines inLi pierce the
skylight of cupolai we have to alter the construction of the cupola in Lemma 2.5: whe
put the planes parallel toF , we do it in such a way that the triangles(A1,A2,A3) and then
(B1,B2,B3) are pierced by these lines. These are both open conditions on the dista
the planes toF . ✷

3. The transformation from SAT

It is our intention to model the well-known satisfiability problem (SAT) using
visibility cones of cupola polytopes. Just as Ruppert and Seidel did in [23], from
on we will restrict our attention tospecial SAT instances: each variable appears exact
three times, twice unnegated and once negated. This is not really necessary, but simplifi
explanations. We will argue in Section 3.1 why this restriction is valid. The formula

f = (X1 ∨ ¬X2 ∨X3 ∨ ¬X4)∧ (¬X1 ∨X2 ∨ ¬X3 ∨X4)∧ (X1 ∨X2 ∨X3 ∨X4)
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is such a special SAT formula. The figures in this section will correspond to this part
instance.

In Section 3.1 we will introduce the formal definition of the family oflogical polytopes
Pf,m associated to a given logical formulaf and a natural numberm. This numberm will
denote the length of the vertex-edge chains of the cupolas we use. In order to define
polytopes, we will specify the face lattice of aframe polytope, reveal where them-cupolas
are glued, and then give more conditions on the positions of the vertices relative to
other. To achieve our goal of proving Theorem 1.1 we need two lemmas. The first l
ensures that logical polytopes exist and that we can construct them in polynomial tim
the proof in Section 3.3). The second lemma assures that, among all logical polyto
a fixed logical formula, the sizem of the vertex chains in cupolas can be adjusted to
be polynomial in the number of logical variables and clauses, and (2) to be large e
to guarantee the equivalence between logical satisfiability of the logical formula and
triangulations of the logical polytope. We will prove this second lemma in Section 3.

Lemma 3.1. There is a polynomial algorithm that, given any positive integerm and
a logical formulaf containingC clauses andV variables, produces a logical polytop
P ∈Pf,m with m vertices on each vertex-edge chain. The number of vertices ofP is
bounded by a polynomial inm,C, andV . Also, the coordinates of the vertices have bin
encoding length polynomial inm, C, andV .

Lemma 3.2. Let f be a logical formula containingC clauses andV variables. There
exists a polynomialm(C,V ) with integer coefficients such that form = m(C,V ) and
for any logical polytopeP ∈Pf,m the following is true: P admits a triangulation with
� K = n + m − 4 tetrahedra if and only if there is a satisfying truth assignment to
variables of the formulaf .

Finally, using these two properties, we are ready for the proof of the main result.

Proof of Theorem 1.1. The problem is clearly in NP: checking whether a collection
tetrahedra is indeed a triangulation of the polytopeP needs only a polynomial number
calculations. Every pair of tetrahedra is checked for proper intersection (in a commo
or not at all), and the sum of the volumes equals the volume ofP (computable for instanc
by the Delaunay triangulation of the polytope). Also the size of triangulations of a g
polytope is bounded by a polynomial inn of degree two (this follows from the well-know
upper bound theorem, for details see [22]).

By Lemma 3.1, from a given logical formulaf onV logical variables andC clauses, we
can construct a logical polytopeP ∈Pf,m(C,V ) of encoding length polynomial inV andC.
Hence, by Lemma 3.2 there is a polynomial transformation that establishes the poly
equivalence of a solution for the SAT problem and the existence of small triangula
of P (small means of size less thanK as given in the statement). This completes
proof. ✷
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3.1. Logical polytopes

First of all, we want to argue why the restriction to thespecial SAT formulas(every
variable appears exactly twice unnegated and once negated) is NP-complete: th
problem remains NP-complete even for instances where each variable or its ne
appear at most three times (see references in [14, p. 259]). In addition, a change of va
can be used to change a non-negated variable into a negated variable if necessa
note that if a variable appears only negated or only positive the variable and the c
that contain it can be discarded. Finally, if a variable appears exactly once positiv
exactly once negated then it can be eliminated by combining the two clauses that c
the two variables into one.

Now, we want to define the family of logical polytopesPf,m for a given logical formula
f and a given positive integer numberm. We start by describing its face lattice. To prev
a possible confusion we remark that our vertices will be labeled by the letterscj when they
are related to logical clauses,xj when they are related to logical variables, andzj when
the vertex is auxiliary. Points always have subscripts and/or superscripts thus should
confused with their coordinate-entries(x, y, z).

In a logical polytope there will be anm-cupola for each clause and one for each varia
and its negation. The cupolas will be glued to aframe polytopewhich resembles a wedg
Look carefully at Fig. 12 for an example of the overall structure.

Figure 13 gives a view of the lower hull of the frame polytope. The sharp part o
wedge consists of 2C + 1 vertices (whereC is the number of clauses)c0, . . . , c2C . We
call this part of the frame polytope thespine. We attach theclause cupolaassociated with
clausei to the triangle(c2i , c2i+1, c2i+2) (shaded in the picture).

On top of this wedge structure we will put a series ofroofs. They are triangular prisms
spanned by the two triangles(ziT , z

i
F , z

i
A) and(ziL, z

i
R, z

i
B), one for every variableXi of the

logical formula. Thevariable cupolaswill be attached to the triangular facet(ziL, z
i
R, z

i
B),

theback gables(the triangular faces are shaded in Fig. 14).
The variable cupola of variableXi is such that its visibility cone contains exactly t

front verticesziT andziF . We will use these cupolas to read from a small triangulation o
polytope the logical value of variables according with the following rule: if the truth-se
vertexziT associated to theith logical variable is used to triangulate the skylight of

Fig. 12. Sketch of a logical polytope.
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Fig. 13. The spine of the wedge: here the clause cupolas are attached.

Fig. 14. The roofs, back gables shaded.

Fig. 15. A roof, back gable shaded,z-coordinate superelevated.

cupola for variablei, then we setXi = true. If the truth-setting vertex used to triangula
the skylight of the cupola for variablei is insteadziF thenXi = false.

Beyond the quadrilateral face containingziT we will place theliteral verticesxi1 andxi2
which corresponds to the positive occurrences ofXi in the logical formula. Beyond th

other quadrilateral face we will place the other literal vertexxi3 which correspond to th
negated occurrence ofXi . These vertices are in the visibility cones of the three cupola
the clause where variableXi or its negation appears.

We list the five conditions on logical polytopes which are necessary for the transf
tion to work in both ways, i.e., a small triangulation yields a satisfying truth assign
for our logical formula and vice versa.
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Definition 3.3. For a given logical formula, the familyPf,m of logical polytopesis the set
of all three-dimensional polytopesP that satisfy the following conditions:

(1) (Convexity and face lattice) The logical polytope must be convex, and the face lat
is as we just described it. In particular, severalm-cupolas are part of the polytope, o
for each clause and variable inf .

(2) (Visibility) The literal verticesxi1, xi2, and xi3 are vertices in the visibility con
associated to their respective clausem-cupolas, but of no other clause visibility con
The verticesziT , ziF are the only vertices in the visibility cones of theith variable
m-cupola.

(3) (Blocking) This constraint ensures that the assignment of true or false value
variables is done consistently, i.e., the positive (negative) literals can be used to
their clauses true if and only if the variable is set true (false).
Concretely, the tetrahedron spanned byziF and the skylight of them-cupola of variable
Xi intersects the interior of the tetrahedron spanned byxi1 (by xi2) and the skylight of
the clausem-cupola corresponding toxi1 (to xi2). Also the tetrahedron spanned byziT
and the skylight of them-cupola of variableXi intersects the interior of the tetrahedr

spanned byxi3 and the skylight of the clausem-cupola corresponding to it. See Fig.
for an example.

(4) (Non-blocking) Using the vertexziT to triangulate the interior of theith variablem-
cupola should not prevent the non-negated literal vertices from seeing their asso
m-cupolas. Concretely, ifj is the clause corresponding to the literal vertexxi1, then
tetrahedra(ziT , z

i
L, z

i
R, z

i
B) and (xi1, c2j−2, c2j−1, c2j ) do not intersect at all. Th

canonical analogue shall hold forxi2 andxi3 (for xi3 replacezT by zF ).
(5) (Sweeping) Because we intend to follow the same triangulation procedure which

proposed by Ruppert and Seidel [23], and which we will explain in Section 3.2
will need that

Fig. 16. Blocking for consistent logical values.
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(a) the variablexi1 is to the “left” (negativex direction) of the planesc2k−1c2kz
i
F ,

c2kc2k+1z
i
F , andc2k−1c2k+1z

i
F for 0 � k � C − 1.

(b) xi2 is to the “left” of the planesc2k−1c2kx
i
1, c2kc2k+1x

i
1, and c2k−1c2k+1x

i
1 for

0 � k � C − 1.
(c) xi3 is to the “left” of the planesc2k−1c2kz

i
F , c2kc2k+1z

i
F , andc2k−1c2k+1z

i
F for

0 � k � C − 1.
(d) ziT is to the “left” of the planesc2k−1c2kx

i
2, c2kc2k+1x

i
2, c2k−1c2k+1x

i
2, c2k−1c2kx

i
3,

c2kc2k+1x
i
3, andc2k−1c2k+1x

i
3 for 0 � k � C − 1.

3.2. Using the logical polytope

Proof of Lemma 3.2. If a triangulationT of the polytope has� n+m−4 tetrahedra, the
by Proposition 2.4 the skylight of each cupola is triangulated by a vertex in the visi
cone of the cupola. In particular, one ofziF and ziT is chosen to triangulate the cupo
corresponding to variableXi for eachi. We claim that assigning toXi the truth value
according to this choice (zF �→ false, zT �→ true) satisfies all clauses of the formula.

Each clause cupola skylight is triangulated by one of the literal vertices, say claj
by the positive literal vertexxi1 (or xi2). By the blocking conditions, it cannot be the ca
that the variable skylight ofXi is triangulated byziF since these tetrahedra would inters
badly. So we had setXi to true. Having xi1 (or xi2) in clausej ’s visibility cone meant
that variableXi appears unnegated in this clause. If the skylight of clause cupolaj is

triangulated byxi3, by the same argumentXi was set to false, and clausej satisfied by the
literal ¬Xi . Hence, all clauses are satisfied.

Now we need to prove the converse. If there is atrue–falseassignment that satisfie
all logical clauses we must find a triangulation that has no more thanK tetrahedra. Fo
that we construct a “small” triangulation. There are three different kinds of tetrahedr
ones triangulating the cupolas, the ones triangulating the roofs, and the ones triang
of the rest of the wedge. We know how to triangulate a cupola if we know a vertex
visibility cone (see the proof of Proposition 2.8). For the rest we will now follow asweeping
procedurewhich was first described by Ruppert and Seidel [23].

The sweeping triangulation proceeds by triangulating “slices” that correspond
different variablesX1 to XV , i.e., from right to left. The variable roofs are arrang
sequentially for exactly this purpose. A slice is roughly speaking the part of the tetra
between a roof and vertices of the spine. After theith step of the process the part
triangulation will have triangulated the firsti slices. The part of the boundary of the part
triangulation that is inside the logical polytope will form a triangulated disk. We will
it the interfacefollowing the convention of Ruppert and Seidel. It contains the follow
triangles:

(
ziT , c2C, z

i
L

)
and



(
ziT , c2j−2, c2j

)
if clausej is satisfied by one of the firsti variables, or(

ziT , c2j−2, c2j−1
)

and
(
ziT , c2j−1, c2j

)
otherwise,

for all j = 1, . . . ,C. Before the first step, the partial triangulation is empty. After the
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Fig. 17. The interface after step 2.

Fig. 18. Removing the tetrahedra spanned byzT and the shaded triangles.

step the partial triangulation will cover the whole logical polytope. In general, the ve
of theith roof will see all triangles of the interface and will be used as apexes to form
tetrahedra to add to the current partial triangulation. This way the interface will sl
move from right to left.

Now we describe in detail the triangulation step for theith variableXi . Since we are
only concerned with roof vertices in roofi, we will drop all superscripts. The triangulatio
step depends on whetherXi is settrueor falsein the satisfying assignment. Let us consid
first the caseXi = true.

The point zT is used to triangulate the interior of the variable cupola assoc
to Xi according to Proposition 2.8. FromzT we also form six tetrahedra with th
following triangles:(zL, x3, zB), (x3, zB, zA), (zB, zA, x2), (zB, x2, zR), (zA, x1, x2), and
(x1, zA, zF ).

Now we come to the part of the triangulation which gave the sweeping proc
its name. We form the tetrahedra betweenx1 and the current interface triangles. This
possible by part (a) of condition (5). We also use the tetrahedron(x1, zT , c0, zF ). This is
illustrated in the transition from (a) to (b) in Fig. 19. The interface advances tox1, i.e., if
(zF , cj , ck) was an interface triangle before, now(x1, cj , ck) is an interface triangle. Als
(zF , c2C, zR) is replaced by the triangle(x1, c2C, zR).

SinceXi is set totrue we can usex1 to triangulate its clause cupola according
Proposition 2.8. We only do this if the clause cupola has not been previously triang
using an other literal vertex. Condition (2) ensures thatx1 is in the visibility cone of the
clause cupola coming from the clause that contains the unnegated literalXi . Furthermore
condition (4) ensures that we can actually perform this triangulation of the clause c
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Fig. 19. The sweep.

Fig. 20. The sweep forXi = false.

without badly intersecting the tetrahedra of the variable cupola. In Fig. 19(c) we se
if x1 is used to triangule clausej ’s cupola, then the interface triangle(x1, c2j−2, c2j ) is
replaced by the two triangles(x1, c2j−2, c2j−1) and(x1, c2j−1, c2j ).

We repeat this procedure withx2, i.e., form tetrahedra withx2 and the current interfac
triangles, and then usex2 to triangulate its clause cupola if necessary (Fig. 19(d)). T
is possible by part (b) of condition (5). We continue by forming tetrahedra usingzT as
apex (Fig. 19(e), possible by condition (5), part (d)). At last, we will include the tria
(c2C, zL, zB). All these triangles are visible by part (d) of condition (6). After all the
tetrahedra are added the interface is ready for the next variable.

Let us now consider the triangulation step in the caseXi is set to befalse: we use the
vertexzF to triangulate the variable cupola as well as seven faces of the roof (see Fi
(zT , x3, zA), (x3, zA, zB), (x3, zL, zB), (zB, zA, x2), (zB, x2, zR), (zA, x2, x1), (x2, x1, zR).
The reader can see that on the roof we are leaving only the vertexx3. Next the tetrahedro
(zF , zL, zR, c2C) is cut out. Hereby, the interface triangle(zF , zR, c2C) is replaced by
(zF , zL, c2C) (Fig. 20(c)). Thenx3 will be used as apex with the triangles in the interface
the negated literalXi is used to satisfy its clausej , thej th clause cupola is triangulated b
x3. The interface advances as in thetrue-case. ThenzT can be used to form tetrahedra w
the triangles in the interface. In the end the interface is again ready for the next varia
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How many tetrahedra can such a triangulation have? Triangulating all cu
with a vertex in their visibility cones yields at most(3m + 16)(C + V ) tetrahedra
(Proposition 2.8). In one step of the sweeping triangulation the tops of the roo
each triangulated using six or seven tetrahedra (if the variable is unnegated or n
respectively). Furthermore, the interface is triangulated by some vertices three tim

the positive case byxi1, by xi2, and byziT ) or two times (in the negative case byxi3 and
by ziT ). The interface contains in each step betweenC and 2C triangles. Eventually, in
either case there is one more tetrahedron (see above). An upper bound for the size
triangulation is therefore

#T � (3m+ 16)(C + V )+ 7V + 3CV + 1

=m(3C + 3V )+ 16C + 23V + 3CV + 1︸ ︷︷ ︸
pT (V ,C)

.

What is the number of the vertices of the logical polytope in terms of the numb
clauses and variables? We haveV logical variables andC clauses in the SAT instance. W
havem interior points each of the vertex-edge chains we added (later we will determin
value ofm as a polynomial function ofV andC). We observe that we have 3m+6 vertices
in each cupola, hence we have(3m+ 6)(V +C) for all cupolas. We have in each roof nin
vertices, two of them are shared with the subsequent roof except for the last roof. H
the total number of vertices in roofs is 7V + 2. We have left only the 2C+ 1 vertices along
the spine. In conclusion, the number of vertices ofP is

n= (3m+ 6)(V +C)+ 7V + 2+ 2C + 1 =m(3C + 3V )+ 8C + 13V︸ ︷︷ ︸
pn(C,V )

+3.

We had said before that a “bad” triangulation (where at least one cupola sk
is triangulated by a vertex not lying in its visibility cone) has at leastn + m − 3 =
m(3C + 3V + 1) + pn(C,V ) tetrahedra. On the other hand, a “good” triangulation
at mostm(3C+3V )+pT (C,V ) tetrahedra. We can now setm=m(C,V )= pT (C,V )−
pn(C,V ) + 1. Then, if a good triangulation exists, its size is smaller than or equ
K = n+m− 4, and if not, all triangulations are larger thanK. ✷
3.3. Constructing a logical polytope

Proof of Lemma 3.1. The construction will be carried out in five stages. By the time
end the construction all five requirements of the definition of logical polytopes mu
satisfied, but three of the conditions will not be met until the last stage.

(1) Give coordinates of the basic wedge, with rectangular faces on top for each var
(2) Attach the roofs for each variable, giving preliminary coordinates for the literal ver

and preliminary coordinates for the points on the lower edge (the spine of the we
(3) Perturb the literal vertices to their final positions.
(4) Perturb the vertices on the spine of the wedge.
(5) Attaching the variable cupolas following the procedures of Section 2.
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In every step we will build a construction element (a point, a line, or a plane) w
coordinates are polynomials in the construction elements up to that particular mo
Hence, the encoding length of each new construction element is bounded by a
function of the encoding length of the construction so far. The number of construction
is polynomially bounded inC andV . Hence, the encoding length of the whole construc
is also polynomially bounded inC andV . Note however, that the coordinates themse
will in general be exponentially large.

Instead of writing explicit (and highly cumbersome) coordinates for the constru
elements, we rely on Lemma 1.4 to ensure that such coordinates can be found if o
really the desire to see a particular logical polytope. A key property of stages (2)–
the construction is that the geometric conditions we want to determine a finite colle
of strict polynomial inequalitiesin a single variable. Then, by Lemma 1.4, we know the
is an appropriate polynomial size solution. In subsequent stages of the construction
new systems, for other independent parameters, will be solved, preserving what we
far, but building up new properties.

Stage(1). The basic wedge.Consider the triangular prism which is the convex hull
the six pointsc0 = (0,0,0), c2C = (0,1,0), zVT = (0,0,1), z1

F = (1,0,1), zVL = (0,1,1),
andz1

R = (1,1,1). See Fig. 21(a). In order to obtain a convex structure on the top o
wedge, we consider the functionf (x)= x(1− x)+ 1. The vertices of each roof bounda
(that isziT andziF as well asziR andziL) will lie on the surfacez= f (x). More specifically,
ziF = zi+1

T = (i/V,0, f (i/V )) andziR = yi+1
L = (i/V,1, f (i/V )) for i = 0, . . . , n. By the

concavity off , the points are indeed in convex position and their convex hull, thewedge
has the desired face lattice (see Fig. 21(b)).

So far none of the conditions we want are satisfied (not even partially).

Stage(2). The roofs. We will first attach the pointsziA andziB to the quadrilateral fac
(ziL, z

i
R, z

i
T , z

i
F ). Then we give preliminary coordinates to the literal vertices and to

vertices on the spine.
Let ziA = 1/2 · (ziT + ziF ) + (0,1/3, troof) and ziB = 1/2 · (ziT + ziF ) + (0,2/3, troof)

wheretroof is a non-negative parameter that is called theroof height. That is the points
have the samex coordinate as the midpoint betweenziT andziF , y coordinate 1/3 and 2/3,

Fig. 21. Construction of the wedge.
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respectively, and heighttroof over the face(ziT , z
i
F , z

i
L, z

i
R). We want to choosetroof in a

way thatziA andziB are beyond the facet(ziT , z
i
F , z

i
L, z

i
R) (see Fig. 21(c)). We can easi

achieve this by the technique presented in Lemma 1.4: The only possibly concave ed
the(ziT , z

i
L). One restriction is therefore that all determinants det(ziT , z

i
L, z

i−1
A , ziA) have to

be positive. These are finitely many open quadratic conditions ontroof. For troof = 0 the
points ziA an ziB are inside the facets(ziT , z

i
F , z

i
L, z

i
R), hence the edges in question a

trivially convex. We will get more polynomial constraints ontroof below and then solve a
simultaneously to find the suitable roof height.

The spine of the wedge is still a line. We now put preliminary pointsc0, . . . , c2C on this
line. Let

u(j)= 1

2

j

2C
and cj = (0, u(j),0) for j = 0, . . . ,2C − 1, andc2C = (0,1,0) (see Fig. 22). As an
auxiliary point, letbl be the barycenter of the pointsc2l−2, c2l−1, andc2l (l = 1, . . . ,C).
At this moment, this pointbl = c2l−1. Later, as we perturb the spine verticesbl will move
accordingly, alwaysbl = 1/3(c2l−2 + c2l−1 + c2l ).

Now we want to give initial positions to the literal vertices. Say variableXi occurs
unnegated in clausesl1 and l2 and negated inl3. Note thatlj depend on the variable w
are considering. For instance, in our example logical formula on p. 151, for variablX1,
l1 = 1, l2 = 3, andl3 = 2. But for variableX2, l1 = 2, l2 = 3, andl3 = 1.

The preliminary literal vertexxi1 is the intersection of they = u(2l1 − 1) plane with the
line connectingziF andziB . We do the same for the other positive occurrence ofXi and
obtain the preliminaryxi2. For the negative occurrence ofXi , we take the line connectin

ziT andziB , intersect it with they = u(2l3 − 1) plane, and obtain the preliminaryxi3. We

Fig. 22. Preliminary coordinates for the spine vertices.

Fig. 23. Construction of the literal vertices in theXi slice of the wedge.
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Fig. 24. Construction ofHi andgi1.

join the preliminaryxi1 andbl1 by a linedi1 (this line lies in they = u(2l1 − 1) plane). Do

the analogue process forxi2 andxi3, obtainingdi2 anddi3. Later we will move the vertice

xi1, xi2, xi3 along their respective linesdi1, di2, di3 a little out of polytope in order to turn them
into extreme points. The linesdij will also be used for blocking conditions.

Let Hi be the plane that containsziT and ziF and the midpoint of the edge(ziL, z
i
B)

(Fig. 24). The only vertices aboveHi arexi1, xi2, xi3, ziA, andziB , and the only verticeson
Hi areziT andziF . This follows from the convexity of the current polytope.

Let gi1 (gi2) be the line in the planeHi which is incident toziF and intersects the lin
di1 (di2). Note that this intersection point lies in the segment(xi1, c2l1−1) (the line segmen
(xi2, c2l2−1)), thus in the interior of the constructed polytope. Analogously, letgi3 be the

line in the planeHi which is incident toziT and intersects the line segment(xi3, c2l3−1).
It can be verified that if the roof height is small(ziL, z

i
R, z

i
B) is pierced by thegij in its

relative interior. This is another strict polynomial inequality introof. It will be the planes
Hi and linesgij (i = 1, . . . , V ) from which we make the visibility cones for the cupolas
variablesXi according to Theorem 2.11.

It is important to note right now that the non-blocking conditions are satisfied
this special position of the vertices. We do not want the tetrahedron(ziT , z

i
L, z

i
R, z

i
B) and

the triangle(xi1, c2l1−2, c2l1) to intersect. From this we get strict polynomial inequalit
on troof. They are satisfied fortroof = 0 since they coordinates of the spine vertice
cl are smaller than 1/2. A suitable value oftroof can be found solving the univaria
inequality system we accumulated in our discussion (Lemma 1.4). It is easy to
that the sweeping conditions are also satisfied for the preliminary position of the

xi1, x
i
2, x

i
3. So far we have met two of the five required conditions to have a logical poly

Stage(3). Literal vertices. Now we put the finalxij (j = 1,2,3) a little outward on linedij
(Fig. 23). A little forxi1 andxi2 means that the positive literal vertices lie in a plane para
to the face(ziR, z

i
B, z

i
A, z

i
F ) very close to it. We treatxi3 similarly. If the three literal vertice

are moved a sufficiently small distancetliteral the face lattice of what we get after taking t
convex hull is as Fig. 15(a) in all roofs. See also the Schlegel diagram in Fig. 15(b).

By constructionHi containsziF and ziT , and they = u(2j − 1) planes contain al
literal vertices corresponding to clausej . This will become important for the visibility
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conditions (see stage (5)). Also, for smalltliteral the non-blocking and sweeping conditio
are satisfied.

Although we do not have the blocking condition yet auxiliary lines can be set up

above, letl1, l2, l3 be the clauses to which the literal vertexxi1, xi2, xi3 belong. We made
sure that the line segments(c2l1−1, x

i
1) and (ziF , z

i
B) intersect in their respective relativ

interiors. Hence, by the construction of linegi1, it is also pierced by(xi1, c2l1−1) between
zF and the face(ziL, z

i
R, z

i
B). (Analogously,(c2l2−1, x

i
2) and(ziF , g

i
2 ∩ (ziL, ziR, ziB)) as well

as(c2l3−1, x
i
3) and(ziT , g

i
3 ∩ (ziL, z

i
R, z

i
B)) intersect in their relative interiors.) Later on th

intersection will evolve into the real blocking conditions using Theorem 2.11.

Stage(4). Perturbing the vertices on the spine of the wedge.We now perturb the point
cj on the spine of the wedge. Every even-indexedc2l is changed to lie on a parabola, a
for the moment the odd-indexed verticesc2l−1 are changed to lie on the line connecti
c2l−2 andc2l . They coordinates of all points stay the same

c2l =
(

1

2
(y − 1)2 · teven, y, (y − 1)2 · teven

)
.

Note that by the 1/2 in thex coordinate, the points are movedinto the polytope. The
changes (parameterteven) must be small enough that the convex hull now has the de
appearance (Fig. 25) and the non-blocking conditions and the sweeping conditions a
satisfied. Once more we appeal to Lemma 1.4. The polynomials inequalities are n
the variabletevenand the sweeping and non-blocking were satisfied atteven= 0. The reade
should note that while the constructed vertices in the roofs do not change coord
dependent construction elements like the linesdij (connectingxij andc2lj−1) andgij (lying

in Hi and intersectingdij ) change when the spine vertices move. However, the param

tevenhas to be small enough that the preliminary blocking conditions are still met:gij still

pierce the facet(ziL, z
i
R, z

i
B) in its relative interior, andgij anddij intersect in the interior o

the polytope.
Now we move the odd pointsc2l−1 beyond the faceGl = (c2l−2, c2l, z

0
T ): to this end, we

choose a pointpl beyondGl and move toc2l−1+ todd(pl − c2l−1). Such a pointpl is easily
found by taking a normal toGl through its barycenter and moving outwards while stay
beyond the face (note that this involves again Lemma 1.4, see the definition ofbeyond).
The parametertodd is chosen small enough: convexity and the correctness of the face l
are easily achieved. Also the sweeping conditions are valid for slight moves. Keepintodd
small also guarantees the non-blocking conditions: the tetrahedron(xi1, c2l1−2, c2l1−1, c2l1)

Fig. 25. Perturbation of the vertices on the spine.
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is only slightly bigger than just the triangle(xi1, c2l1−2, c2l1) which did not intersect the

tetrahedron(ziT , z
i
L, z

i
R, z

i
B) (xi2 andxi3).

For the blocking conditions, letXi be thej th logical variable in clausel. Note that now
the linedij intersects the triangle(c2l−2, c2l−1, c2l) in its relative interior. The linesgij are

updated as the linesdij move. Sincetodd is small,gij still pierces the facet(ziL, z
i
R, z

i
B) in its

relative interior, andgij anddij intersect in the interior of the polytope. Note thatdij is still
in they = u(2l− 1) plane because they coordinates of the spine vertices were conser

Stage(5). Attaching the cupolas. It remains to construct all the cupolas. Over the fac
(ziL, z

i
R, z

i
B) (i = 1, . . . , V ) we construct cupolas using the planesHi and sets of lines

{gi1, gi2, gi3}, and over the facets(c2l−2, c2l−1, c2l) (i = 1, . . . ,C) we construct the claus
cupolas using they = g(2l − 1) planes and the sets of lines{dij |Xi ’s j th occurrence is in
clausel}. We invoke Theorem 2.11 and get the final polytope. By this construction,
convex, has the correct face lattice, and the visibility conditions are satisfied.

The reader will recall thatgij anddij intersect in the interior of the polytope. Say ag

variableXi occurs unnegated in clausesl1 andl2 and negated inl3. By Theorem 2.11gij
pierces the skylight of the cupola corresponding to variableXi anddij pierces the skyligh

corresponding to its clauselj . Hence, the tetrahedron spanned byziF and the variableXi ’s
skylight together with the tetrahedron spanned byxi1 (xi2) and clausel1’s skylight (l2’s
skylight) intersect in their interiors. Analogously, the tetrahedron spanned byziT and the

variableXi ’s skylight and the tetrahedron spanned byxi3 and clausel3’s skylight intersect
in their interiors. These are exactly the blocking conditions.

All other conditions concerned only points we constructed before, so they are
satisfied. The final polytope is therefore a logical polytope.✷

4. Final remarks and conclusions

It is worth noticing at this point that the size of the constantK we constructed in
Section 3.2 satisfies in factn− 3<K < 2n. Now we discuss an interesting justification
why the lower bound is strict.

We say that a convex polytope isstackedif it has a triangulation whose dual grap
is a tree (the dual graph of a simplicial complex is the graph that has one verte
each maximal-dimensional simplex and two vertices are connected precisely wh
corresponding simplices are adjacent via a common facet). The reader should be aw
in the literature the terminology stacked polytope is often restricted to simplicial polyt
Here, of course, we use it allowing that the stacking of simplices may give coplana
For example, any 3-cube or triangular prism is a stacked polytope under our definiti

It turns out that a convexd-polytopeP with n vertices has a triangulation of sizen− d

precisely whenP is a stacked polytope (see [22]). It is natural to ask which polytope
stacked. If it were NP-hard to recognize stacked polytopes then this would provide a
proof that the problem of finding minimal triangulations is also in the same class. How
we can prove:



A. Below et al. / Journal of Algorithms 50 (2004) 134–167 165

e
icular

ot

theory
r

t
tices,

as

ors

e

te
es

ex-

e

at the

is

hod
im

is
ction
ite set
Theorem 4.1. (1) For a convexd-polytopeP , presented by itsn vertices, there is
a O(n3d3) algorithm to decided whetherP is stacked(i.e., P has a triangulation with
n − d maximal simplices). The algorithm uses only the1-skeleton of the polytope. Th
size of a minimal triangulation of a stacked polytope does not depend on the part
coordinatization, but only depends on its face lattice.

(2) A convex3-dimensional polytopeP is stacked if and only if its graph does n
contain as a minor the graph of an octahedron or a pentagonal prism.

Proof. We need some definitions that have been introduced earlier in the graph
literature [1,2,12]. We say a graphG is k-decomposableif G hask+ 1 or fewer vertices o
there is a subset of verticesS of G with at mostk vertices such that (i)S is acut, i.e.,G–S
is disconnected, and (ii) each of the connected components ofG–S has the property tha
when the vertices ofS are added back together with the complete graph on those ver
the resulting graph is againk-decomposable.

It was shown in [1, Theorem 2.7] that the class ofk-decomposable graphs is the same
the class of partialk-trees: a graph is ak-treeif it can be reduced to the complete graphKk ,
by a finite sequence of removals of degreek vertices with completely connected neighb
(i.e., neighbors of the vertex induce a complete graphKk). A partial k-tree is simply an
edge-subgraph of ak-tree.

Now we claim that ad-dimensional convex polytopeP is stacked, if and only if its
1-skeleton is a partiald-tree. Here is the proof: the “only if” implication is clear from th
definition of stacked polytope. We can prove the “if” implication by induction onn. The
theorem is trivial ifn = d + 1 because thenP is a simplex and its graph is a comple
graph, thus is ad-tree. Assume thenn > d + 1 and that the result is true for polytop
with fewer thann vertices. Remember that if 1-skeletonG(P) is a partiald-tree then it is
d-decomposable. Thus, there is a cutS of cardinality at mostd . The setS must have in
fact cardinalityd becauseG(P) is d-connected by Balinski’s theorem. If one has a vert
cutsetS of cardinality d in G(P), then the hyperplaneH(S) spanned byS intersects
G(P) only in the vertices ofG(P) ∩ S and in no edges (otherwiseS is not a cut). In
conclusion,H(S) ∩ P is a (d − 1)-simplex and becauseG(P) is d-decomposable w
can apply induction hypothesis to prove the polytopesH(S)+ ∩ P andH(S)− ∩ P are
d-decomposable, and thus they are partiald-trees with fewer vertices thanP , so both
polytopes are stacked. Finally, note that their stacked triangulations match well
common boundary simplicial facetH(S)∩P , proving thatP is stacked.

There is an algorithm that, for fixed values ofk, decides whether a given graph
a partialk-tree in running timeO(n) [3]. Computing the 1-skeleton of ak-polytopeP
can be computed with some more effort. Two verticesv1 andv2 are adjacent inP if and
only if there isa ∈ Rd andb ∈ R such thataT v1 = aT v2 = b andaT p < b for all p in
P − {v1, v2}. That is, there is a halfspace which supports P at exactly two pointsv1, v2.
Clearly,O(n2) of these LP calculations suffice. From the well-known Ellipsoid met
each such LP can be solved inO(nd3) operations. This, together with the above cla
about detecting partialk-trees, completes the proof of the first part of the theorem.

For the second part we observe that partialk-trees form a minor closed family. Th
means that the set of partialk-trees is closed under taking edge-deletion or edge-contra
operations. The famous results of [26] imply that they can be characterized by a fin
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of forbidden minors. El-Mallah and Colbourn [12] proved that a graph is a planar 3-t
and only if it has no minor isomorphic to the graph of an octahedron or a pentagonal
This fact together with our claim complete the proof of the second part.✷
Final remarks.

(1) The “coning” triangulation proposed in [13] provides an algorithm which is poly
mial on the number of vertices and gives a 2-approximation of the minimal trian
tion as it produces a triangulation of size less than or equal to 2n− 7.

(2) Given a 3-dimensional convex polytopeP , a proper subsetS of tetrahedra with ver
tices in vertices(P ), and a positive integerK. Deciding whether there is a triangulatio
of P that usesK simplices fromS can also be proved to be an NP-hard problem us
the constructions we explained.

(3) It is interesting to note that the constructions presented in [5] prove also
coveringa convex 3-polytope with tetrahedra can be done with fewer pieces
triangulating. A cover is a collection of simplices whose union is the whole polyt
but the elements can intersect in their interiors.Question: what is the computationa
complexity of finding minimal simplicial covers?

(4) Question: what is the complexity of deciding whether a triangulation of the boun
of convex non-simplicial 3-polytope extends to a triangulation of the whole poly
without adding new interior points? If NP-hard, this could be used to establish an
proof our results. The curious reader can easily prove that already for a triangular
not all triangulations of the boundary extend to a triangulation of the whole poly
Even more interesting. The triangulations of the boundary of a 3-cube extend
depending on the coordinates of its vertices.
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