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1 Introduction

A well-known result by H.W. Lenstra Jr. states that integer linear programming
problems with a fixed number of variables can be solved in polynomial time on
the input size [12]. Likewise, mixed integer linear programming problems with a
fixed number of integer variables can be solved in polynomial time. It is a natural
question to ask what is the computational complexity, when the number of vari-
ables (or the number of integer variables) is fixed, of the non-linear mixed integer
problem

max f (x1, . . . ,xd1 ,z1, . . . ,zd2) (1a)
s.t. Ax+Bz ≤ b (1b)

xi ∈ R for i = 1, . . . ,d1, (1c)
zi ∈ Z for i = 1, . . . ,d2, (1d)

where f is a polynomial function of maximum total degree D with rational coeffi-
cients, and A∈Zp×d1 , B∈Zp×d2 , b∈Zp. We are interested in general polynomial
objective functions f without any convexity assumptions.

Throughout the paper we assume that the inequality system Ax + Bz ≤ b de-
scribes a convex polytope, i.e., a bounded polyhedron, which we denote by P. The
reason for this restriction are fundamental noncomputability results for problems
involving polynomials and integer variables. Indeed, when we permit unbounded
feasible regions, there cannot exist any algorithm to decide whether there exists a
feasible solution to (1) with f (x,z)≥ α (for a prescribed bound α), ruling out the
existence of an optimization algorithm or any approximation scheme. This is due
to the negative answer to Hilbert’s tenth problem by Matiyasevich [13,14]. Due to
Jones’ strengthening of this negative result [10], there also cannot exist any such
algorithm for the cases of unbounded feasible regions for any fixed number of
integer variables d2 ≥ 10.

For the purpose of complexity analysis, we assume that the data A, B, and
b are given by the binary encoding scheme, and that the objective function f is
given as a list of monomials, where the coefficients are encoded using the binary
encoding scheme and the exponent vectors are encoded using the unary encoding
scheme. In other words, the running times are permitted to grow polynomially not
only in the binary encoding of all the problem data, but also in the maximum total
degree D of the objective function f .

It is well-known that pure continuous polynomial optimization over polytopes
(d2 = 0) in varying dimension is NP-hard and that a fully polynomial time ap-
proximation scheme (FPTAS) is not possible (unless P = NP). Indeed the max-cut
problem can be modeled as minimizing a quadratic form over the cube [−1,1]d .
Håstad [9] proved that the max-cut problem cannot be approximated to a ratio
better than 1.0625 (unless P = NP). This excludes the possibility of a polynomial
time approximation scheme for (1) in varying dimension, even when the number
of integer variables is fixed.

On the other hand, pure continuous polynomial optimization problems over
polytopes (d2 = 0) can be solved in polynomial time when the dimension d1 is
fixed. This follows from a much more general result on the computational com-
plexity of approximating the solutions to general algebraic formulae over the real
numbers by Renegar [19]; see also [16,17,18].
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However, when we permit integer variables (d2 > 0), it turns out that, even for
fixed dimension d1 + d2 = 2 and objective functions f of maximum total degree
D = 4, problem (1) is an NP-hard problem [6]. Thus the best we can hope for,
even when the number of both the continuous and the integer variables is fixed, is
an approximation result. This paper presents the best possible such result:

Theorem 1 (Fully polynomial-time approximation scheme) Let the dimension
d = d1 +d2 be fixed.

(a) There exists a fully polynomial time approximation scheme (FPTAS) for the
optimization problem (1) for all polynomial functions f (x1, . . . ,xd1 ,z1, . . . ,zd2)
with rational coefficients that are non-negative on the feasible region (1b–1d).

(b) Moreover, the restriction to non-negative polynomials is necessary, as there
does not even exist a polynomial time approximation scheme (PTAS) for the
maximization of arbitrary polynomials over mixed-integer sets in polytopes,
even for fixed dimension d ≥ 2, unless P = NP.

The proof of Theorem 1 is presented in section 5. As we will see, Theorem 1 is
a non-trivial consequence of the existence of FPTAS for the problem of maximizing
a non-negative polynomial with integer coefficients over the lattice points of a
convex rational polytope. That such FPTAS indeed exist was recently settled in our
paper [6]. The knowledge of paper [6] is not necessary to understand this paper
but, for convenience of the reader, we include a short summary in section 2. Our
arguments, however, are independent of which FPTAS is used in the integral case.

Our main approach is to use grid refinement in order to approximate the mixed-
integer optimal value via auxiliary pure integer problems. One of the difficulties
on constructing approximations is the fact that not every sequence of grids whose
widths converge to zero leads to a convergent sequence of optimal solutions of
grid optimization problems. This difficulty is addressed in section 3. In section 4
we develop techniques for bounding differences of polynomial function values.
Section 5 contains the proof of Theorem 1.

Finally, in section 6, we study a different notion of approximation. The usual
definition of an FPTAS uses the notion of ε-approximation that is common when
considering combinatorial optimization problems, where the approximation error
is compared to the optimal solution value,∣∣ f (xε ,zε)− f (xmax,zmax)

∣∣≤ ε f (xmax,zmax), (2)

where (xε ,zε) denotes an approximate solution and (xmax,zmax) denotes a maxi-
mizer of the objective function. In section 6, we now compare the approximation
error to the range of the objective function on the feasible region,∣∣ f (xε ,zε)− f (xmax,zmax)

∣∣≤ ε
∣∣ f (xmax,zmax)− f (xmin,zmin)

∣∣, (3)

where additionally (xmin,zmin) denotes a minimizer of the objective function on
the feasible region. This notion of approximation was proposed by various authors
[20,3,11]. It enables us to study objective functions that are not restricted to be
non-negative on the feasible region. We remark that, when the objective function
can take negative values on the feasible region, (3) is weaker than (2). Therefore
Theorem 1 (b) does not rule out the existence of an FPTAS with respect to this
notion of approximation. Indeed we prove:
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Theorem 2 (Fully polynomial-time weak-approximation scheme) Let the di-
mension d = d1 + d2 be fixed. Let f be an arbitrary polynomial function with
rational coefficients and maximum total degree D, and let P ⊂ Rd be a rational
convex polytope.
(a) In time polynomial in the input size and D, it is possible to decide whether f

is constant on P∩
(
Rd1 ×Zd2

)
.

(b) In time polynomial in the input size, D, and 1
ε

it is possible to compute a
solution (xε ,zε) ∈ P∩

(
Rd1 ×Zd2

)
with∣∣ f (xε ,zε)− f (xmax,zmax)

∣∣≤ ε
∣∣ f (xmax,zmax)− f (xmin,zmin)

∣∣.
Notation. As usual, we denote by Q[x1, . . . ,xd1 ,z1, . . . ,zd2 ] the ring of multivariate
polynomials with rational coefficients. For writing multivariate polynomials, we
frequently use the multi-exponent notation, zααα = zα1

1 · · ·zαd
d .

2 An FPTAS for the integer case

The first fully polynomial-time approximation scheme for the integer case ap-
peared in our paper [6]. It is based on Alexander Barvinok’s theory for encoding
all the lattice points of a polyhedron in terms of short rational functions [1,2].
The set P∩Zd is represented by a Laurent polynomial gP(z) = ∑ααα∈P∩Zd zααα . From
Barvinok’s theory this exponentially-large sum of monomials gP(z) can be writ-
ten as a polynomial-size sum of rational functions (assuming the dimension d is
fixed) of the form:

gP(z) = ∑
i∈I

Ei
zui

∏
d
j=1(1− zvi j)

, (4)

where I is a polynomial-size indexing set, and where Ei ∈ {1,−1} and ui,vi j ∈Zd

for all i and j. There is a polynomial-time algorithm for computing this represen-
tation [1,2,5,7].

By symbolically applying differential operators to the representation (4), we
can compute a short rational function representation of the Laurent polynomial

gP, f (z) = ∑
ααα∈P∩Zd

f (ααα)zααα . (5)

In fixed dimension, the size of the expressions occuring in the symbolic calcula-
tion can be bounded polynomially:

Lemma 3 ([6], Lemma 3.1) Let the dimension d be fixed. Let gP(z)= ∑ααα∈P∩Zd zααα

be the Barvinok representation of the generating function of P ∩ Zd . Let f ∈
Z[x1, . . . ,xd ] be a polynomial of maximum total degree D. We can compute, in
time polynomial in D and the input size, a Barvinok representation gP, f (z) for the
generating function ∑ααα∈P∩Zd f (ααα)zααα .

Now we present the algorithm to obtain bounds Uk,Lk that reach the optimum.
We make use of the elementary fact that, for a set S = {s1, . . . ,sr} of non-negative
real numbers,

max{s1, . . . ,sr}= lim
k→∞

k
√

sr
1 + · · ·+ sr

k. (6)
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Algorithm 4 (Computation of bounds)
Input: A rational convex polytope P⊂Rd , a polynomial objective f ∈Z[x1, . . . ,xd ]
of maximum total degree D that is non-negative over P∩Zd .
Output: A nondecreasing sequence of lower bounds Lk, and a nonincreasing se-
quence of upper bounds Uk, both reaching the maximal function value f ∗ of f
over P∩Zd in a finite number of steps.

1. Compute a short rational function expression for the generating function gP(z)=
∑ααα∈P∩Zd zααα . Using residue techniques, compute |P∩Zd |= gP(1) from gP(z).

2. From the rational function gP(z) compute the rational function representation
of gP, f k(z) of ∑ααα∈P∩Zd f k(ααα)zααα by Lemma 3. Using residue techniques, com-
pute

Lk :=
⌈

k
√

gP, f k(1)/gP, f 0(1)
⌉

and Uk :=
⌊

k
√

gP, f k(1)
⌋
.

Theorem 5 ([6], Lemma 3.3 and Theorem 1.1) Let the dimension d be fixed.
Let P ⊂ Rd be a rational convex polytope. Let f be a polynomial with integer
coefficients and maximum total degree D that is non-negative on P∩Zd .

(i) Algorithm 4 computes the bounds Lk, Uk in time polynomial in k, the input
size of P and f , and the total degree D. The bounds satisfy the following
inequality:

Uk −Lk ≤ f ∗ ·
(

k
√
|P∩Zd |−1

)
.

(ii) For k = (1 + 1/ε) log(|P∩Zd |) (a number bounded by a polynomial in the
input size), Lk is a (1− ε)-approximation to the optimal value f ∗ and it can
be computed in time polynomial in the input size, the total degree D, and
1/ε . Similarly, Uk gives a (1+ ε)-approximation to f ∗.

(iii) With the same complexity, by iterated bisection of P, we can also find a fea-
sible solution xε ∈ P∩Zd with∣∣ f (xε)− f ∗

∣∣≤ ε f ∗.

3 Grid approximation results

An important step in the development of an FPTAS for the mixed-integer opti-
mization problem is the reduction of the mixed-integer problem (1) to an auxiliary
optimization problem over a lattice 1

m Zd1 ×Zd2 . To this end, we consider the grid
problem with grid size m,

max f (x1, . . . ,xd1 ,z1, . . . ,zd2)
s.t. Ax+Bz ≤ b

xi ∈ 1
m Z for i = 1, . . . ,d1,

zi ∈ Z for i = 1, . . . ,d2.

(7)

We can solve this problem approximately using the integer FPTAS (Theorem 5):
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Corollary 6 For fixed dimension d = d1 + d2 there exists an algorithm with run-
ning time polynomial in logm, the encoding length of f and of P, the maxi-
mum total degree D of f , and 1

ε
for computing a feasible solution (xm

ε ,zm
ε ) ∈

P∩
( 1

m Zd1 ×Zd2
)

to the grid problem (7) with an objective function f that is
non-negative on the feasible region, with

f (xm
ε ,zm

ε )≥ (1− ε) f (xm,zm), (8)

where (xm,zm) ∈ P∩
( 1

m Zd1 ×Zd2
)

is an optimal solution to (7).

Proof We apply Theorem 5 to the pure integer optimization problem:

max f̃ (x̃,z)
s.t. Ax̃+mBz ≤ mb

x̃i ∈ Z for i = 1, . . . ,d1,

zi ∈ Z for i = 1, . . . ,d2,

(9)

where f̃ (x̃,z) := mD f ( 1
m x̃,z) is a polynomial function with integer coefficients.

Clearly the binary encoding length of the coefficients of f̃ increases by at most
dD logme, compared to the coefficients of f . Likewise, the encoding length of the
coefficients of mB and mb increases by at most dlogme. By Theorem 1.1 of [6],
there exists an algorithm with running time polynomial in the encoding length of f̃
and of Ax+mBz≤mb, the maximum total degree D, and 1

ε
for computing a feasi-

ble solution (xm
ε ,zm

ε ) ∈ P∩
( 1

m Zd1 ×Zd2
)

such that f̃ (xm
ε ,zm

ε )≥ (1− ε) f̃ (xm,zm),
which implies the estimate (8). ut

One might be tempted to think that for large-enough choice of m, we im-
mediately obtain an approximation to the mixed-integer optimum with arbitrary
precision. However, this is not true, as the following example demonstrates.

Example 7 Consider the mixed-integer optimization problem

max 2z− x
s.t. z ≤ 2x

z ≤ 2(1− x)
x ∈ R≥0, z ∈ {0,1},

(10)

whose feasible region consists of the point ( 1
2 ,1) and the segment {(x,0) : x ∈

[0,1]}. The unique optimal solution to (10) is x = 1
2 , z = 1. Now consider the se-

quence of grid approximations of (10) where x ∈ 1
m Z≥0. For even m, the unique

optimal solution to the grid approximation is x = 1
2 , z = 1. However, for odd m,

the unique optimal solution is x = 0, z = 0. Thus the full sequence of the opti-
mal solutions to the grid approximations does not converge since it has two limit
points; see Figure 1.

Even though taking the limit does not work, taking the upper limit does. More
strongly, we can prove that it is possible to construct, in polynomial time, a sub-
sequence of finer and finer grids that contain a lattice point (bx∗eδ ,z∗) that is ar-
bitrarily close to the mixed-integer optimum (x∗,z∗). This is the central statement
of this section and a basic building block of the approximation result.
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Z

1

11
2 R

f ( 1
2 ,1) = 1

1

1
2 R1

Z

f (0,0) = 0

Fig. 1 A sequence of optimal solutions to grid problems with two limit points, for even m and
for odd m

Theorem 8 (Grid Approximation) Let d1 be fixed. Let P = {(x,z) ∈ Rd1+d2 :
Ax + Bz ≤ b}, where A ∈ Zp×d1 , B ∈ Zp×d2 . Let M ∈ R be given such that P ⊆
{(x,z) ∈ Rd1+d2 : |xi| ≤ M for i = 1, . . . ,d1 }. There exists a polynomial-time al-
gorithm to compute a number ∆ such that for every (x∗,z∗) ∈ P∩ (Rd1 ×Zd2) and
δ > 0 the following property holds:

Every lattice 1
m Zd1 for m = k∆ and k ≥ 2

δ
d1M contains a lattice point

bx∗eδ such that (bx∗eδ ,z∗) ∈ P∩
( 1

m Zd1 ×Zd2
)

and
∥∥bx∗eδ −x∗

∥∥
∞
≤ δ .

The geometry of Theorem 8 is illustrated in Figure 2. The notation bx∗eδ has
been chosen to suggest that the coordinates of x∗ have been “rounded” to obtain
a nearby lattice point. The rounding method is provided by the next two lemmas;
Theorem 8 follows directly from them.

Lemma 9 (Integral Scaling Lemma) Let P = {(x,z) ∈ Rd1+d2 : Ax + Bz ≤ b},
where A∈Zp×d1 , B∈Zp×d2 . For fixed d1, there exists a polynomial time algorithm
to compute a number ∆ ∈ Z>0 such that for every z ∈ Zd2 the polytope

∆Pz =
{

∆x : (x,z) ∈ P
}

is integral, i.e., all vertices have integer coordinates. In particular, the number ∆

has an encoding length that is bounded by a polynomial in the encoding length
of P.

Proof Because the dimension d1 is fixed, there exist only polynomially many sim-
plex bases of the inequality system Ax ≤ b−Bz, and they can be enumerated in
polynomial time. The determinant of each simplex basis can be computed in poly-
nomial time. Then ∆ can be chosen as the least common multiple of all these
determinants. ut

Lemma 10 Let Q⊂Rd be an integral polytope. Let M ∈R be such that Q⊆{x∈
Rd : |xi| ≤ M for i = 1, . . . ,d }. Let x∗ ∈ Q and let δ > 0. Then every lattice 1

k Zd

for k ≥ 2
δ

dM contains a lattice point x ∈ Q∩ 1
k Zd with ‖x−x∗‖∞ ≤ δ .
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δ

z ∈ Z

3

2

1

x ∈ R

(bx∗eδ ,z∗)

(x∗,z∗)

Fig. 2 The principle of grid approximation. Since we can refine the grid only in the direction of
the continuous variables, we need to construct an approximating grid point (x,z∗) in the same
integral slice as the target point (x∗,z∗).

Proof By Carathéodory’s Theorem, there exist d +1 vertices x0, . . . ,xd ∈ Zd of Q
and convex multipliers λ0, . . . ,λd such that x∗ = ∑

d
i=0 λixi. Let λ ′

i := 1
k bkλic ≥ 0

for i = 1, . . . ,d and λ ′
0 := 1−∑

d
i=1 λ ′

i ≥ 0. Moreover, we conclude λi−λ ′
i ≤ 1

k for
i = 1, . . . ,d and λ ′

0 −λ0 = ∑
d
i=1(λi −λ ′

i ) ≤ d 1
k . Then x := ∑

d
i=0 λ ′

i xi ∈ Q∩ 1
k Zd ,

and we have

‖x−x∗‖∞ ≤
d

∑
i=0

|λ ′
i −λi|‖xi‖∞ ≤ 2d

1
k

M ≤ δ ,

which proves the lemma. ut

4 Bounding techniques

Using the results of section 3 we are now able to approximate the mixed-integer
optimal point by a point of a suitably fine lattice. The question arises how we can
use the geometric distance of these two points to estimate the difference in objec-
tive function values. We prove Lemma 11 that provides us with a local Lipschitz
constant for the polynomial to be maximized.

Lemma 11 (Local Lipschitz constant) Let f be a polynomial in d variables with
maximum total degree D. Let C denote the largest absolute value of a coefficient
of f . Then there exists a Lipschitz constant L such that | f (x)− f (y)| ≤ L‖x−y‖∞

for all |xi|, |yi| ≤ M. The constant L is O(Dd+1CMD).

Proof Let f (x) = ∑ααα∈D cααα xααα , where D ⊆ Zd
≥0 is the set of exponent vectors of

monomials appearing in f . Let r = |D | be the number of monomials of f . Then
we have

| f (x)− f (y)| ≤ ∑
ααα 6=0

|cααα | |xααα −yααα |.
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We estimate all summands separately. Let ααα 6= 0 be an exponent vector with n :=
∑

d
i=1 αi ≤ D. Let

ααα = ααα
0 ≥ααα

1 ≥ ·· · ≥ααα
n = 0

be a decreasing chain of exponent vectors with ααα i−1 −ααα i = e ji for i = 1, . . . ,n.
Let βββ

i := ααα−ααα i for i = 0, . . . ,n. Then xααα −yααα can be expressed as the “telescope
sum”

xααα −yααα = xααα0
yβββ

0
−xααα1

yβββ
1
+xααα1

yβββ
1
−xααα2

yβββ
2
+−·· ·−xαααn

yβββ
n

=
n

∑
i=1

(
xααα i−1

yβββ
i−1
−xααα i

yβββ
i)

=
n

∑
i=1

(
(x ji − y ji)x

ααα i
yβββ

i−1)
.

Since
∣∣xααα iyβββ

i−1∣∣≤ Mn−1 and n ≤ D, we obtain

|xααα −yααα | ≤ D · ‖x−y‖∞ ·Mn−1,

thus

| f (x)− f (y)| ≤CrDMD−1‖x−y‖∞.

Let L := CrDMD−1. Now, since r = O(Dd), we have L = O(Dd+1CMD). ut

Moreover, in order to obtain an FPTAS, we need to put differences of function
values in relation to the maximum function value. To do this, we need to deal
with the special case of polynomials that are constant on the feasible region; here
trivially every feasible solution is optimal. For non-constant polynomials, we can
prove a lower bound on the maximum function value. The technique is to bound
the difference of the minimum and the maximum function value on the mixed-
integer set from below; if the polynomial is non-constant, this implies, for a non-
negative polynomial, a lower bound on the maximum function value. We will need
a simple fact about the roots of multivariate polynomials.

Lemma 12 Let f ∈ Q[x1, . . . ,xd ] be a polynomial and let D be the largest power
of any variable that appears in f . Then f = 0 if and only if f vanishes on the set
{0, . . . ,D}d .

Proof This is a simple consequence of the Fundamental Theorem of Algebra. See,
for instance, [4, Chapter 1, §1, Exercise 6 b]. ut

Lemma 13 Let f ∈ Q[x1, . . . ,xd ] be a polynomial with maximum total degree D.
Let Q ⊂ Rd be an integral polytope of dimension d′ ≤ d. Let k ≥ Dd′. Then f is
constant on Q if and only if f is constant on Q∩ 1

k Zd .
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x1

x2

x0

Fig. 3 The geometry of Lemma 13. For a polynomial with maximum total degree of 2, we
construct a refinement 1

k Zd (small circles) of the standard lattice (large circles) such that P∩ 1
k Zd

contains an affine image of the set {0,1,2}d (large dots).

Proof Let x0 ∈Q∩Zd be an arbitrary vertex of Q. There exist vertices x1, . . . ,xd′ ∈
Q∩Zd such that the vectors x1 − x0, . . . ,xd′ − x0 ∈ Zd are linearly independent.
By convexity, Q contains the parallelepiped

S :=
{

x0 +∑
d′
i=1 λi(xi−x0) : λi ∈ [0, 1

d′ ] for i = 1, . . . ,d′
}
.

We consider the set

Sk = 1
k Zd ∩S ⊇

{
x0 +∑

d′
i=1

ni
k (xi−x0) : ni ∈ {0,1, . . . ,D} for i = 1, . . . ,d′

}
;

see Figure 3. Now if there exists a c ∈ R with f (x) = c for all x ∈ Q∩ 1
k Zd , then

all the points in Sk are roots of the polynomial f − c, which has only maximum
total degree D. By Lemma 12 (after an affine transformation), f −c is zero on the
affine hull of Sk; hence f is constant on the polytope Q. ut

Theorem 14 Let f ∈ Z[x1, . . . ,xd1 ,z1, . . . ,zd2 ]. Let P be a rational convex poly-
tope, and let ∆ be the number from Lemma 9. Let m = k∆ with k ≥ Dd1, k ∈ Z.
Then f is constant on the feasible region P∩

(
Rd1 ×Zd2

)
if and only if f is con-

stant on P∩
( 1

m Zd1 ×Zd2
)
. If f is not constant, then∣∣ f (xmax,zmax)− f (xmin,zmin)

∣∣≥ m−D, (11)

where (xmax,zmax) is an optimal solution to the maximization problem over the
feasible region P∩

(
Rd1 ×Zd2

)
and (xmin,zmin) is an optimal solution to the min-

imization problem.

Proof Let f be constant on P∩
( 1

m Zd1 ×Zd2
)
. For fixed integer part z ∈ Zd2 , we

consider the polytope ∆Pz =
{

∆x : (x,z) ∈ P
}

, which is a slice of P scaled to
become an integral polytope. By applying Lemma 13 with k = (D+1)d on every
polytope ∆Pz, we obtain that f is constant on every slice Pz. Because f is also
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≤ Lδ ≤ ε

2 f (x∗,z∗)

≤ ε

2 f (xm,zm)≤ ε

2 f (x∗,z∗)

f (x∗,z∗)
f (xm,zm)

Optimal mixed-integer solution

Optimal grid solution

Rounded mixed-integer solution f (bx∗eδ ,z∗)

f (xm
ε/2,z

m
ε/2)Approximative grid solution

Fig. 4 Estimates in the proof of Theorem 1 (a)

constant on the set P∩
( 1

m Zd1 ×Zd2
)
, which contains a point of every non-empty

slice Pz, it follows that f is constant on P.
If f is not constant, there exist (x1,z1), (x2,z2) ∈ P ∩

( 1
m Zd1 × Zd2

)
with

f (x1,z1) 6= f (x2,z2). By the integrality of all coefficients of f , we obtain the esti-
mate

| f (x1,z1)− f (x2,z2)| ≥ m−D.

Because (x1,z1), (x2,z2) are both feasible solutions to the maximization problem
and the minimization problem, this implies (11). ut

5 Proof of Theorem 1

Now we are in the position to prove the main result.

Proof (Proof of Theorem 1) Part (a). Let (x∗,z∗) denote an optimal solution to
the mixed-integer problem (1). Let ε > 0. We show that, in time polynomial in the
input length, the maximum total degree, and 1

ε
, we can compute a point (x,z) that

satisfies (1b–1d) such that

| f (x,z)− f (x∗,z∗)| ≤ ε f (x∗,z∗). (12)

We prove this by establishing several estimates, which are illustrated in Figure 4.
First we note that we can restrict ourselves to the case of polynomials with

integer coefficients, simply by multiplying f with the least common multiple of all
denominators of the coefficients. We next establish a lower bound on f (x∗,z∗). To
this end, let ∆ be the integer from Lemma 9, which can be computed in polynomial
time. By Theorem 14 with m = Dd1∆ , either f is constant on the feasible region,
or

f (x∗,z∗)≥ (Dd1∆)−D, (13)

where D is the maximum total degree of f . Now let

δ :=
ε

2(Dd1∆)DL(C,D,M)
(14)
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and let us choose the grid size

m := ∆

⌈
4
ε
(Dd1∆)DL(C,D,M)d1M

⌉
, (15)

where L(C,D,M) is the Lipschitz constant from Lemma 11. Then we have m ≥
∆

2
δ

d1M, so by Theorem 8, there is a point (bx∗eδ ,z∗) ∈ P∩
( 1

m Zd1 ×Zd2
)

with∥∥bx∗eδ − x∗
∥∥

∞
≤ δ . Let (xm,zm) denote an optimal solution to the grid prob-

lem (7). Because (bx∗eδ ,z∗) is a feasible solution to the grid problem (7), we have

f (bx∗eδ ,z∗)≤ f (xm,zm)≤ f (x∗,z∗). (16)

Now we can estimate∣∣ f (x∗,z∗)− f (xm,zm)
∣∣≤ ∣∣ f (x∗,z∗)− f (bx∗eδ ,z∗)

∣∣
≤ L(C,D,M)

∥∥x∗−bx∗eδ

∥∥
∞

≤ L(C,D,M)δ

=
ε

2
(Dd1∆)−D

≤ ε

2
f (x∗,z∗), (17)

where the last estimate is given by (13) in the case that f is not constant on the
feasible region. On the other hand, if f is constant, the estimate (17) holds trivially.

By Corollary 6 we can compute a point (xm
ε/2,z

m
ε/2) ∈ P∩

( 1
m Zd1 ×Zd2

)
such

that
(1− ε

2 ) f (xm,zm)≤ f (xm
ε/2,z

m
ε/2)≤ f (xm,zm) (18)

in time polynomial in logm, the encoding length of f and P, the maximum total
degree D, and 1/ε . Here logm is bounded by a polynomial in logM, D and logC,
so we can compute (xm

ε/2,z
m
ε/2) in time polynomial in the input size, the maximum

total degree D, and 1/ε . Now, using (18) and (17), we can estimate

f (x∗,z∗)− f (xm
ε/2,z

m
ε/2)

≤ f (x∗,z∗)− (1− ε

2 ) f (xm,zm)

= ε

2 f (x∗,z∗)+(1− ε

2 )
(

f (x∗,z∗)− f (xm,zm)
)

≤ ε

2 f (x∗,z∗)+ ε

2 f (x∗,z∗)
= ε f (x∗,z∗).

Hence f (xm
ε/2,z

m
ε/2)≥ (1− ε) f (x∗,z∗).

Part (b). Let the dimension d ≥ 2 be fixed. We prove that there does not exist
a PTAS for the maximization of arbitrary polynomials over mixed-integer sets of
polytopes. We use the NP-complete problem AN1 on page 249 of [8]. This is to
decide whether, given three positive integers a,b,c, there exists a positive integer
x < c such that x2 ≡ a (mod b). This problem is equivalent to asking whether the
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maximum of the quartic polynomial function f (x,y) = −(x2 − a− by)2 over the
lattice points of the rectangle

P =
{

(x,y) : 1 ≤ x ≤ c−1,
1−a

b
≤ y ≤ (c−1)2−a

b

}
is zero or not. If there existed a PTAS for the maximization of arbitrary polynomi-
als over mixed-integer sets of polytopes, we could, for any fixed 0 < ε < 1, com-
pute in polynomial time a solution (xε ,yε) ∈ P∩Z2 with

∣∣ f (xε ,yε)− f (x∗,y∗)
∣∣≤

ε
∣∣ f (x∗,y∗)

∣∣, where (x∗,y∗) denotes an optimal solution. Thus, we have f (xε ,yε) =
0 if and only if f (x∗,y∗) = 0; this means we could solve the problem AN1 in poly-
nomial time. ut

6 Extension to arbitrary polynomials

In this section we drop the requirement of the polynomial being positive over the
feasible region. As we showed in Theorem 1, there does not exist a PTAS for the
maximization of an arbitrary polynomial over polytopes in fixed dimension. We
will instead show an approximation result like the one in [11], i.e., we compute a
solution (xε ,zε) such that∣∣ f (xε ,zε)− f (xmax,zmax)

∣∣≤ ε
∣∣ f (xmax,zmax)− f (xmin,zmin)

∣∣, (19)

where (xmax,zmax) is an optimal solution to the maximization problem over the
feasible region and (xmin,zmin) is an optimal solution to the minimization prob-
lem. Our algorithm has a running time that is polynomial in the input size, the
maximum total degree of f , and 1

ε
. This means that while the result of [11] was a

weak version of a PTAS (for fixed degree), our result is a weak version of an FPTAS
(for fixed dimension).

The approximation algorithms for the integer case (Theorem 5) and the mixed-
integer case (Theorem 1) only work for polynomial objective functions that are
non-negative on the feasible region. In order to apply them to an arbitrary poly-
nomial objective function f , we need to add a constant term to f that is large
enough. As proposed in [6], we can use linear programming techniques to obtain
a bound M on the variables and then estimate

f (x)≥−rCMD =: L0,

where C is the largest absolute value of a coefficient, r is the number of monomials
of f , and D is the maximum total degree. However, the range

∣∣ f (xmax,zmax)−
f (xmin,zmin)

∣∣ can be exponentially small compared to L0, so in order to obtain an
approximation (xε ,zε) satisfying (19), we would need an (1− ε ′)-approximation
to the problem of maximizing g(x,z) := f (x,z)−L0 with an exponentially small
value of ε ′.

To address this difficulty, we will first apply an algorithm which will compute
an approximation [Li,Ui] of the range [ f (xmin,zmin), f (xmax,zmax)] with constant
quality. To this end, we first prove a simple corollary of Theorem 1.



14 J.A. De Loera, R. Hemmecke, M. Köppe, R. Weismantel

Corollary 15 (Computation of upper bounds for mixed-integer problems) Let
the dimension d = d1 +d2 be fixed. Let P ⊆ Rd be a rational convex polytope. Let
f ∈ Z[x1, . . . ,xd1 ,z1, . . . ,zd2 ] be a polynomial function with integer coefficientsand
maximum total degree D that is non-negative on P∩

(
Rd1 ×Zd2

)
. Let δ > 0. There

exists an algorithm with running time polynomial in the input size, D, and 1
δ

for
computing an upper bound u such that

f (xmax,zmax)≤ u ≤ (1+δ ) f (xmax,zmax), (20)

where (xmax,zmax) is an optimal solution to the maximization problem of f over
P∩

(
Rd1 ×Zd2

)
.

Proof Let ε = δ

1+δ
. By Theorem 1, we can, in time polynomial in the input size,

D, and 1
ε

= 1+ 1
δ

, compute a solution (xε ,zε) with∣∣ f (xmax,zmax)− f (xε ,zε)
∣∣≤ ε f (xmax,zmax). (21)

Let u := 1
1−ε

f (xε ,zε) = (1+δ ) f (xε ,zε). Then

f (xmax,zmax)≤
1

1− ε
f (xε ,zε) = u (22)

and

(1+δ ) f (xmax,zmax)≥ (1+δ ) f (xε ,zε)
= (1+δ )(1− ε)u

= (1+δ )
(

1− δ

1+δ

)
u = u. (23)

This proves the estimate (20). ut

Algorithm 16 (Range approximation)
Input: Mixed-integer polynomial optimization problem (1), a number 0 < δ < 1.
Output: Sequences {Li}, {Ui} of lower and upper bounds of f over the feasible
region P∩

(
Rd1 ×Zd2

)
such that

Li ≤ f (xmin,zmin)≤ f (xmax,zmax)≤Ui (24)

and
lim
i→∞

|Ui−Li|= c
(

f (xmax,zmax)− f (xmin,zmin)
)
, (25)

where c depends only on the choice of δ .

1. By solving 2d linear programs over P, we find lower and upper integer bounds
for each of the variables x1, . . . ,xd1 ,z1, . . . ,zd2 . Let M be the maximum of the
absolute values of these 2d numbers. Thus |xi|, |zi| ≤ M for all i. Let C be the
maximum of the absolute values of all coefficients, and r be the number of
monomials of f (x). Then

L0 :=−rCMD ≤ f (x,z)≤ rCMD =: U0,

as we can bound the absolute value of each monomial of f (x) by CMD.
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2. Let i := 0.
3. Using the algorithm of Corollary 15, compute an upper bound u for the prob-

lem

max g(x,z) := f (x,z)−Li

s.t. (x,z) ∈ P∩
(
Rd1 ×Zd2

)
that gives a (1+δ )-approximation to the optimal value. Let Ui+1 := Li +u.

4. Likewise, compute an upper bound u for the problem

max h(x,z) := Ui− f (x,z)

s.t. (x,z) ∈ P∩
(
Rd1 ×Zd2

)
that gives a (1+δ )-approximation to the optimal value. Let Li+1 := Ui−u.

5. i := i+1.
6. Go to 3.

Lemma 17 Algorithm 16 is correct. For fixed 0 < δ < 1, it computes the bounds
Ln, Un satisfying (24) and (25) in time polynomial in the input size and n.

Proof We have
Ui−Li+1 ≤ (1+δ )

(
Ui− f (xmin,zmin)

)
(26)

and
Ui+1−Li ≤ (1+δ )

(
f (xmax,zmax)−Li

)
. (27)

This implies

Ui+1−Li+1 ≤ δ (Ui−Li)+(1+δ )
(

f (xmax,zmax)− f (xmin,zmin)
)
.

Therefore

Un−Ln ≤ δ
n(U0−L0)+(1+δ )

(n−2

∑
i=0

δ
i
)(

f (xmax,zmax)− f (xmin,zmin)
)

= δ
n(U0−L0)+(1+δ )

1−δ n−1

1−δ

(
f (xmax,zmax)− f (xmin,zmin)

)
→ 1+δ

1−δ

(
f (xmax,zmax)− f (xmin,zmin)

)
(n → ∞).

The bound on the running time requires a careful analysis. Because in each
step the result u (a rational number) of the bounding procedure (Corollary 15)
becomes part of the input in the next iteration, the encoding length of the input
could grow exponentially after only polynomially many steps. However, we will
show that the encoding length only grows very slowly.

First we need to remark that the auxiliary objective functions g and h have
integer coefficients except for the constant term, which may be rational. It turns
out that the estimates in the proof of Theorem 1 (in particular, the local Lipschitz
constant L and the lower bound on the optimal value) are independent from the
constant term of the objective function. Therefore, the same approximating grid
1
m Zd1 ×Zd2 can be chosen in all iterations of Algorithm 16; the number m only
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depends on δ , the polytope P, the maximum total degree D, and the coefficients
of f with the exception of the constant term.

The construction in the proof of Corollary 15 obtains the upper bound u by
multiplying the approximation f (xε ,zε) by (1+δ ). Therefore we have

Ui+1 = Li +u

= Li +(1+δ )
(

f (xε ,zε)−Li
)

=−δLi +(1+δ ) f (xε ,zε). (28)

Because the solution (xε ,zε) lies in the grid 1
m Zd1 ×Zd2 , the value f (xε ,zε) is

an integer multiple of m−D. This implies that, because L0 ≤ f (xε ,zε) ≤ U0, the
encoding length of the rational number f (xε ,zε) is bounded by a polynomial in
the input size of f and P. Therefore the encoding length Ui+1 (and likewise Li+1)
only increases by an additive term that is bounded by a polynomial in the input
size of f and P. ut

We are now in the position to prove Theorem 2.

Proof (Proof of Theorem 2) Clearly we can restrict ourselves to polynomials with
integer coefficients. Let m = (D+1)d1∆ , where ∆ is the number from Theorem 8.
We apply Algorithm 16 using 0 < δ < 1 arbitrary to compute bounds Un and Ln
for

n =
⌈
− logδ

(
2mD(U0−L0)

)⌉
.

Because n is bounded by a polynomial in the input size and the maximum total
degree D, this can be done in polynomial time. Now, by the proof of Lemma 17,
we have

Un−Ln ≤ δ
n(U0−L0)+(1+δ )

1−δ n−1

1−δ

(
f (xmax,zmax)− f (xmin,zmin)

)
≤ 1

2
m−D +

1+δ

1−δ

(
f (xmax,zmax)− f (xmin,zmin)

)
. (29)

If f is constant on P∩
(
Rd1 ×Zd2

)
, it is constant on P∩

( 1
m Zd1 ×Zd2

)
, then

Un−Ln ≤ 1
2 m−D. Otherwise, by Theorem 14, we have Un−Ln ≥ f (xmax,zmax)−

f (xmin,zmin)≥ m−D. This settles part (a).
For part (b), if f is constant on P∩

(
Rd1 ×Zd2

)
, we return an arbitrary solution

as an optimal solution. Otherwise, we can estimate further:

Un−Ln ≤
(

1
2

+
1+δ

1−δ

)(
f (xmax,zmax)− f (xmin,zmin)

)
. (30)

Now we apply the algorithm of Theorem 1 to the maximization problem of the
polynomial function f ′ := f −Ln, which is non-negative over the feasible region
P∩

(
Rd1 ×Zd2

)
. We compute a point (xε ′ ,zε ′) where ε ′ = ε

( 1
2 + 1+δ

1−δ

)−1
such that∣∣ f ′(xε ′ ,zε ′)− f ′(xmax,zmax)

∣∣≤ ε
′ f ′(xmax,zmax).
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Then we obtain the estimate∣∣ f (xε ′ ,zε ′)− f (xmax,zmax)
∣∣≤ ε

′( f (xmax,zmax)−Ln
)

≤ ε
′(Un−Ln

)
≤ ε

′
(

1
2

+
1+δ

1−δ

)(
f (xmax,zmax)− f (xmin,zmin)

)
= ε

(
f (xmax,zmax)− f (xmin,zmax)

)
,

which proves part (b). ut
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