
Discrete Optimization 5 (2008) 231–241
www.elsevier.com/locate/disopt

N -fold integer programming

Jesús A. De Loeraa, Raymond Hemmeckeb, Shmuel Onnc,∗, Robert Weismantelb

a University of California at Davis, Davis, CA 95616, USA
b Otto-von-Guericke Universität Magdeburg, D-39106 Magdeburg, Germany

c Technion - Israel Institute of Technology, 32000 Haifa, Israel

Received 27 September 2005; accepted 10 June 2006
Available online 31 October 2007

Abstract

In this article we study a broad class of integer programming problems in variable dimension. We show that these so-termed
n-fold integer programming problems are polynomial time solvable. Our proof involves two heavy ingredients discovered recently:
the equivalence of linear optimization and the so-called directed augmentation, and the stabilization of certain Graver bases.

We discuss several applications of our algorithm to multiway transportation problems and to packing problems. One important
consequence of our results is a polynomial time algorithm for the d-dimensional integer transportation problem for long multiway
tables. Another interesting application is a new algorithm for the classical cutting-stock problem.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Integer programming; Graver basis; Graver complexity; Markov basis; Markov complexity; Hilbert basis; Contingency table; Multiway
table; Transportation polytope; Transportation problem; Bin packing; Cutting stock; Augmentation; Test set; Primal method; n-fold; Confidentiality;
Privacy; Combinatorial optimization; Computational complexity

1. Introduction

The integer programming problem is the following discrete optimization problem, where N denotes the set of
nonnegative integers, A is an integer matrix and b, c are integer vectors of suitable dimensions:

min{cx : Ax = b, x ∈ Nq
}.

It is well-known to be generally NP-hard but polynomial time solvable in fixed dimension q, see [18].
In this article, motivated by the applications to high-dimensional transportation problems and contingency tables

and by the recently discovered striking universality theorem for rational polytopes [6] (see Section 2), we study the
following class of integer programming problems in variable dimension.

∗ Corresponding author.
E-mail addresses: deloera@math.ucdavis.edu (J.A. De Loera), hemmecke@imo.math.uni-magdeburg.de (R. Hemmecke),

onn@ie.technion.ac.il (S. Onn), weismantel@imo.math.uni-magdeburg.de (R. Weismantel).
URLs: http://www.math.ucdavis.edu/∼deloera (J.A. De Loera), http://www.math.uni-magdeburg.de/∼hemmecke (R. Hemmecke),

http://ie.technion.ac.il/∼onn (S. Onn), http://www.math.uni-magdeburg.de/∼weismant (R. Weismantel).

1572-5286/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2006.06.006

http://www.elsevier.com/locate/disopt
mailto:deloera@math.ucdavis.edu
mailto:hemmecke@imo.math.uni-magdeburg.de
mailto:onn@ie.technion.ac.il
mailto:weismantel@imo.math.uni-magdeburg.de
http://www.math.ucdavis.edu/~deloera
http://www.math.ucdavis.edu/~deloera
http://www.math.ucdavis.edu/~deloera
http://www.math.ucdavis.edu/~deloera
http://www.math.ucdavis.edu/~deloera
http://www.math.ucdavis.edu/~deloera
http://www.math.uni-magdeburg.de/~hemmecke
http://www.math.uni-magdeburg.de/~hemmecke
http://www.math.uni-magdeburg.de/~hemmecke
http://www.math.uni-magdeburg.de/~hemmecke
http://www.math.uni-magdeburg.de/~hemmecke
http://www.math.uni-magdeburg.de/~hemmecke
http://ie.technion.ac.il/~onn
http://ie.technion.ac.il/~onn
http://ie.technion.ac.il/~onn
http://ie.technion.ac.il/~onn
http://ie.technion.ac.il/~onn
http://ie.technion.ac.il/~onn
http://www.math.uni-magdeburg.de/~weismant
http://www.math.uni-magdeburg.de/~weismant
http://www.math.uni-magdeburg.de/~weismant
http://www.math.uni-magdeburg.de/~weismant
http://www.math.uni-magdeburg.de/~weismant
http://www.math.uni-magdeburg.de/~weismant
http://dx.doi.org/10.1016/j.disopt.2006.06.006

232 J.A. De Loera et al. / Discrete Optimization 5 (2008) 231–241

The n-fold integer programming problem. Fix a p × q integer matrix A. Given positive integer n and integer vectors
b = (b0, b1, . . . , bn) and c = (c1, . . . , cn), where b0

∈ Zq , and bk
∈ Zp and ck

∈ Zq for k = 1, . . . , n, find a
nonnegative integer vector x = (x1, . . . , xn), where xk

∈ Nq for k = 1, . . . , n, which minimizes cx =
∑n

k=1 ck xk

subject to the equations
∑n

k=1 xk
= b0 and Axk

= bk for k = 1, . . . , n.
The term “n-fold integer programming” refers to the problem being almost separable into n similar programs
min{ck x : Axk

= bk, xk
∈ Nq

} in fixed dimension; however, the constraint
∑n

k=1 xk
= b0 binds these programs

together, and the result is an integer program in large variable dimension nq .
Let the n-fold matrix of A be the following (q + np) × nq matrix, with Iq the q × q identity matrix:

A(n)
:= (1n ⊗ Iq) ⊕ (In ⊗ A) =



Iq Iq Iq · · · Iq
A 0 0 · · · 0
0 A 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A

 .

Then the n-fold integer programming problem can be conveniently written in matrix form as

min{cx : A(n)x = b, x ∈ Nnq
}.

In this article we establish the following theorem. Naturally, the input size is n plus the bit size of the integer
objective vector c ∈ Znq and the integer right-hand side vector b ∈ Zq+np.

Theorem 1.1. Fix any integer matrix A. Then there is a polynomial time algorithm that, given any n and any integer
vectors b and c, solves the corresponding n-fold integer programming problem.

The proof of this theorem involves two heavy ingredients. First, it makes use of the equivalence of the linear
optimization problem and the directed augmentation problem, recently introduced and studied in [23]. Second, it
uses recent results of [15,21] on the stabilization of certain Graver bases.

One important consequence of Theorem 1.1 is a polynomial time algorithm for the 3-way transportation problem
for long tables, settling its computational complexity; see Section 2 for details.

Corollary 2.2. Fix any r, s. Then there is a polynomial time algorithm that, given l, integer objective vector c, and
integer line sums (ui, j), (vi,k) and (w j,k), solves the integer transportation problem

min

{
cx : x ∈ Nr×s×l ,

∑
i

xi, j,k = w j,k,
∑

j

xi, j,k = vi,k,
∑

k

xi, j,k = ui, j

}
.

The n-fold integer programming problem and theorem can be generalized as follows.
Generalized n-fold integer programming. Fix integer matrices A, B of sizes r × q and s × q, respectively. Given
positive integer n and integer vectors b = (b0, b1, . . . , bn) and c = (c1, . . . , cn), with b0

∈ Zs , and bk
∈ Zr and

ck
∈ Zq for k = 1, . . . , n, find x = (x1, . . . , xn) with xk

∈ Nq for k = 1, . . . , n, which minimizes cx =
∑n

k=1 ck xk

subject to
∑n

k=1 Bxk
= b0 and Axk

= bk for k = 1, . . . , n.
We have the following more general result, from which Theorem 1.1 is deduced in the case B = Iq .

Theorem 1.2. Fix any pair of integer matrices A, B of compatible sizes. Then there is a polynomial time algorithm
that solves the generalized n-fold integer programming problem on any input n, b, c.

The article is organized as follows. In Section 2 we discuss applications of Theorem 1.1 to multiway transportation
problems and to some packing problems, as follows. In Section 2.1 we obtain the aforementioned Corollary 2.2
which provides a polynomial time solution to 3-way integer transportation problems for long tables, contrasting the
recent universality theorem of [6,8] for slim tables. We also extend this result to d-way transportation problems for
long tables of any dimension (Corollary 2.4). In Section 2.2 we describe applications to a certain shipment problem
(Corollary 2.5) and to the classical cutting-stock problem of [10] (Corollary 2.6). In Sections 3 and 4 we develop the

J.A. De Loera et al. / Discrete Optimization 5 (2008) 231–241 233

necessary ingredients for our n-fold integer programming algorithm, as follows. In Section 3 we discuss Graver bases
and augmentation. We show (Lemma 3.2) that the Graver basis allows to solve the so-called directed augmentation
problem, and, combining this with the results of [23], shows that any feasible solution to an integer program can be
augmented to an optimal one in polynomial time provided the Graver basis is part of the input (Theorem 3.3). In
Section 4 we discuss the stabilization of Graver bases discovered recently in [15,21], and use it to show that Graver
bases of n-fold matrices can be computed in polynomial time (Theorem 4.2). Finally, in Section 5, we combine all the
ingredients from Section 3 and 4, and prove our main result Theorem 1.2 and its specialization Theorem 1.1.

2. Applications

2.1. High-dimensional transportation problems

A d-way transportation polytope is the set of all m1×· · ·×md nonnegative arrays x = (xi1,...,id) such that the sums
of the entries over some of their lower-dimensional subarrays (margins) are specified. For simplicity of exposition,
we shall concentrate here only on d-way line-sum polytopes, of the form

T =

{
x ∈ Rm1×···×md

+ :

∑
i1

xi1,...,id = ui2,...,id ,
∑

i2

xi1,...,id = ui1,i3,...,id , . . . ,
∑

id

xi1,...,id = ui1,...,id−1

}
.

Transportation polytopes and their integer points (called contingency tables by statisticians), have been studied and
used extensively in the operations research literature and in the context of secure statistical data disclosure by
public agencies such as the census bureau and the national center for health statistics. In the operations research
literature, one is typically interested in the integer and linear transportation problems, which are the integer and linear
programming problems over the transportation polytope, see e.g. [2,17,19,20,24,25] and references therein. In the
statistics community, one is often interested in the values an entry can attain in all tables with fixed margins, related to
the security of the entry under margin disclosure, and in the construction of a Markov basis allowing a random walk
on the set of tables with fixed margins, see e.g. [1,3,4,7,9,16] and references therein.

It is well-known that the system defining a 2-way transportation polytope is totally unimodular. This implies that all
the above problems are easy in this case. However, already 3-way transportation problems are much harder. Consider
the problem of deciding if a given 3-way line-sum polytope of r × s × l arrays (with r rows, s columns and l layers)
contains an integer point: the computational complexity of this problem provides useful indication about the difficulty
of the problems mentioned above. If r, s, l are all fixed, then the problem is solvable in polynomial time by integer
programming in fixed dimension rsl. On the other hand, if r, s, l are all variable part of the input, then the problem
is NP-complete [16]. The in-between cases are much more delicate. The case of two parameters r, s variable and one
parameter l fixed was recently resolved in [5], where it was shown to be NP-complete, strengthening [16]. Moreover,
very recently, in [6,8], the following universality result was shown.

Proposition 2.1. Any rational polytope P = {y ∈ Rn
+ : Ay = b} is polynomial time representable as a 3-way

line-sum transportation polytope of size r × s × 3 for some (polynomially bounded) r and s,

T =

{
x ∈ Rr×s×3

+ :
∑

i

xi, j,k = w j,k,
∑

j

xi, j,k = vi,k,
∑

k

xi, j,k = ui, j

}
.

Here representable means that there is a coordinate-erasing projection from Rr×s×3 onto Rn providing a bijection
between T and P and between the sets of integer points T ∩ Zr×s×3 and P ∩ Zn . Thus, any rational polytope is an
r × s × 3 line-sum polytope, and any integer (respectively, linear) programming problem is equivalent to an integer
(respectively, linear) r ×s×3 line-sum transportation problem. This result led to the solution of several open problems
from [24,25] and had several implications on the complexity of Markov bases and the entry security problem, see [6–8]
for more details.

However, the last case, of two parameters r, s fixed and one parameter l variable, has remained open and intriguing.
Here, as a consequence of Theorem 1.1, we are able to resolve this problem and show that both the decision and
optimization problems are polynomial time solvable.

234 J.A. De Loera et al. / Discrete Optimization 5 (2008) 231–241

Corollary 2.2. Fix any r, s. Then there is a polynomial time algorithm that, given l, integer objective vector c, and
integer line sums (ui, j), (vi,k) and (w j,k), solves the integer transportation problem

min

{
cx : x ∈ Nr×s×l ,

∑
i

xi, j,k = w j,k,
∑

j

xi, j,k = vi,k,
∑

k

xi, j,k = ui, j

}
.

Proof. We formulate the 3-way integer transportation problem as an n-fold integer program with n := l, p := r + s,
and q := r · s. Reindex the variables as xk

i, j := xi, j,k so that the variables vector is x = (x1, . . . , xn) with

xk
= (xk

i, j) ∈ Nr×s a 2-way r × s table, the kth layer of the 3-way table x . Similarly write c = (c1, . . . , cn)

with ck
∈ Zr×s for the objective vector. Next, put b := (b0, b1, . . . , bn), with b0

∈ Nrs defined by b0
:= (ui, j),

and bk
∈ Nr+s defined by bk

:= ((vi,k), (w j,k)) for k = 1, . . . , n. Finally, let A be the p × q = (r + s) × r · s
matrix of equations for the usual 2-way transportation polytope, forcing row sums and column sums on each of the
r × s layers xk by Axk

= bk , k = 1, . . . , n. Then the equation Axk
= bk force the line sums vi,k and w j,k , and the

additional n-fold integer program binding constraint
∑n

k=1 xk
= b0 forces the “long” line sums ui, j . This completes

the encoding. Since r, s are fixed, so are p, q , and A, and therefore, the corollary follows from Theorem 1.1. �

Example 2.3. Consider the case r = s = 3 (the smallest where the problem is genuinely 3-dimensional). Then
p = 6, q = 9, and writing xk

= (xk
1,1, xk

1,2, xk
1,3, xk

2,1, xk
2,2, xk

2,3, xk
3,1, xk

3,2, xk
3,3), the matrix A which defines the

n-fold program providing the formulation of the 3 × 3 × l transportation problem is

A =


1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

 .

Already for this case, of 3 × 3 × l tables, the only polynomial time algorithm for the corresponding line-sum integer
transportation problem we are aware of is the one guaranteed by Corollary 2.2 above.

Corollary 2.2 extends to transportation problems of any dimension d, for long tables, namely, of size m1 × · · · ×

md−1 × l, where m1, . . . , md−1 are fixed and only the length l is variable, as follows.

Corollary 2.4. Fix d, m1, . . . , md−1. Then there is a polynomial time algorithm that, given l, integer objective c, and
line sums (ui2,...,id), . . . , (ui1,...,id−1), solves the long multiway transportation problem

min

{
cx : x ∈ Nm1×···×md−1×l

:

∑
i1

xi1,...,id = ui2,...,id , . . . ,
∑

id

xi1,...,id = ui1,...,id−1

}
.

Proof. The long multiway transportation problem can be encoded as an n-fold integer program with n := l,
p :=

∑d−1
i=1 mi , and q :=

∏d−1
i=1 mi , by reindexing the variables as x id

i1,...,id−1
:= xi1,...,id , letting A be the matrix

of equations of line sums of (d − 1)-way transportation polytope of m1 × · · · × md−1 arrays, and proceeding in direct
analogy to the proof of Corollary 2.2. The details are omitted. �

2.2. Some packing problems

2.2.1. Minimum cost shipment
The minimum cost shipment problem concerns the shipment of a large stock of items of several types, using various

vessels, with minimum possible cost. More precisely, the data is as follows. There are t types of items. The weight of
each item of type j is w j and there are n j items of type j to be shipped. There are v available vessels, where vessel k
has maximum weight capacity uk . The cost of shipping one item of type j on vessel k is p j,k . We now formulate this
as an n-fold integer programming problem. We set n := v, p := 1, q := t + 1. The defining matrix is the row vector
A = (A j) := (w1, w2, . . . , wt , 1). The variables vector is x = (x1, . . . , xn) with xk

= (xk
1 , . . . , xk

t , xk
q), where xk

j

J.A. De Loera et al. / Discrete Optimization 5 (2008) 231–241 235

represents the number of items of type j to be shipped on vessel k for j = 1, . . . , t , and xk
q is an extra slack variable

representing the unused weight capacity in vessel k. The cost vector is c = (c1, . . . , cn) with ck
= (ck

1, . . . , ck
t , ck

q),
where ck

j := p j,k for j = 1, . . . , t , and ck
q := 0. Finally, the demand vector is b = (b0, b1, . . . , bn) with bk

:= uk

for k = 1, . . . , n, and b0
:= (n1, . . . , nt ,

∑v
k=1 uk −

∑t
j=1 n jw j). Then the resulting n-fold integer programming

problem, min{cx : A(n)x = b, x ∈ Nnq
}, can be written in scalar form as follows:

min
q∑

j=1

n∑
k=1

ck
j xk

j =

t∑
j=1

v∑
k=1

p j,k xk
j

s.t.
n∑

k=1

xk
j = b0

j = n j , j = 1, . . . , t

n∑
k=1

xk
q = b0

q =

v∑
k=1

uk −

t∑
j=1

n jw j

q∑
j=1

A j xk
j =

t∑
j=1

w j xk
j + xk

q = bk
= uk, k = 1, . . . , n

xk
j ∈ N, j = 1, . . . , q, k = 1, . . . , n.

Assume that the number t of types is fixed, but the numbers n j of items of each type may be very large: this is a
reasonable assumption in applications (for instance, several types of automobiles to be shipped overseas, or several
types of appliances to be shipped on ground). Then we obtain the following corollary of Theorem 1.1, showing that
the problem is polynomial time solvable, where the input size is v plus the bit size of the integer numbers n j , uk, p j,k
constituting the data. Note that this result is much stronger than the standard results on the pseudo-polynomial time
solvability of this kind of packing and knapsack-type problems using dynamic programming: our algorithm can handle
very large n j and uk , possibly exponential in the dimensional parameter v.

Corollary 2.5. For any fixed number t of types and type weights w j , the minimum cost shipment problem is solvable
in time which is polynomial in the number v of vessels and in the bit size of the integer numbers n j of items of each
type to be shipped, vessel capacities uk , and shipment costs p j,k .

2.2.2. The cutting-stock problem
This is a classical manufacturing problem [10], where the usual setup is as follows: a manufacturer supplies rolls

of material (such as scotch-tape or band-aid) in one of t different widths w1, . . . , wt . The rolls are all cut out from
standard rolls of common large width u, coming out of the production line. Given orders by customers for n j rolls of
width w j , the problem facing the manufacturer is to meet the orders using the smallest possible number of standard
rolls. This is almost a direct special case of the minimum cost shipment problem discussed above, with sufficiently
many identical vessels, say v :=

∑t
j=1dn j/bu/w jce, of capacity uk := u each, playing the role of the standard rolls,

and with cost p j,k := w j for each roll of width w j regardless of the standard roll from which it is being cut out. The
only correction needed is that each slack variable xk

q = xk
t+1, measuring the unused width of the kth standard roll, has

cost of one unit instead of zero, so that the total cost becomes the number of standard rolls used. Thus the formulation
as an n-fold program is with n :=

∑t
j=1dn j/bu/w jce, p := 1, q := t + 1, A := (w1, w2, . . . , wt , 1), variables xk

j

representing the number of rolls of width w j cut out of the kth roll for j = 1, . . . , t and xk
q representing the unused

width of the kth standard roll, costs ck
j := w j for j = 1, . . . , t and ck

q := 1, and demands bk
:= u for k = 1, . . . , n

and b0
:= (n1, . . . , nt , nu −

∑t
j=1 n jw j).

Again, quite surprisingly, we get the following useful corollary regarding this classical problem.

Corollary 2.6. For any fixed t and widths w1, . . . , wt , the cutting-stock problem is solvable in time polynomial in∑t
j=1dn j/bu/w jce and in the bit size of the numbers n j of orders and raw roll width u.

One common approach to the cutting-stock problem makes use of the so-called cutting patterns, which are feasible
solutions of the knapsack problem {y ∈ Nt

:
∑t

j=1 w j y j ≤ u}. This is useful when the width u of the standard

236 J.A. De Loera et al. / Discrete Optimization 5 (2008) 231–241

rolls is of the same order of magnitude as the demand widths w j . However, when u is much larger than the w j ,
the number of cutting patterns becomes prohibitively large to handle. But then the values bu/w jc are large and hence
n :=

∑t
j=1dn j/bu/w jce is small, in which case the result of Corollary 2.6 using n-fold integer programming becomes

particularly appealing.

3. Graver bases and directed augmentation

Consider the following family IPA of integer programs in standard form, with arbitrary demand vector b ∈ Zm and
arbitrary objective vector c ∈ Zn , sharing the same constraint matrix A ∈ Zm×n ,

IPA(b, c): min{cx : Ax = b, x ∈ Nn
}.

A universal test set for the family IPA is a finite subset G of the lattice L(A) := {x ∈ Zn : Ax = 0} of dependencies
on A such that whenever x is feasible but not optimal for IPA(b, c) (where b := Ax), there is an improving direction
g ∈ G, namely such that x − g is feasible and better, that is, x − g ∈ Nn and cg > 0. Thus, a universal test set enables
the solution of the following augmentation problem.
Augmentation problem. Given A ∈ Zm×n , x ∈ Nn and c ∈ Zn , either find an improving direction g ∈ Zn , namely one
with x − g ∈ {y ∈ Nn

: Ay = Ax} and cg > 0, or assert that no such g exists.
An augmentation oracle for a matrix A is one that solves the augmentation problem, that is, when queried on x ∈ Nn

and c ∈ Zn , it either returns an improving direction g or asserts that none exists. Clearly, an explicit universal test set G
for A enables the efficient realization of an augmentation oracle for A by simply searching for an improving direction
g ∈ G. An oracle solving the augmentation problem, and in particular, an explicit universal test set G, enable the
following simple iterative procedure that, for any program IPA(b, c) in IPA with bounded objective function, converts
any feasible x to an optimal one: “while there exists an improving direction g set x := x − g and repeat”.

In 1975, Graver [11] constructed, for every integer matrix A, a canonical universal test set. The Graver basis G(A)

of A can be defined as follows. First, we need to extend the partial ordering ≤ from Nn to Zn . For u, v ∈ Zn we
say that u is conformal to v, denoted u v v, if |ui | ≤ |vi | and uivi ≥ 0 for i = 1, . . . , n, that is, u and v lie in
the same orthant of Rn and each component of u is bounded by the corresponding component of v in absolute value.
With this, G(A) consists precisely of all v-minimal vectors in L(A) \ {0}. For a more detailed introduction of Graver
bases we refer to [12]. The currently fastest algorithm to compute Graver bases, based on a completion procedure and
a project-and-lift approach, is described in [13] and implemented in the software package 4ti2 [14].

The Graver basis, being a universal test set, provides an augmentation oracle and hence enables us to convert
any feasible solution to an optimal one for any IPA(b, c) by the iterative augmentation procedure above. But this in
itself is not enough to guarantee an efficient (polynomial time) solution: a major remaining question is how many
augmentation steps are needed to reach an optimal solution.

Recently, in [23], a directed version of the augmentation problem was introduced; quite remarkably, it was shown
that the number of directed augmentation steps needed to reach optimality is polynomial. We discuss this next. First,
we define the directed augmentation problem.
Directed augmentation problem. Given A ∈ Zm×n , x ∈ Nn and c′, c′′

∈ Zn , either find g = g+
− g−

∈ Zn satisfying
x − g ∈ {y ∈ Nn

: Ay = Ax} and c′g+
− c′′g− > 0, or assert that none exists.

Here and throughout, g+, g−
∈ Nn denote the positive and negative parts of g ∈ Zn , defined by g+

i := max{gi , 0}

and g−

i := − min{gi , 0} for i = 1, . . . , n. Thus, the directed augmentation problem involves two objective function
vectors: c′ controls the cost of the positive part of g and c′′ controls the cost of the negative part of g. The usual
augmentation problem occurs as the special case c′

= c′′
= c. A directed augmentation oracle for A is one that solves

the directed augmentation problem, i.e. when queried on x ∈ Nn , c′, c′′
∈ Zn , it either returns an improving direction

g or asserts that none exists.
In [23], it was assumed that the input includes an upper bound vector u ∈ Nn on the variables, so that the actual
feasible set is {y ∈ Nn

: Ay = Ax, y ≤ u}. Under this assumption, the feasible region is always bounded and
there is always an optimal solution. Further, the complexity estimates in [23] depended on the bit size of u and
b := Ax . However, this is not really needed. Consider the integer program IPA(b, c) : min{cy: Ay = b, y ∈ Nn

}

with b = Ax . Its objective function is bounded (and hence there is an optimal solution) if and only if it is bounded
for the corresponding LP-relaxation min{cy: Ay = b, y ∈ Rn

+}, which can be checked in polynomial time by linear
programming. Furthermore, whenever IPA(b, c) has an optimal solution, it has one of bit size polynomially bounded

J.A. De Loera et al. / Discrete Optimization 5 (2008) 231–241 237

in the size of A and b = Ax ; this basically follows from Cramer’s rule, see e.g. [22, Section 17.1]. Therefore, it is
possible to compute an upper bound u in terms of A and x only, and plug it into the analysis of [23]; for instance,
uk := m! n(n + 1)(max |x j |)(max |Ai, j |)

m for k = 1, . . . , n will do.
With this, the results of [23] imply the following.

Proposition 3.1. There is a polynomial oracle time algorithm that, given A ∈ Zm×n , x ∈ Nn , c ∈ Zn , solves the
integer program IPA(b, c) with b := Ax by querying a directed augmentation oracle for A.

Here, as usual, solving the (feasible) integer program means that the algorithm either returns an optimal solution or
asserts that the objective function is unbounded; and polynomial oracle time means that the number of arithmetic
operations, the number of calls to the oracle, and the size of the numbers occurring throughout the algorithm are
polynomially bounded in the size of the input A, x, c.

It is not hard to see that if the matrix A is totally unimodular, in particular the incidence matrix of a directed graph,
then a directed augmentation oracle for A can be realized using linear programming. However, in general it is not
clear which matrices A admit efficient directed augmentation.

As explained above, the Graver basis of a matrix A yields an augmentation oracle for A. We now show that,
moreover, it enables the realization of a directed augmentation oracle for A as well.

Lemma 3.2. Let G(A) be the Graver basis of A ∈ Zm×n . For any x ∈ Nn and c′, c′′
∈ Zn , there is a g ∈ Zn with

x − g ∈ {y ∈ Nn
: Ay = Ax} and c′g+

− c′′g− > 0 if and only if there is such g ∈ G(A).

Proof. Suppose g is an improving direction. Then g ∈ L(A)\{0} and hence can be written as a conformal sum of (not
necessarily distinct) elements of the Graver basis of A, that is, g =

∑
gi with gi

v g and gi
∈ G(A) for all i . To see

this, recall that G(A) is the set of v-minimal elements in L(A) \ {0} and note that v is a well-ordering; if g ∈ G(A),
we are done; otherwise there is an h ∈ G(A) with h @ g in which case, by induction on v, there is a conformal sum
g − h =

∑
gi giving g = h +

∑
gi .

Now, gi
v g is equivalent to (gi)+ ≤ g+ and (gi)− ≤ g−, so the conformal sum g =

∑
gi gives corresponding

sums of the positive and negative parts g+
=

∑
(gi)+ and g−

=
∑

(gi)−. Consequently,

0 < c′g+
− c′′g−

= c′
∑

(gi)+ − c′′
∑

(gi)− =

∑
(c′(gi)+ − c′′(gi)−),

which implies that there is some gi in this sum with c′(gi)+ − c′′(gi)− > 0. Now, gi
∈ G(A) ⊂ L(A) so Agi

= 0 and
hence A(x − gi) = Ax . Finally we show that x − gi

≥ 0: if gi
j ≤ 0 then x j − gi

j ≥ x j ≥ 0; and if gi
j > 0 then gi

v g

implies gi
j ≤ g j and thus x j − gi

j ≥ x j − g j ≥ 0, the last inequality holding because g is an improving direction. So

gi
∈ G(A) is an improving direction in the Graver basis. �

As an immediate corollary of Proposition 3.1 and Lemma 3.2, we get the following statement.

Theorem 3.3. There is a polynomial time algorithm that, given any matrix A ∈ Zm×n along with its Graver basis
G(A), and vectors x ∈ Nn and c ∈ Zn , solves the integer program IPA(b, c) with b := Ax.

While Theorem 3.3 holds for any matrix, its complexity bound depends on the size of the Graver basis which is part
of the input. Typically, the Graver basis is very large and its cardinality may be exponential in n. However, in the next
section we show that for a broad and useful class of matrices, we can tame the behavior of the Graver basis, leading
to an efficient algorithm in terms of A, x, c only.

4. Graver bases of n-fold matrices

Fix any pair of integer matrices A and B with the same number of columns, of dimensions r × q and s × q,
respectively. The n-fold matrix of the ordered pair A, B is the following (s + nr) × nq matrix,

[A, B]
(n)

:= (1n ⊗ B) ⊕ (In ⊗ A) =


B B B · · · B
A 0 0 · · · 0
0 A 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A

 .

238 J.A. De Loera et al. / Discrete Optimization 5 (2008) 231–241

With this, the generalized n-fold integer programming problem can be conveniently written as

min{cx : [A, B]
(n)x = b, x ∈ Nnq

}.

The n-fold of a single matrix A, defined in the introduction, is the special case A(n)
= [A, Iq]

(n) with B = Iq the
q × q identity, giving the regular (nongeneralized) n-fold integer programming problem.

We now discuss a recent result of [21] and its extension in [15] on the stabilization of Graver bases of n-fold
matrices. Consider vectors x = (x1, . . . , xn) with xk

∈ Nq for k = 1, . . . , n. The type of x is the number
|{k : xk

6= 0}| of nonzero components xk
∈ Nq of x . The following result of [15] on the stabilization of Graver

bases of [A, B]
(n) extends the earlier result for B = Iq from [21].

Proposition 4.1. For every pair of integer matrices A ∈ Zr×q and B ∈ Zs×q , there exists a constant g(A, B) such
that for all n, the Graver basis of [A, B]

(n) consists of vectors of type at most g(A, B).

The smallest constant g(A, B) possible in the proposition is called the Graver complexity of A, B.

Using Proposition 4.1, we now show that G([A, B]
(n)) can be computed in polynomial time.

Theorem 4.2. Fix any pair of integer matrices A ∈ Zr×q and B ∈ Zs×q . Then there is a polynomial time algorithm
that, given n, computes the Graver basis G([A, B]

(n)) of the n-fold matrix [A, B]
(n). In particular, the cardinality and

the bit size of G([A, B]
(n)) are bounded by a polynomial function of n.

Proof. Let g := g(A, B) be the Graver complexity of A, B and consider any n ≥ g. We show that the Graver basis

of [A, B]
(n) is the union of

(
n
g

)
suitably embedded copies of the Graver basis of [A, B]

(g). Consider any g indices

1 ≤ k1 < · · · < kg ≤ n and define a map φk1,...,kg from Zgq to Znq by sending x = (x1, . . . , xg) to y = (y1, . . . , yn)

defined by ykt := x t for t = 1, . . . , g, and yk
:= 0 for all other k.

We claim that the Graver basis of [A, B]
(n) is the union of the images of the Graver basis of [A, B]

(g) under the(
n
g

)
maps φk1,...,kg for all 1 ≤ k1 < · · · < kg ≤ n, that is,

G([A, B]
(n)) =

⋃
1≤k1<···<kg≤n

φk1,...,kg (G([A, B]
(g))). (1)

To see this, recall first that, by definition, the Graver basis of a matrix M is the set of all v-minimal nonzero
dependencies on M (where a dependency on M is a vector x satisfying Mx = 0). Thus, if x = (x1, . . . , xg) ∈

G([A, B]
(g)) then x is a v-minimal nonzero dependency on [A, B]

(g), implying that φk1,...,kg (x) is a v-minimal
nonzero dependency on [A, B]

(n) and hence φk1,...,kg (x) ∈ G([A, B]
(n)). This establishes that the right-hand side of

(1) is contained in the left-hand side. Conversely, consider any y ∈ G([A, B]
(n)). Then, by Proposition 4.1, the type

of y is at most g, so there are indices 1 ≤ k1 < · · · < kg ≤ n such that all nonzero components of y are among those
of the reduced vector x := (yk1 , . . . , ykg), and therefore y = φk1,...,kg (x). Now, y ∈ G([A, B]

(n)) implies that y is a
v-minimal nonzero dependency on [A, B]

(n), and therefore x is a v-minimal nonzero dependency on [A, B]
(g) and

hence x ∈ G([A, B]
(g)), showing that y ∈ φk1,...,kg (G([A, B]

(g))). This establishes that the left-hand side of (1) is
contained in the right-hand side. Thus, the Graver basis of [A, B]

(n) is indeed given by (1).

Since A, B are fixed and hence g = g(A, B) is constant, the g-fold matrix [A, B]
(g) is also fixed and so the

cardinality and bit size of its Graver basis G([A, B]
(g)) are constant as well. It follows from (1) that |G([A, B]

(n))| ≤(
n
g

)
|G([A, B]

(g))| = O(ng). Further, each element of G([A, B]
(n)) is an nq-dimensional vector φk1,...,kg (x) obtained

from some x ∈ G([A, B]
(g)) (of constant bit size) by appending zero components, and therefore is of linear bit

size O(n), showing that the bit size of the entire Graver basis G([A, B]
(n)) is O(ng+1). Finally, it is clear that the(

n
g

)
= O(ng) images φk1,...,kg (G([A, B]

(g))) and their union G([A, B]
(n)) can be computed in time polynomial in n,

completing the proof. �

J.A. De Loera et al. / Discrete Optimization 5 (2008) 231–241 239

Example 4.3. Consider the matrices A = [1 1] and B = I2. The Graver complexity of the pair A, B is g(A, B) = 2.
The 2-fold matrix and its Graver basis, consisting of two antipodal vectors only, are

[A, B]
(2)

= A(2)
=


1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

 , G([A, B]
(2)) = ±

(
1 −1 −1 1

)
.

By Theorem 4.2, the Graver basis of the 4-fold matrix [A, B]
(4)

= A(4) can be computed by taking the union of the

images of the 6 =

(
4
2

)
maps φk1,k2 : Z2·2

−→ Z4·2 for 1 ≤ k1 < k2 ≤ 4, and we obtain

[A, B]
(4)

=


1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 ,

G([A, B]
(4)) = ±


1 −1 −1 1 0 0 0 0
1 −1 0 0 −1 1 0 0
1 −1 0 0 0 0 −1 1
0 0 1 −1 −1 1 0 0
0 0 1 −1 0 0 −1 1
0 0 0 0 1 −1 −1 1

 .

5. The polynomial time algorithm for n-fold integer programming

We now provide the polynomial time algorithm for the generalized n-fold integer programming problem

min{cx : [A, B]
(n)x = b, x ∈ Nnq

}. (2)

First, combining the results of the previous two sections, we get a polynomial time procedure for converting any
feasible solution to an optimal one. We record this result in the following lemma.

Lemma 5.1. Fix any pair of integer matrices A ∈ Zr×q and B ∈ Zs×q . Then there is a polynomial time algorithm
that, given n, objective vector c ∈ Znq , and nonnegative integer vector x ∈ Nnq , solves the generalized n-fold integer
programming problem in which x is feasible, i.e. the one with b := [A, B]

(n)x.

Proof. First, apply the polynomial time algorithm underlying Theorem 4.2 on input n and compute the Graver basis
G([A, B]

(n)) of the n-fold matrix [A, B]
(n). Then apply the polynomial time algorithm underlying Theorem 3.3 on

input [A, B]
(n), G([A, B]

(n)), c and x , solving the integer program (2). �

We now show that, moreover, given any b, we can efficiently find an initial feasible solution to (2).

Lemma 5.2. Fix any pair of integer matrices A ∈ Zr×q and B ∈ Zs×q . Then there is a polynomial time algorithm
that, given n and demand vector b ∈ Zs+nr , either finds a feasible solution x ∈ Nnq to the generalized n-fold integer
programming problem (2), or asserts that no feasible solution exists.

Proof. Introduce 2n(r + s) auxiliary variables to the given generalized n-fold integer program, and denote by z the
resulting vector of n(2(r + s) + q) variables. Consider the auxiliary integer program of finding a nonnegative integer
vector z that minimizes the sum of the auxiliary variables subject to the following system of equations, with Ir and Is

240 J.A. De Loera et al. / Discrete Optimization 5 (2008) 231–241

the r × r and s × s identity matrices:
B Is −Is 0 0 B Is −Is 0 0 B · · · B Is −Is 0 0
A 0 0 Ir −Ir 0 0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 A 0 0 Ir −Ir 0 · · · 0 0 0 0 0

. . .

0 0 0 0 0 0 0 0 0 0 0 · · · A 0 0 Ir −Ir

 · z = b.

This auxiliary program is in fact again a generalized n-fold integer program, with matrices Ā = (A, 0, 0, Ir , −Ir) and
B̄ = (B, Is, −Is, 0, 0). Since A and B are fixed, so are Ā and B̄. Due to the special structure of the auxiliary program,
a feasible solution of this program can be written down easily in terms of b. Consequently, the auxiliary program can
be solved by the algorithm underlying Lemma 5.1, in time polynomial in n and the bit size of b. Since the auxiliary
objective is bounded below by zero, the algorithm will output an optimal solution z. If the optimal objective value is
(strictly) positive, then the original n-fold program (2) has no feasible solution, whereas if the optimal value is zero,
then the restriction of z to the original variables is a feasible solution x of the original program (2). �

Combining the results of Lemmas 5.1 and 5.2, we obtain the main result of this article.

Theorem 1.2. Fix any pair of integer matrices A, B of compatible sizes. Then there is a polynomial time algorithm
that solves the generalized n-fold integer programming problem on any input n, b, c.

Clearly, Theorem 1.1 is deduced from Theorem 1.2 in the special case B = Iq . We emphasize again that, by solving
the generalized n-fold integer programming problem, we mean in the complete sense that the algorithm concludes
with precisely one of the following: it either asserts that there is no feasible solution, or asserts that the objective
function is unbounded, or returns an optimal solution.

Acknowledgements

The first author was supported in part by NSF grant DMS-0309694, 2003 UC-Davis Chancellor’s fellow award,
and the Alexander von Humboldt foundation. The second author was supported in part by the European network
ADONET 504438 and by grant FOR 468 of the Deutsche Forschungsgemeinschaft. The third author was supported in
part by a grant from ISF—the Israel Science Foundation, by the Technion President Fund, by the Jewish Communities
of Germany Research Fund, and by an S. Langberg Research Fund and the fourth author was supported in part by the
European network ADONET 504438 and by grant FOR 468 of the Deutsche Forschungsgemeinschaft.

References

[1] S. Aoki, A. Takemura, Minimal basis for connected Markov chain over 3 × 3 × K contingency tables with fixed two-dimensional marginals,
Aust. N. Z. J. Stat. 45 (2003) 229–249.

[2] M.L. Balinski, F.J. Rispoli, Signature classes of transportation polytopes, Math. Program. A 60 (1993) 127–144.
[3] L.H. Cox, Bounds on entries in 3-dimensional contingency tables, in: Inference Control in Statistical Databases — From Theory to Practice,

in: Lec. Not. Comp. Sci., vol. 2316, Springer, New York, 2002, pp. 21–33.
[4] L.H. Cox, On properties of multi-dimensional statistical tables, J. Statist. Plann. Inference 117 (2003) 251–273.
[5] J. De Loera, S. Onn, The complexity of three-way statistical tables, SIAM J. Comput. 33 (2004) 819–836.
[6] J. De Loera, S. Onn, All rational polytopes are transportation polytopes and all polytopal integer sets are contingency tables, in: Proc. 10th

Ann. Math. Prog. Soc. Symp. Integ. Prog. Combin. Optim. (Columbia University, New York), in: Lec. Not. Comp. Sci., vol. 3064, Springer,
New York, 2004, pp. 338–351.

[7] J. De Loera, S. Onn, Markov bases of three-way tables are arbitrarily complicated, J. Symbolic Comput. 41 (2006) 173–181.
[8] J. De Loera, S. Onn, All linear and integer programs are slim 3-way transportation programs, SIAM J. Optim. 17 (2006) 806–821.
[9] G.T. Duncan, S.E. Fienberg, R. Krishnan, R. Padman, S.F. Roehrig, Disclosure limitation methods and information loss for tabular data,

in: P. Doyle, J.I. Land, J.M. Theeuwes, L.V. Zayatz (Eds.), Confidentiality, Disclosure and Data Access: Theory and Practical Applications
for Statistical Agencies, North-Holland, 2001.

[10] P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting-stock problem, Oper. Res. 9 (1961) 849–859.
[11] J.E. Graver, On the foundation of linear and integer programming I, Math. Program. 9 (1975) 207–226.
[12] R. Hemmecke, On the positive sum property and the computation of Graver test sets, Math. Program. 96 (2003) 247–269.
[13] R. Hemmecke, Exploiting symmetries in the computation of Graver bases. e-print: arXiv:math.CO/0410334 (2004).

http://arxiv.org//arxiv:math.CO/0410334

J.A. De Loera et al. / Discrete Optimization 5 (2008) 231–241 241

[14] R. Hemmecke, P. Malkin, 4ti2 Version 1.2 — Computation of Hilbert bases, Graver bases, toric Gröbner bases, and more. Available at:
http://www.4ti2.de/, July 2005.

[15] S. Hoşten, S. Sullivant, Finiteness theorems for Markov bases, J. Combin. Theory Ser. A 114 (2007) 311–321.
[16] R. Irving, M.R. Jerrum, Three-dimensional statistical data security problems, SIAM J. Comput. 23 (1994) 170–184.
[17] V. Klee, C. Witzgall, Facets and vertices of transportation polytopes, in: Mathematics of the Decision Sciences, Part I (Stanford, CA, 1967),

AMS, Providence, RI, 1968, pp. 257–282.
[18] H.W. Lenstra Jr., Integer programming with a fixed number of variables, Math. Oper. Res. 8 (1983) 538–548.
[19] S. Onn, U.G. Rothblum, Convex combinatorial optimization, Discrete Comput. Geom. 32 (2004) 549–566.
[20] M. Queyranne, F.C.R. Spieksma, Approximation algorithms for multi-index transportation problems with decomposable costs, Discrete Appl.

Math. 76 (1997) 239–253.
[21] F. Santos, B. Sturmfels, Higher Lawrence configurations, J. Combin. Theory Ser. A 103 (2003) 151–164.
[22] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1986.
[23] A. Schulz, R. Weismantel, The complexity of generic primal algorithms for solving general integral programs, Math. Oper. Res. 27 (2002)

681–692.
[24] M. Vlach, Conditions for the existence of solutions of the three-dimensional planar transportation problem, Discrete Appl. Math. 13 (1986)

61–78.
[25] V.A. Yemelichev, M.M. Kovalev, M.K. Kravtsov, Polytopes, Graphs and Optimisation, Cambridge University Press, Cambridge, 1984.

http://www.4ti2.de/

	 N -fold integer programming
	Introduction
	Applications
	High-dimensional transportation problems
	Some packing problems
	Minimum cost shipment
	The cutting-stock problem

	Graver bases and directed augmentation
	Graver bases of n -fold matrices
	The polynomial time algorithm for n -fold integer programming
	Acknowledgements
	References

