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Abstract. We exhibit a nonregular triangulation for the product of two tetrahedra. This 
answers a question by Gel'fand, Kapranov, and Zelevinsky. We also give a complete clas- 
sification of the symmetry classes of regular triangulations of A2 x A3. Our nonregular tri- 
angulation of A3 x A 3 Can be extended to a non.regular triangulation of the six-dimensional 
cube. The four-dimensional cube is the smallest cube with a nonregular triangulation. 

1. Prelhninaries 

Recently, Gel'fand, Kapranov, and Zelevinsky developed the theory of secondary poly- 
topes that originated in the study of generalized hypergeometric functions and discrim- 
inants (see [5]-[7]). The vertices of  a secondary polytope correspond to the regular 
triangulations of a point configuration, Other algebraic problems where the regularity of 
triangulations is important include V~tro's construction of real hypersurfaces with pre- 
scribed topology [11], GrSbner bases of toric varieties [14], and the elimination theory 
of sparse polynomial systems [15]. For the discrete geometry community the study of 
regular subdivisions motivated various developments (see, for example, [4] and [2]). The 
topic of this note is the construction of nonregular triangulations, which have not been 
studied profusely and are difficult to obtain. We present solutions to two open problems 
regarding the existence of nonregular triangulations for the cube and the product of  two 
simplices (see Problem 5.3 in [16] and p. 247 in [7]). 

We assume familiarity with basic notions in the theory of convex polytopes (see [16]). 
Let ,,4 = {ai, a2 . . . . .  an} denote a subset of 1~ d. A subdivision of.,4 is a collection T of  
subsets of.,4, called cells, whose convex hulls form a polyhedral complex with support 
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Q = conv(A). If each cell in T is a simplex, then T is a triangulation of `4. Every 
vector w = (Wl . . . . .  wn) in ]R n induces a subdivision of `4 as follows. Consider the 
polytope Qw = conv{(al, wl) . . . . .  (an, wn)}) which lies in ]i  d+l. Generally, Qw is a 
polytope of dimension dim(Q) + 1. The lower envelope of Qw is the collection of faces 
of the form {x ~ Qw [ cx = co} with Qtv contained in the half-space cx < co and 
the last coordinate Cd+l is negative. The lower envelope of Qw is a polyhedral complex 
of dimension dim(Q). We define Tw to be the subdivision of .4 whose ceils are the 
projection of the cells of the lower envelope of Qw. In other words, {ah, ai2 . . . . .  aik } is 
a cell of Tw if {(a t ,  tot) ,  (ai2, wi2) . . . . .  (aik, wik)} are the vertices of a face in the lower 
envelope of Qw. We observe that for a generic choice of the vector w the subdivision 
Tw is in fact a triangulation of .4. A subdivision of .4 is regular if it is of the form Tw 
for some vector w, An example of a nonregular triangulation is Rudin's triangulation 
[12]. We remark that given a regular subdivision Tw, we can find an explicit vector w of 
lifting heights inducing Tw by solving a linear programming problem. 

We denote the d-dimensional simplex by Ad = conv({el . . . . .  ed+~}), where ei is an 
element of the standard basis of R d+l . In what follows we represent a vertex (el, ej) of 
Ar x As by the edge (i, j )  in the complete bipartite graph Kr+l.s+l and label both this 
vertex and its edge by a[i, j]. Under this association maximal dimensional simplices 
are spanning trees for Kr+ks+l. Similarly, minimal affine dependencies among vertices 
of Ar x A s correspond to simple cycles in K~+l.s+l. One remarkable result, found by 
Gel'land et al., is the existence of a polytope whose face lattice is anti-isomorphic to 
the lattice of regular subdivisions o f ,4  ordered by refinement. This polytope, )-'~(.4), is 
called the secondary polytope of .4 .  

2. The Product of Two Simplices 

Descriptions are known for all the regular triangulations of A l x As with s an arbitrary 
positive integer and A 2 x A2 (see p. 246 in [7]). Results characterizing some facets of 
the secondary polytope )--~(A r X As) have also been obtained [ 1]. In the next proposition 
we describe all regular triangulations of A2 x A3. 

Proposition 2.1. 

�9 The secondary polytope of  A2 x A 3 has 4488 vertices. Up to $3 x $4 symmetry 
A2 x A3 has only 35 distinct regular triangulations. 

�9 The polytope A2 x A 4 has, up to $3 x $5 symmetry, 530 distinct regular triangu- 
lations. Its secondary polytope has 376,200 vertices. 

Proof. For brevity we only include the description for the regular triangulations of 
A2 x A3 up to $3 x $4 symmetry (for details on A2 x A4 see [3]). All its triangulations 
have 10 maximal simplices of normalized volume one. A simple invariant uniquely 
distinguishes 33 of the 35 orbits of regular triangulations. This is the sorting of the vector 
~or whose ith component is the number of maximal simplices in the triangulation T that 
contain the ith vertex of A2 • A3. The vector ~or is the vertex of the secondary polytope 
)'-~(A2 x A3) corresponding to the regular triangulation T. The distinct sorted vectors 
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appear in the second column of Table 1. The fifth column provides, for each $3 x $4 
orbit, a vector w = (w[1, 1], w[1, 2] . . . . .  w[3, 3], w[3, 4]) that induces a representative 
regular triangulation for that particular orbit. 

We recall that, for any pair T and T '  of regular triangulations of the point configuration 
,A, we can find a finite sequence of geometric bistellar operations that transforms T 
into T '  (see Chapter 7 in [7]). That our classification is complete follows from this 
fact and the complete list of allowable bistellar operations. The numbers of the third 
column indicate the possible bistellar operations of a class of regular triangulations. 
In this way, a regular triangulation belonging to orbit 35 can only be transformed into 
a triangulation member of orbit 9 or 31. Notice that sometimes a geometric bistellar 
operation may preserve symmetry and a regular triangulation is transformed into a regular 
triangulation that lies in the same orbit (this is the case, for example, for orbit 15). Finally, 
observe that orbits 12 and 14 received the same label. We can distinguish these two types 
of regular triangulations by looking at the adjacencies among maximal dimensional 
simplices. Figure 1 shows two graphs whose vertices represent the maximal simplices 
of a triangulation, with an edge between a pair when the simplices have a common facet. 
The two graphs are very similar but still not isomorphic. This is clear since all vertices 
of degree two in the graph associated with orbit 12, are at a distance less than five from 
the unique vertex of degree one. This is not the case for the graph of orbit 14. [] 

The question was raised whether a nonregular triangulation could exist for Ar x As 
(see Chapter 7 in [7]). In the rest of this section we present the answer to this question. 

Theorem 2.2. Nonregular triangulations o f  A r • A s exist when s, r > 3. 

Before presenting the proof of Theorem 2.2 we require a useful lemma. Given two 
spanning trees $1, $2 of Kr+l,s+l we consider their superposition graph, $1 * $2. This is 

(orb~Lt # 12) 

orbit it 14) 

Fig. 1. Distinguishing between two regular triangulations of A2 • A 3. 



2 5 6  J.  A .  de  L .oera  

<1  

• 

iio 

Y_ 
II 

o~ 
m 
e~ 

r "  

7 

H 



Nonregular Triangulations of Products of Simplices 257 

~ ~ ~ I I ~ ~ I I I I ~ ~ I ~ I ~ 

~ 1 1 ~ 1 1 1 1 ~ 1 1 1 ~  

~ ~ ~ o o o ~  



258 J.A. de Loera 

a graph with directed and undirected edges whose vertices are the vertices of Kr+l,~+l, 
The vertices of $1 * $2 are partitioned in two sets A and B (those forming the bipartition 
of Kr+l,s+l). If the vertices i ~ A and j ~ B are adjacent in both $1 and $2, then the 
undirected edge {i, j} apppears in S1 * $2. When the vertices i ~ A and j ~ B are 
adjacent in S1, but not in $2, then the arrow (i, j )  appears in Sl * $2. Finally, if the 
vertices i ~ A and j ~ B are adjacent in $2, but not in $1, the arrow (j,  i) belongs to 
S1 * $2. By a cycle or a path in $1 * $2 we mean those that respect the direction of the 
edges (undirected edges can be used in both directions). 

Lemma 2.3. Let crl and ~rz be two full-dimensional simplices of  Ar x As. Consider 
the spanning trees Sl and $2 of  Kr+l,s+l associated with cr] and ~2. The intersection of  
the two simplices is not a common face if  and only if  the superposition digraph S1 * $2 
contains a simple cycle. 

Proof. The intersection of two simplices trl, tr2 is improper precisely when a face F1 of 
r and a face F2 of tr2 form a minimal Radon partition. Equivalently, there is a minimal 
affine dependence on the vertices of Fl and F2 such that the coefficients of elements 
of F1 have positive sign and the coefficients of vertices in F2 have negative sign. The 
minimal affine dependence ~ Xij (el, e j) = 0 on the vertices of F1 and F2 corresponds to 
a simple cycle in the graph $1 * $2. The signs of the coefficients of the affine dependency 
can be interpreted as the direction of edges in the cycle. [] 

We remark that it can be quickly determined whether S1 * S: has a simple cycle. One at 
a time consider the undirected edges: If/ ,  j are connected in the graph Sl * $ 2 -  {{i, j}}, 
then there is a cycle in S1 * $2 that contains {i, j}. Finally, if still necessary, we check 
the digraph D obtained by removing all the undirected edges. We successively remove 
vertices with zero indegree or outdegree, until we have a cycle or the empty graph. In 
this last case no cycle is present in D. 

Proof of Theorem 2.2. We present an explicit simplicial complex T and we see that 
it is a nonregular triangulation of A3 x A3. In Fig. 2 we have a collection of 20 six- 
dimensional simplices presented as spanning trees for K4,4. These spanning trees are the 
vertices of a graph where two spanning trees are neighbors if they share six edges, or, 
equivalently, if the corresponding six-dimensional simplices have a common facet. 

We claim that T is a triangulation of A3 • A3. It is well known that any triangulation of 
Ar X A~ has (r+~) maximal simplices. The 20 simplices of the simplicial complex T cover 
the 16 vertices of A3 x A3. Lernma 2.3 can be applied to check that the 190 pairs of sim- 
plices (spanning trees) in T intersect in a common face. Since no two maximal simplices 
have a common interior and the number of simplices equals the normalized volume of the 
whole polytope, T is a triangulation of A3 x A3. We also observe that the bistellar transfor- 
mation that replaces {all, 4], a[2, 3], a[3, 3], a[4, 1], a[4, 2], a[4, 3], a[4, 4]} (spanning 
tree 5) and {all, 4], a[2, 3], a[2, 4], a[3, 3], a[4, 1], a[4, 2], a[4, 4]} (spanning tree 4) 
withthe simplices {a[1, 4], a[2, 3], a[2, 4], a[3, 3], a[4, 1], a[4, 2], a[4, 3]} and {a[1, 4], 
a[2, 4], a[3, 3], a[4, 1], a[4, 2], a[4, 3], a[4, 4]} transforms our triangulation into the 
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regular triangulation induced by the following lifting vector: 

W[1, 1] = 0, W[1, 2] = - 6 ,  W[1, 3] = --5, W[1, 4] = - 1 3 ,  

W[2, 1] = 0, W[2, 2] = - 1 ,  W[2, 3] = --4,  W[2, 4] = --10, 

W[3, 1] = 9, W[3, 2] = 2, W[3, 3] = O, W[3, 4] = O, 

W[4, 1] = O, W[4, 2] -- O, W[4, 3] = O, W[4, 4] = - 1 ,  
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However, not all the triangulations obtained from T by a bistellar operation are regular. 
Now we concentrate on the proof that T is not a regular triangulation and we pro- 

ceed by contradiction. If T is a regular triangulation, then a certain vector of heights 
W = (W[1, 1], W[1, 2] . . . . .  W[4, 4]) exists such that the triangulation T equals the 
triangulation Tw induced by these heights. Observe that the cells {a[1, 3], a[2, 1]}, 
{a[1, 1], a[3, 2]}, {a[1, 2], a[4, 3]}, {a[2, 4], a[3, 1]}, {a[2, 3], a[4, 4]}, and {a[3, 4], 
a[4, 2]} define one-dimensional faces of the triangulation T, while the cells {a[1, 1], 
a[2, 3]}, {all, 2], a[3, 1]}, {a[1, 3], a[4, 2]}, {a[2, 1], a[3, 4]}, {a[2, 4], a[4, 3]}, and 
{a[3, 2], a[4, 4]} are not faces of T (they are in fact minimal nonfaces). Moreover, we 
have the intersection of the following pairs of segments. Each pair of segments intersects 
in its middle points. 

conv({a[1, 3], a[2, 1]}) 

conv({a[1, 1], a[3, 2]}) 

conv({a[1, 2], a[4, 3]}) 

conv({a[2, 4], a[3, 1]}) 

conv({a[2, 3], a[4, 4]}) 

conv({a [3, 4], a[4, 2]}) 

A conv({a[1, 1], a[2, 3]]) ~ 0, 

A conv({a[1, 2], a[3, 1]]) ~ 0, 

tq conv({a[1, 3], a[4, 2]}) ~ 0, 

CI conv({a[2, 1], a[3, 4]}) ~ 0, 

tq conv({a[2, 4], a[4, 3]}) ~ 0, 

tq conv({a[3, 2], a[4, 4]]) ~ 0. 

'When the points a[1, 1], a[1, 2] . . . . .  a[4, 4] are lifted the corresponding lifted seg- 
ments cannot intersect anymore since the nonfaces must lie above the lower envelope 
of Qw. This can only happen if the following inequalities are satisfied by the heights 
assigned to the points: 

W[1, 1] + W[2,3] > W[1, 3] + W[2, 1], 

W[1,3] + W[4, 2] > W[1,2] + W[4,3], 

W[2, 4] + W[4, 3] > W[2, 3] + W[4, 4], 

W[1,2] + W[3, 1] > W[1, 1] + W[3,2], 

W[2, 1] + W[3, 4] > W[2, 4] + W[3, 1], 

W[3, 2] + W[4, 4] > W[3, 4] + W[4, 2]. 

However, this system of inequalities for the heights cannot be satisfied (the sum of 
these inequalities gives 0 > 0). We have reached a contradiction and thus T is indeed a 
nonregular triangulation. 

We observe that the product of tetrahedra A3 • A3 is a subpolytope of the product of 
two simplices of higher dimensions (in fact it appears as a proper face). We can complete 
T to obtain a triangulation T of A (r+3) • A (s+3) by placing (see [9]) the remaining vertices 
(,the extension can be done in many different ways). Since T is a nortregular triangulation, 
T must also be nonregular because any set of heights inducing the triangulation 7 ~ would 
induce locally a regular triangulation of A3 • A3 in place of T. This completes the proof 
of the theorem. [] 

3. Triangulations of the Cube 

It was observed by Haiman [8] that the product of simplices can be used to produce 
triangulations of the d-cube using relatively few simplices. Now we use his construction 
to obtain the following result. 
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Corollary 3.1. The six-dimensional cube 16 has a nonregular triangulation. 

Proof. Given an arbitrary triangulation T = {o" 1 . . . . .  Ok} of 13. The collection U = 
{cri x trj I cri, trj ~ T} is a polyhedral subdivision of 13 • 13 = 16 into products of 
tetrahedra. Pick any member of U, say erl x trl, and triangulate it using the nonregular 
triangulation we presented in Theorem 2.2. We have a new polyhedral subdivision that 
can be refined to a triangulation K of 16 (l_.emma 1 in [8]). The last arguments of 
Theorem 2.2 guarantee that K must be a nonregular triangulation of 16. [] 

Theorem 3,2. The four-dimensional cube 14 is the smallest cube with a nonregular 
triangulation. 

Proof. We start with a characterization of the distinct triangulations of the 3-cube. We 
show that the six triangulations of 13 are lexicographic, in the sense of [9], and hence 
regular. We say that a facet of a simplex is exterior if that facet is on the boundary 
of 1 d. A d-simplex that has d exterior facets is called a cornered simplex. A cornered 
vertex is the vertex of a cornered simplex opposite to the unique interior facet. Mara [ 10] 
observed that the d-cube has no more than 2 d-1 cornered simplices in a triangulation. 
We can rely on the number of cornered simplices to classify the triangulations of 13. I f  
a triangulation of 13 has four cornered simplices, then they can be "sliced off" from the 
cube to leave a simplex whose vertices are the four noncornered vertices (see Fig. 3(a)). 
This triangulation is unique up to symmetry of the 13 . We remark that if all the edges of 
a simplex tr are exterior edges (lie on the boundary of 13), then tr must be cornered or 
be adjacent to four cornered simplices. This will be relevant when we consider the cases 
of three, two, one or zero cornered simplices in a triangulation of 13, because we know 
that the noncornered simplices must share a cube's diagonal (they cannot use distinct 
diagonals, because any two diagonals intersect). 

In a triangulation with three cornered simplices the noncornered vertices support a 
bipyramid. This bipyramid can be triangulated in two ways, with two or three tetrahedra. 
This first option would produce a fourth cornered simplex and thus the only triangulation 
with three cornered simplices is shown in Fig. 3(b), Consider now a triangulation with two 
cornered simplices. Unlike the previous cases, we can distribute two cornered simplices 
in two ways (up to symmetry). I f  the two cornered vertices are opposite points of a 
diagonal of 13, then the convex hull of the noncornered vertices is an octahedron. This 
octahedron can be triangulated in three ways (specified by choosing one of the three 
remaining diagonals of the cube). All three triangulations are the same up to symmetry. 
See Fig. 3(c) for a representative triangulation. Alternatively, the two cornered vertices 
may lie in a common facet of 13 . This time the convex hull of the noncornered vertices 
is a seven facet polytope P. Three triangulations are possible for P and again they are 
defined by the choice of a diagonal of 13. Two of them yield isomorphic triangulations 
of 13 and the other forces the existence of four cornered simplices. The representative 
triangulation is shown in Fig. 3(d). 

For triangulations with one or zero cornered simplices, we must say how to triangulate 
the convex hull P of the noncornered vertices. All the simplices used in a triangulation 
of P must be noncornered and they share one diagonal. Such a triangulation of P is 
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Fig. 3. The triangulations of the 3-cube. 

only obtained by pulling (see [9]) the two extreme vertices of the chosen diagonal. See 
Fig. 3(e) and (f) for representative triangulations. For completeness we show, on top of 
the vertices of Fig. 3, explicit lifting vectors inducing the six triangulations of 13 . 

Finally we present a nonregular triangulation of 14 into 24 simplices. For the presen- 
tation we label the vertices of 14 by their positions as columns of the following matrix: 

111 /)2 V3 /34 /)5 116 1)7 118 119 1)10 1)11 1112 1113 1314 1)15 1)16 
1 .0  1 1 1 0 1 1 1 0 0 0 1 0 0 0 
1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 
1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 
1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 

The explicit triangulation T is given by the following maximal simplices: 

{7, 9, 10, 11, 13}, {7, 10, 11, 13, 14}, {10, 11, 13, 14, 16}, {2, 10, 13, 15, 16}, 

{2, 10, 13, 14, t6}, {9, 10, 11, 13, 16}, {8, 10, 13, 15, t6}, {8, 10, 12, 15, 16}, 

{1,5,6,7, 10}, {1, 3, 5,7, 10}, {5, 7, 9, 10, 13}, {5, 6, 7, 10, 11}, 

{5,7,9, 10, 11}, {4, 5, 7, 9, 11}, {5, 6, 10, 11, 12}, {1, 5, 6, 7, 11}, 
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{1,4,5,7 ,  11},{5, 10, 11, 12, 16},{5,8, 10, 12, 16},{5,9, 10, 11, 16}, 

{5, 9, 10, 13, 16}, {5, 8, 10, 13, 16}, {3, 5, 8, 10, 13}, {3, 5, 7, 10, 13}. 

We remark that the geometric bistellar operation that replaces the simplices {5, 6, 10, 
11, 12}, {5, 10, 11, 12, 16} with the simplices {5,6, 10, 11,161, {5,6, 10, 12, 16) tran- 
forms our simplicial complex T into the regular triangulation induced by the following 
vector: 

W := (0, 0, 12, - 17 ,  0, -11 ,  - 8 ,  19, - 16 ,  0, -29 ,  0, - 2 ,  - 14 ,  20, -22) .  

This shows that our proposed simplicial complex T is indeed a triangulation of 14. 

We can give a proof of nortregularity of the above triangulation by looking, as we 
did in Theorem 2.2, at the way the faces and the nonfaces of the simplicial com- 
plex intersect. Observe that the cells {6, 7}, {11, 12}, {8, 16}, and {3, 13} define one- 
dimensional faces of the triangulation T, while the cells {3, 11}, {6, 16}, {12, 13}, {7, 8} 
are not faces of T. We have intersection of the following pairs of segments in their 
middle points: cony({3, 11}) tq cony({6, 7}) ~ 0, conv({6, 16}) N conv({ll,  12}) r 0, 
cony({12, 13}) tq cony({8, 16}) r 0, and conv({7, 8}) tq cony({3, 13}) # 0. One condi- 
tion for the existence of lifting heights WI . . . . .  W16 that might induce T is that the pairs 
of intersecting segments above do not intersect anymore. The given nonfaces must lie 
above the lower envelope of the rifted points. This translates into the following infeasible 
system of inequalities (the sum of these inequalities implies 0 > 0): 

- - W  3 @ W 6 "Jr W 7 --  Wll < 0, --WI6 -- W6 Jr  W12 -~ Wll < 0, 

- W 1 2  + W13 @ W 8 + W16 < 0, - W 7  Jr W3 - W8 -~ W13 < 0. 

This completes the proof of our theorem. We remark that we have found over 20 
nonisomorphic, nonregular triangulations of 14. The smallest of these nonregular trian- 
gulations has 22 simplices. [] 

Finally, we comment that recently Sturmfels has extended Theorem 2.2. Using the 
algebraic techniques of Gr6bner bases and .A-graded monomial ideals he derived a 
nonregular triangulation of A2 x As, and showed that every triangulation of A2 • A3 
and A 2 • A 4 is regular. 
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