Recall that a connection on a principal G-bundle \mathcal{P} is a smoothly varying family of linear maps (one for each $p \in \mathcal{P}$):

$$A_p : T_{\pi(p)}M \rightarrow T_p \mathcal{P}$$

s.t.

1) $d\pi \circ A_p = 1_{T_{\pi(p)}M}$

2) $A_p = dR_g \circ A_p$

We saw that doing parallel translation along $\gamma : [0,1] \rightarrow M$:

\[\begin{array}{ccc}
 \gamma & \longrightarrow & P \\
 \gamma \circ x & \longrightarrow & P_x \\
 \gamma \circ y & \longrightarrow & P_y
\end{array} \]

meant solving the ODE

$$\tilde{\gamma}'(t) = A_{\tilde{\gamma}'(t)}(\gamma'(t)) \quad (*)$$

for $\tilde{\gamma} : [0,1] \rightarrow \mathcal{P}$. We defined the holonomy of γ to be

the isomorphism

$$\text{hol}(\gamma) : P_{\gamma(0)} \longrightarrow P_{\gamma(1)}$$

$$p \longmapsto \tilde{\gamma}_p(1)$$

where $\tilde{\gamma}_p$ is the unique solution of $(*)$ satisfying the initial condition $\tilde{\gamma}_p(0) = p \in P_{\gamma(0)}$.

D. Wise
Using parallel translation in a principal G-bundle P, we immediately get:

1) Parallel translation in any associated bundle

$$E = P \times e V = \frac{P \times V}{(pg,v) - (p,gv)}$$

If $\tilde{\gamma}_p(t)$ is the horizontal lift of γ starting at $p \in P$, then parallel translation of the point $[p,v] \in E_x$ along γ is given by

$$[\tilde{\gamma}_p(t), v] \in E_{\tilde{\gamma}(t)}$$

Note this is well defined, since parallel translation of $[pg, g^{-1}v] = [p,v]$ along γ is given by

$$[\tilde{\gamma}_p(t), g^{-1}v] = [\tilde{\gamma}_p(t)g, g^{-1}v] = [\tilde{\gamma}_p(t), v]$$

since we showed last time that horizontal lifts are related by $\tilde{\gamma}_p(t) = \tilde{\gamma}_p(t)g$.

2) Covariant derivatives of sections of any associated vector bundle:

If $E = P \times e V$ is a vector bundle (i.e. V is a vector space on which G acts linearly), then given $w \in T_x M$, choose γ s.t. $\gamma(0) = x, \gamma'(0) = w$.

For a section $\sigma : M \to E$, define the covariant derivative

$$(D_w \sigma)(x) = \lim_{t \to 0} \frac{\sigma(\tilde{\gamma}(t)) - [\tilde{\gamma}_p(t), v]}{t} \in E_x$$

of σ at x in direction w.

For w a vector field, $(D_w \sigma)(x)$ gives a new section:

$$\downarrow \quad D_w \sigma$$

the covariant derivative of σ w.r.t. w.
To make these ideas more concrete, let's see what connections and parallel translation amount to in a local trivialization. For notational simplicity, we just assume P is trivial:

$$P = M \times G \quad \text{(x,g)}$$

$$\downarrow \quad \downarrow$$

$$M \quad x$$

By definition, a connection A gives a family of maps

$$A_{(x,g)} : T_{(x,g)}M \longrightarrow T_{(x,g)}(M \times G)$$

$$\downarrow \quad \downarrow$$

$$T_xM \quad T_xM \times T_g G$$

satisfying:

1) $d\pi \circ A_{(x,g)} = 1_{T_xM}$.

Since $d\pi : T_xM \times T_g G \longrightarrow T_xM$ is given by $(v, x) \mapsto v$, this equation just says $A_{(x,g)}(v) = (v, \tilde{A}_{(x,g)}(v))$ for some linear map

$$\tilde{A}_{(x,g)} : T_xM \longrightarrow T_g G$$

2) $A_{(x,g)}^\prime = dR_{g} \circ A_{(x,g)}$.

This is equivalent (Exercise!) to $\tilde{A}_{(x,g)} = dR_{g} \circ \tilde{A}_{(x,g)}$ where R_{g} here denotes the right action of G on itself. I.e.,

$$T_xM \xrightarrow{\tilde{A}_{(x,g)}} T_g G \xrightarrow{dR_{g}} T_{g}G \quad \text{commutes}.$$

So, all of the $\tilde{A}_{(x,g)}$ are determined by

$$A_x := \tilde{A}_{(x,1)} : T_xM \longrightarrow \mathfrak{g}$$

where $\mathfrak{g} = T_{e}G$ is the Lie algebra of G.
So, on a trivial principal G-bundle (or in a local trivialization), a connection amounts to a smooth map

$$A : TM \longrightarrow \mathfrak{g}$$

that is linear on each T_xM. In other words, it's a Lie algebra-valued 1-form on M.

Exercise: Show that on the trivial principal G-bundle P, the ODE for parallel translation reduces to

$$\tilde{\gamma}_0'(t) = dR_{\tilde{\gamma}_0(t)} \circ A_{\tilde{\gamma}_0(t)}(\gamma'(t))$$

where the horizontal lift of γ to $P = M \times G$ is given by

$$\tilde{\gamma} : [0, 1] \longrightarrow P$$

$$t \longmapsto (\gamma(t), \tilde{\gamma}_0(t))$$

and we take $\gamma_0 : [0, 1] \longrightarrow G$ s.t. $\gamma_0(0) = 1 \in G$.

(Note that $dR_{\tilde{\gamma}_0(t)} \circ A_{\tilde{\gamma}_0(t)} : T_{\tilde{\gamma}_0(t)}M \longrightarrow \mathfrak{g} \longrightarrow T_{\tilde{\gamma}_0(t)}G$ and the claim is: $\gamma' : \text{velocity at point on } M \longrightarrow \tilde{\gamma}'_0 : \text{velocity of path in } G$.)
Next, if \(P = M \times G \), then any associated bundle can be trivialized in a canonical way:

\[
E = P \times_\sigma V \xrightarrow{\sim} M \times V
\]

\[
[(x, g), v] \mapsto (x, g_0 v)
\]

(Exercise: check that this is a bundle isomorphism) Under this identification, parallel translation in \(E \) is given by

\[
[(\gamma(t), g_0(t)), v] = (\gamma(t), g_0(t)v) \in M \times V.
\]

I.e. parallel translation of \(v \in V \) along \(\gamma \) is given by

\[
[0, 1] \longrightarrow V
\]

\[
t \mapsto \gamma_0(t)v
\]

where \(\gamma_0(t) \in G \) acts on \(v \in V \) via the action that defines the associated bundle.

If \(E \) is a vector bundle, and \(\sigma \) is a section, we can use the trivialization \(E = M \times V \) to think of \(\sigma \) as a function \(\sigma : M \rightarrow V \), and define

\[
D_{\gamma'(0)} \sigma := \lim_{t \to 0} \frac{\sigma(\gamma(t)) - \gamma_0(t) \sigma(\gamma(0))}{t}
\]

\[
= \lim_{t \to 0} \left(\frac{\sigma(\gamma(t)) - \sigma(\gamma(0))}{t} - \frac{(\gamma_0(t) - 1) \sigma(\gamma(0))}{t} \right)
\]

\[
= \gamma'(0) \left[\sigma \right] \quad - \quad \gamma_0'(0) \sigma(\gamma(0))
\]

\(\gamma' \) directional derivative of \(\gamma : M \rightarrow V \)

\(\gamma_0' \) elt. of \(G \) elt. of \(V \)

action of \(\gamma \) on \(V \)

elt. of \(\gamma \) elt. of \(V \)

is derivative of action of \(G \) on \(V \) defining the associated bundle \(E \).
We can simplify this further, since we know \(\tilde{y}_0 \) satisfies the IVP:

\[
\tilde{y}_0'(t) = dR_{\tilde{y}_0(t)} \circ A_{\tilde{y}(t)}(y'(t))
\]
\[
\tilde{y}_0(0) = 1 \in G.
\]

Using this, we get

\[
D_{\tilde{y}(0)} \sigma = \tilde{y}'(0) \sigma - A_{\tilde{y}(0)}(y'(0)).
\]

Working in local coordinates \(x^\mu \), if we take \(y'(0) = \frac{\partial}{\partial x^\mu} \) and define \(D_\mu := D_{x^\mu} \) and \(A_\mu(x) = A_x(\partial_{x^\mu}) \), we get

\[
D_\mu \sigma = \partial_\mu \sigma - A_\mu \sigma,
\]

as the formula for the covariant derivative in local coordinates. (Note: sometimes people call \(A = A \) instead, to get a "+" sign in the above formula — this is just a convention.)