Feynman Diagrams

We've seen that we can draw an object of:

- the stuff type \(\Psi \) as

 ![Diagram of \(\Psi \)]

- the stuff operator \(T \) as:

 ![Diagram of \(T \)]

- the stuff type \(T\Psi \) as:

 ![Diagram of \(T\Psi \)]

\[\text{the isomorphism } \alpha \text{ in def. of "weak pullback"}\]
- The inner product $\langle \psi, T\psi \rangle$ as

![Diagram of ψ, t, and ϕ]

This should remind you of Dirac's Bra-Ket notation:

$\langle \psi | T | \psi \rangle := \langle \psi, T \psi \rangle$

Given two stuff operators S & T we can draw an object of ST as:

![Diagram of S and T]

We've looked at two stuff operators in particular:

- Φ^n here a typical object (for $n=6$) looks like:
 ![Feynman diagram with one 6-valent vertex with totally ordered incidences]

- $\frac{\Phi^n}{n!}$ has typical object ($n=6$):
 ![Feynman diagram with one 6-valent vertex.]
These pictures are pictures of extra stuff that can be put on a pair of finite sets!

Here are some objects in \(\Phi^4 \Phi^4 \Phi^4 \):

Now... let's study the time evolution in the perturbed harmonic oscillator. Let's see how to calculate

\[\langle z^k, e^{-i t H} z^l \rangle \]

where

\[H = H_0 + V \]

\[V = \frac{\Phi^m}{m!} \]

Recall:

\[\langle z^k, e^{-i t H} z^l \rangle = \sum_{n=0}^{\infty} \int \langle z^k, e^{-i(t-t_n)H_0} V \cdots V e^{-i(t_n)H_0} z^l \rangle dt_1 \cdots dt_n \]

\(0 \leq t_n \leq t \)
Calculating $\langle z^k, e^{-i(t-t_0)H_0} V e^{-i(t_{m-1}-t_0)H_0} V \ldots V e^{-i(t, H_0) z^k} \rangle$

is almost like calculating

$\langle z^k, V V \ldots V z^k \rangle \equiv \langle z^k, \frac{z^m}{m!} \ldots \frac{z^n}{m!} z^k \rangle$ except to keep track of the $e^{-i(t_{p-1}-t_p)H_0}$ terms we label each edge by a phase: we label any edge from the pth vertex to the qth vertex ($p \leq q$) by $e^{-i(t_{p-1}-t_p)}$, e.g.

![Diagram](image)

(or e^{-it_p} if the edge comes from bottom to the pth vertex or $e^{-i(t_{p-1})}$ if it goes from the qth vertex to the top). In short: label each edge with e^{-iT} where T is the amount of time that passes along that edge. These phases are called propagators.
We calculate
\[\langle z^k, \ e^{-i(t-t_k)H_0} \ldots \ e^{-i(t-t_1)H_0} z^k \rangle \]
by summing over Feynman diagrams, each weighted by the product of all these phases (\& divided by the size of their symmetry group, as usual in groupoid cardinality).

Why? Short answer: each "quantum" has energy 1, so applying \(e^{-i(t_p-t_{p-1})H_0} \) to a state with \(E \) of the quanta \((z^E)\) multiplies it by \(e^{-i(t_p-t_{p-1})E} \).

Here we're getting that effect by attaching a phase to each edge (corresponding to a quantum).

27 May 2004

Feynman Diagrams

Let's see why our Feynman diagram recipe for calculating transition amplitudes like
\[\langle z^k, \ e^{-i(t-t_k)H_0} \ldots \ e^{-i(t_{p-1}t_{p-1})H_0} z^k \rangle \]
agrees with a "direct" computation. We'll look at some examples coming from the homework, where we did
\[\langle z^2, \frac{\Phi^3}{3!} \frac{\Phi^3}{3!} z^2 \rangle \]

But now consider
\[\langle z^2, \ e^{-i(t-t_2)H_0} \frac{\Phi^3}{3!} \ e^{-i(t_1-t_2)H_0} \frac{\Phi^3}{3!} \ e^{-i(t_1-t_2)H_0} z^2 \rangle \]
This will be a sum of many terms, since $\phi^3 = (a + a^*)^3$, and each term corresponds to one or more Feynman diagrams. Let's look at a couple.

Example 1:

$$\langle z^2, e^{-i(t-t_2)H_0} \frac{a^* a}{3!} e^{-i(t-t_2)H_0} \frac{a^* a}{3!} e^{-i t_1 H_0} z^2 \rangle$$

corresponding to:

![Diagram]

Let's calculate this transition amplitude directly & using Feynman diagrams:

$$\langle z^2, e^{-i(t-t_2)H_0} e^{-i t_1 H_0} e^{-i(t-t_2)H_0} \frac{a^* a}{3!} e^{-i(t-t_2)H_0} \frac{a^* a}{3!} e^{-i t_1 H_0} z^2 \rangle$$

The phases work out right: product of phases over all edges is $e^{-2i(t-t_2)} e^{-i(t-t_2)} e^{-i t_1}$, since there were 2 quanta from time 0 to t_1.

time t_1 -- $\frac{a^* a}{3!}$

time t_2 -- $\frac{a^* a}{3!}$

time 0 -- z^2
Example 2:

\[\langle z^2, e^{-i(t-t_0)\mathcal{H}_0} \left(\frac{a^3}{3!} e^{-i(t_1-t_0)\mathcal{H}_0} \right) \frac{a^3}{3!} e^{-i(t_1,\mathcal{H}_0) z^2} \rangle \]

corresponds to many Feynman diagrams, including:

\[\begin{align*}
\langle z^2, & \rangle \\
& e^{-2i(t-t_0)} e^{-5i(t_1-t_0)} e^{-2i t_0} \frac{5}{3!} 3! 2! \\
& e^{-i(t-t_0)\mathcal{H}_0} \\
& e^{-5i(t_1-t_0)-2i t_0} \frac{5}{3!} 3! 2! \\
& e^{-i(t-t_0)\mathcal{H}_0} \\
& e^{-5i(t_1-t_0)-2i t_0} \frac{5}{3!} 3! 2! \\
\end{align*} \]
Even in this example the product of phase labelings on edges matches our "direct" calculation:

$$e^{-2it}e^{3it_1}e^{-3it_2} = e^{-2i(t-t_2)}e^{-5i(t_1-t_2)}e^{-2it_1}.$$

Why does it work?

Break each edge by horizontal lines at times $0, t_1, t_2, t$, and factor its phase as above!