Concave symplectic embeddings and relations in mapping class groups of surfaces

Laura Starkston

University of Texas at Austin

December 6, 2014

Symplectic convex
fillings
$$(X^4, \omega)$$

 $\Sigma_1, \dots, \Sigma_n$ surfaces in a 4-manifold intersecting positively transversely $\partial(\nu(\Sigma_1 \cup \dots \cup \Sigma_n))$ is a Seifert fibered space or more general graph manifold

(日) (同) (三)

 $\Sigma_1, \dots, \Sigma_n$ surfaces in a 4-manifold intersecting positively transversely $\partial(\nu(\Sigma_1 \cup \dots \cup \Sigma_n))$ is a Seifert fibered space or more general graph manifold

Theorem (Gay-Stipsicz, Li-Mak)		
There exists ω on $\nu(\Sigma_1 \cup \cdots \cup \Sigma_n)$ with	convex boundary	negative definite
	concave boundary	with enough b_2^+

 $\Sigma_1, \dots, \Sigma_n$ surfaces in a 4-manifold intersecting positively transversely $\partial(\nu(\Sigma_1 \cup \dots \cup \Sigma_n))$ is a Seifert fibered space or more general graph manifold

Theorem (Gay-Stipsicz, Li-Mak)		
There exists ω on $\nu(\Sigma_1 \cup \cdots \cup \Sigma_n)$ with	convex boundary	negative definite
	concave boundary	with enough b_2^+

Convex fillings are more rare than concave caps.

 $\Sigma_1, \dots, \Sigma_n$ surfaces in a 4-manifold intersecting positively transversely $\partial(\nu(\Sigma_1 \cup \dots \cup \Sigma_n))$ is a Seifert fibered space or more general graph manifold

Theorem (Gay-Stipsicz, Li-Mak)		
There exists ω on $\nu(\Sigma_1 \cup \cdots \cup \Sigma_n)$ with	convex boundary	negative definite
	concave boundary	with enough b_2^+

Convex fillings are more rare than concave caps.

Idea: Use concave caps to find convex fillings.

Theorem [McDuff]

A closed symplectic manifold containing a symplectic positive S^2 is symplectomorphic to $\mathbb{C}P^2 \# N \overline{\mathbb{C}P^2}$.

(日)

For a Seifert fibered space Y over S² with k singular fibers and $e_0 \leq -k-1$, with its canonical contact structure ξ_{can} :

Every convex filling of (Y, ξ_{can}) is the complement of a symplectic embedding of a concave star-shaped plumbing of spheres into CP² #N CP².

For a Seifert fibered space Y over S² with k singular fibers and $e_0 \leq -k-1$, with its canonical contact structure ξ_{can} :

- Every convex filling of (Y, ξ_{can}) is the complement of a symplectic embedding of a concave star-shaped plumbing of spheres into CP² #N CP².
- every such embedding can be built from
 - A collection of pseudoholomorphic \mathbb{CP}^1 's

For a Seifert fibered space Y over S² with k singular fibers and $e_0 \leq -k-1$, with its canonical contact structure ξ_{can} :

- Every convex filling of (Y, ξ_{can}) is the complement of a symplectic embedding of a concave star-shaped plumbing of spheres into $\mathbb{CP}^2 \# N \mathbb{CP}^2$.
- every such embedding can be built from
 - A collection of pseudoholomorphic $\mathbb{C}P^1$'s
 - blow-up at N points, including proper transforms of the CP¹'s and exceptional spheres into the concave plumbing

(日)、

For a Seifert fibered space Y over S² with k singular fibers and $e_0 \leq -k-1$, with its canonical contact structure ξ_{can} :

- Every convex filling of (Y, ξ_{can}) is the complement of a symplectic embedding of a concave star-shaped plumbing of spheres into $\mathbb{CP}^2 \# N \mathbb{CP}^2$.
- every such embedding can be built from
 - A collection of pseudoholomorphic $\mathbb{C}P^1$'s
 - blow-up at N points, including proper transforms of the CP¹'s and exceptional spheres into the concave plumbing
- For many such (Y, ξ_{can}) the isotopy class of the embedding is determined by combinatorial/homological data (sufficient conditions: k ≤ 6 or e₀ ≤ −k − 2).

(日)

Pseudoholomorphic Line Arrangments

Fix an almost complex structure J on $\mathbb{C}P^2$ tamed by ω_{std} . A *J*-line is a *J*-holomorphic sphere homologous to $\mathbb{C}P^1$.

- Through any two points, there is a unique *J*-line. [Gromov]
- 2 Any two distinct J-lines transversally, positively, at one point.

Question

Does the topology of the moduli space of J-line arrangements with given combinatorial data depend on J?

Question

Does the combinatorial intersection data determine the isotopy class of the line arrangement?

Pseudoholomorphic Line Arrangments

Fix an almost complex structure J on $\mathbb{C}P^2$ tamed by ω_{std} . A *J-line* is a *J*-holomorphic sphere homologous to $\mathbb{C}P^1$.

Lemma

If \mathcal{I} is an intersection pattern where no line contains more than two multi-intersection points, and

 $\mathcal{M}_J(\mathcal{I})$ is the space of J-line arrangements with intersection data \mathcal{I} , then

$$\bigcup_{J} \quad \mathcal{M}_{J}(\mathcal{I})$$

 $J:\omega_{std}$ -tame

is path-connected and non-empty.

Monodromy factorization approach

[Gay-Mark] For these Seifert fibered spaces, (Y, ξ_{can}) , there are open book decompositions with

- Planar pages
- Monodromy $\phi = D_{c_1}D_{c_2}\cdots D_{c_n}$, c_1, \cdots, c_n disjoint

< ロ > < 同 > < 回 > < 回 >

Theorem (Wendl)

Because these contact structures are planar, each (minimal) convex filling of (Y, ξ_{can}) corresponds to a different positive factorization of ϕ .

Goal: Establish correspondence between concave embeddings and positive monodromy factorizations.

What does a planar Lefchetz fibration look like?

Dotted circle notation: Carve out a disk in B^4 whose boundary in S^3 is the dotted circle.

Lantern relation:

 $D_1 D_2 D_3 D_{1,2,3} = D_{1,2} D_{1,3} D_{2,3}$

< □ > < □ > < □ > < □ > < □ > < □

New Configurations

0

By blowing up more interesting configurations of lines, we get new relations:

 $D_1^2 D_2^2 D_3 D_4^2 D_5^2 D_{1,2,3,4,5} = D_{1,2,3} D_{1,4} D_{1,5} D_{2,4} D_{2,5} D_{3,4,5}$

(ロ) (四) (日) (日) (日)

New Configurations

 $D_1^2 D_2^2 D_3 D_4^2 D_5^2 D_{1,2,3,4,5} = D_{1,2,3} D_{1,4} D_{1,5} D_{2,4} D_{2,5} D_{3,4,5}$

Concave embedding strategy shows: no other fillings \Rightarrow no other + factorizations.

Such *indecomposable* relations are essential relators for elements in Dehn⁺.

There is an infinite family of indecomposable relations generalizing this example.

・ロト ・聞ト ・ヨト ・ヨト

・ロト ・日 ・ ・ ヨト・

Lantern relation - two embeddings of concave plumbings and their complements

Lantern relation - complements of two embeddings of concave plumbings

Longer Arms

Longer Arms

(日) (四) (三) (三)

・ロト ・回 ト ・注 ト ・注 ト

Moving towards a complete dictionary: other moves

- What is a complete list of embedding moves, and how do they each translate to moves on mapping class group relations?
- How does a sequence of embedding moves translate to a sequence of mapping class group relations?

