

Lie Group

A Lie group is a group that is also a manifold (a group with a continuum).

Examples

Area preserving linear transformations $SL(2) = \{ M \in GL(2; \mathbb{R}) \mid \det M = 1 \}$ $\begin{vmatrix} e^t & 0 \\ 0 & e^{-t} \end{vmatrix}$ ► Translation operators $\{ \mathscr{T}_t : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}) \mid t \in \mathbb{R} \}$ defined by $\mathscr{T}_t[f](x) = f(x+t)$. \blacktriangleright Rotation matrices in 3 dimensions SO(3) $\left[\cos(\theta) - \sin(\theta) 0\right]$ $R_{xy}(\theta) = \left| \sin(\theta) \cos(\theta) 0 \right|, \quad \left| 0\cos(\theta) - \sin(\theta) \right|$ $\left(\right)$ $\cos(\theta) \quad 0 \sin(\theta)$

Lie Algebra

Let point p on the manifold \mathcal{M} act on function $f \in C^{\infty}(\mathcal{M})$ by p(f) = f(p). We can define the difference between two points p_1,p_2 as

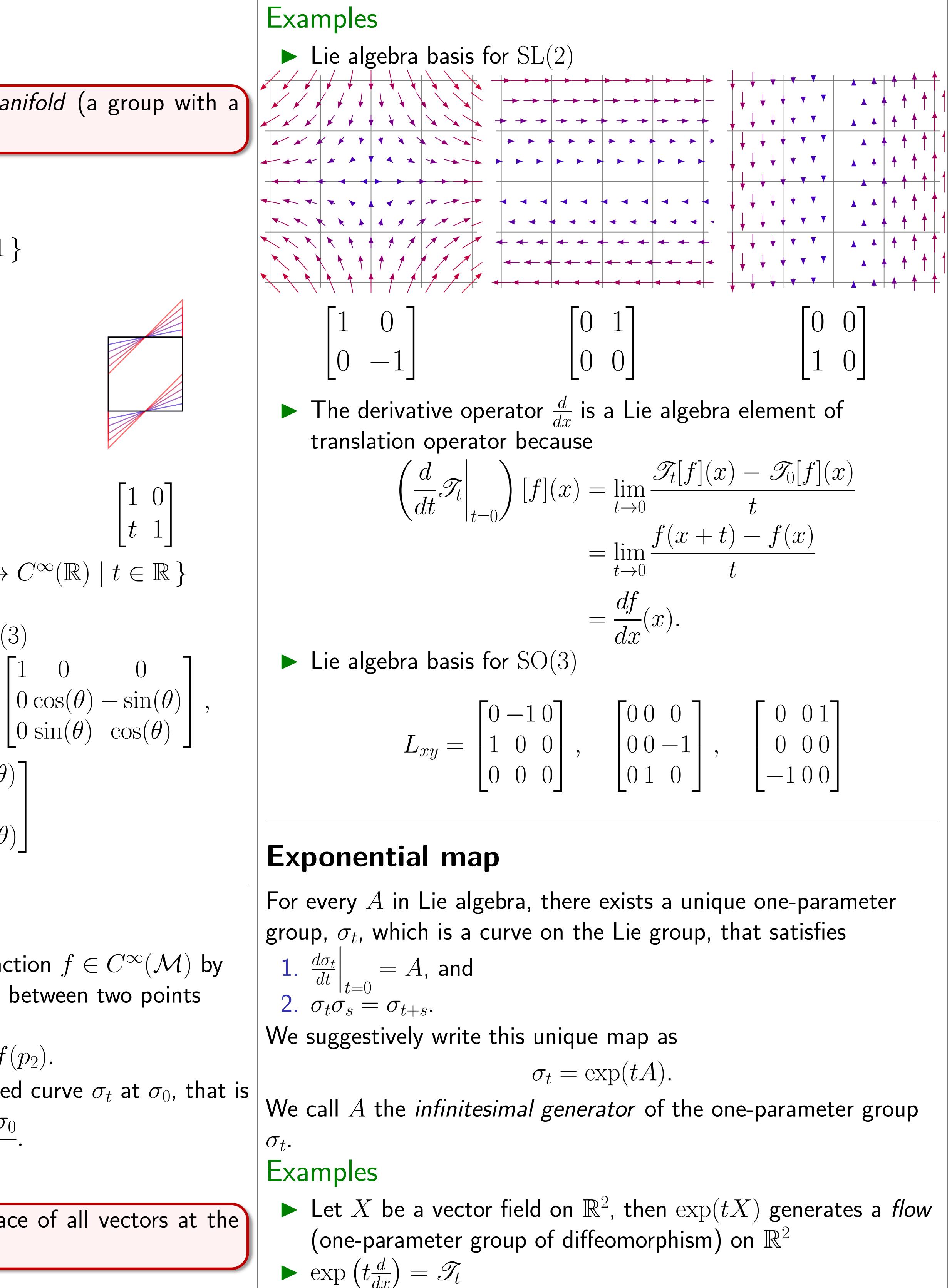
 $-\sin(\theta) 0 \cos(\theta)$

$$(p_1 - p_2)f = f(p_1) - f(p_2).$$

A *vector* is the "velocity" of a parameterized curve
$$\frac{d\sigma_t}{dt}\Big|_{t=0} = \lim_{t \to 0} \frac{\sigma_t - \sigma_0}{t}.$$

The Lie algebra of a Lie group is the space of all vectors at the identity element.

Lie bracket as linearized adjoint action Chen Liang, mentor: Simon Du



 $\blacktriangleright \exp(\theta L_{xy}) = R_{xy}(\theta)$

$$= \lim_{t \to 0} \frac{\mathscr{T}_t[f](x) - \mathscr{T}_0[f](x)}{t}$$
$$= \lim_{t \to 0} \frac{f(x+t) - f(x)}{t}$$
$$= \frac{df}{dx}(x).$$

$\begin{bmatrix} 0 & 0 \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$
00 - 1	,	0 0 0
010		[-100]

2
, then $\exp(tX)$ generates a *flow* comorphism) on \mathbb{R}^2

Adjoint representation

through adjoint representation!

Let G be a Lie group. Consider adjoint action $Ad_x : G \to G$ for $x \in G$ defined by

element Y is

where e is the identity element. We linearize x as

=

Note that the commutator (aka Lie bracket) [X, Y] is a bilinear operation, and it empowers Lie algebra to capture some structure of the Lie group.

A Lie group can be almost completely captured by its Lie algebra

$$\operatorname{Ad}_x(y) = xyx^{-1}$$

The push forward (aka the adjoint representation) on Lie algebra

$$\operatorname{Ad}_{x*} Y = \frac{d}{dt} \operatorname{Ad}_{x} \exp(tY) \Big|_{t=0}$$
$$= \lim_{t \to 0} \frac{x \exp(tY) x^{-1} - e}{t}$$

$$x \text{ as } \frac{d}{dt} \exp(tX) \big|_{t=0}, \text{ and we obtain}$$
$$\frac{d}{dt} \operatorname{Ad}_{\exp(tX)*} Y \Big|_{t=0}$$
$$= \frac{d}{dt} \exp(tX) Y \exp(-tX) \Big|_{t=0}$$
$$= \frac{d}{dt} \exp(tX) \Big|_{t=0} Y + Y \frac{d}{dt} \exp(-tX) \Big|_{t=0}$$
$$= XY - YX$$
$$= [X, Y].$$

