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Introduction

Fluid flows are governed by the Navier-Stokes equaধons. Making assumpধons about the fluid

flow can result easier soluধons or allow study of certain fluid flows of interest.

At small scales, linear differences terms approximate differenধals. This is the basis of finite dif-

ference methods. These linear differences result in a system of equaধons, which can be stored

in a matrix and solved by a computer.

Stokes Flow

Fluid flows on small length scales, with viscous fluids, or with slow fluids are called Stokes Flows.

These three factors define the Reynolds Number, which approaches zero for any of the afore-

menধoned condiধons. Starধng with the Navier-Stokes equaধons,

Re(∂u
∂t

+ u · ∇u) + ∇p = ∇2u

∇ · u = 0

and leষng Re → 0, we obtain the Stokes Equaধons:

∇p = ∇2u,

∇ · u = 0.

These equaধons are linear. Their soluধons are unique for given boundary condiধons.

Finite Difference Methods

The first step is discreধze a domain by dividing it into a fine grid of, say, n subdivisions. The value

of the soluধon will be calculated at each grid point and stored in a vector, v.

Next, we appoximate derivaধves using finite differences. This approximaধon will relate adjacent

values of the grid, and eventually lead to a solvable system of equaধons. Below are some finite

difference approximaধons.

If j is the entry number of v corresponding to a coordinate xj ,

∂2u
∂x2(xj) ≈

vj+1 − 2vj + vj−1
h2 ;

∂u

∂x
(xj) ≈

vj+1 − vj

h
;

where h is the length of the subintervals of the discreধzaধon.

Applying this relaধon to the whole vector results in n equaধons and n unknowns, allowing us to

uধlize a matrix operaধon.

Images of Stokes Flow

FDM: 1-Dimensional Advection Equation

The Advecধon Equaধon describes the transport of some quanধty over ধme, such as the shiđing of

dunes across the desert. We consider it with some iniধal condiধon u0(x) and assuming periodicity:
∂u
∂t + c∂u

∂x = 0, (x, t) ∈ (0, 1) × (0, T ]
u(x, t) = u0(x), t = 0
u(0, t) = u(1, t) t ∈ [0, T )

The exact soluধon, given these condiধons, is

u(x, t) = u0(x − ct).

We applied three iniধal condiধons: a triangular peak, a sinusoidal crest, and a square wave. All

soluধons dispersed over the course of three cycles.

FDM: Poisson’s Equation in 2 Dimensions

We also implemented an approximaধon for Poisson’s Equaধon,

∇2u = f (x, y).

Soluধons are determined by boundary condiধons. In our case, we implemented the soluধon on

Ω = [0, 1] × [0, 1] and applied boundary condiধons to ∂Ω.
We found a simple analyধc soluধon in the case of f (x, y) = 0 and boundary condiধons u = 1
on the x-axis and u = 0 otherwise. Comparing this exact soluধon to our numerical soluধon, we

found, as expected, error reduce with an increasingly fine grid.

Figure 1. Soluধon for f (x, y) = 1 with zero for boundary condiধons.

Future Projects

1. Implement a numerical solver for the Stokes Equaধon using MAC discreধzaধon.
2. Implement soluধons on more interesধng domains and boundaries

1. Domains other than Ω
2. Box with a hole

3. Implement a numerical solver for the Heat Equaধon
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