INTRODUCTION

In the 90’s, Gessel introduced the following generating function,

B::Z Z wt (1T x_

nzl  TeT)
T standard

summing over standard labeled binary trees, and its multivariate generalization,

G::Z Z wt (T

n>1TeT*

summing over all labeled binary trees, where wt(71') = a, s
G is Schur-positive. We prove this conjecture in Theorem 2 by expandmg G in terms of ribbon Schur
functions. We further show that a refinement of Schur-positivity to fixed canopy holds in Theorem 3.

We apply our results to hyperplane arrangements and local binary search trees in Theorems 4, 5 and 6.

EXAMPLE AND EXPANSION

If T is the tree

3
7/ \7
/N \
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4

then wt(T') = a1a3b1by and x7 = $QZE§$4CE%.

Let B,, be the coefficient of 2" /n! in B, and let G,,
be the degree n component of G.

HYPERPLANE ARRANGEMENTS

Specializations of B,, yield the number of regions
in deformations of the braid arrangement.

B,(1,1,1,1) = n!Cat(n)

= #regions in Catalan arr.
B,(1,1,1,0) =(n+1)" !

= #regions in Shi arr.
B,(1,0,0,1) = #regions in Linial arr.
B,(1,¢6,¢5 ", 1) =7Fregions in Semiorder arr.

Theorem 4 The specialization G, (1, (g, (5 ', 1) is the
Frobenius characteristic of the symmetric group action
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SCHUR POSITIVITY

Let H(z) = ano h,z". In unpublished work [1], Gessel proved that G satisties the functional equation,
z” Th 1 1
Z B alv a2, b17 b2) eorem 1 (Gessel)
n!
n>1 (1+a1G)(1+ byG)
(14 a2G)(1+b:G) ((a1b2 — asb1)G + (a1 — ao L+ b)),

thus proving G is symmetric in the x; variables, and he conjectured that it is Schur-positive.

JrT = Z G, Theorem 2
n>1 G = Z Z Ta(aleG + a1 + b2)n—€(a) (CLleG + Q9 + bl)é(a)—l.

n>1 aFn

rasc(T) rdes(T) blaSC(T) bldeS(T) He COI’I]eCtUI'ed that

Corollary 1 G is Schur-positive. In particular, G expands positively in terms of ribbon Schur functions with
COEIﬁCiBYltS nm N[a1 -+ bg, a9 + bl, al bg, CLle].

FIXED CANOPY

Theorem 3 For any fixed canopy v of length n — 1, let G, ,, be the weighted sum over labeled trees on n nodes
with canopy v. Then G, , is Schur-positive.

Bs = 1((a1 + b2)* + a1be)
+ 2((a1 + b2) (a2 + b1) + a1b2) In order to prove Theorems 2 and 3, we define a weighted extension of the Push-Glide algorithm of
+2((a1 + b2)(as + by) + asby) Préville-Ratelle and Viennot [2] to relate labeled paths and labeled trees while keeping track of weights.
+1((ag + b1)? + agby)

(4 (5,
(5, ). e (5, ) RO OO
@ 3 @ & g 9 B, 2 ® , @ ® Q 2 & 4 2\ » @ P

o — gP(jPP(jPQQ PGPPGPGG u' = GPPGPGG = PPGPGG

on the regions of the semiorder arrangement given by
permuting coordinates.

v=POSITIVITY

Let f, r be the number of standard local binary
search trees on |n| with k£ — 1 right descents.
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Theorem 6 For n > 1, the distribution of right de-
scents over the set of standard local binary search trees
on n nodes is y-nonnegative. As a corollary, the se-
quence of coefficients { fy, k }x>1 15 unimodal.

Theorem 5 The specialization G, (ay1,0,0,1) is the
Frobenius characteristic of the S, -action on Bernardi
trees [3], graded by number of right children.
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This summer, 1 spent eight weeks studying mathematics in the Budapest Semester in Mathematics program. Hungary is highly regarded for specializing in combinatorics, the branch of mathematics
that I intend to pursue in graduate school; 1 was greatly appreciative of my opportunity to study in an environment focused and prominent in advancing the field. 1 took classes in combinatorics and
number theory, and audited the “infamous” Conjecture and Proof problem solving course. In Number Theory, 1 was able to apply my background in abstract algebra and field theory developed at
Santa Clara to the study of integers, modular arithmetic, and the exploration of prime numbers. In Advanced Combinatorics, our combinatorial structure of focus was hypergraphs, and many of the
proofs we crafted included arguments using extremal theory, probabilistic method, linear algebra, and (almost daily) the pigeonhole principle. Having taken combinatorics and graph theory at Santa
Clara in preparation for this course, I was excited to extend my knowledge of discrete mathematics as I set myself up to continue studying and researching in these fields.

Pigeonhole Principle

Preliminary Idea : Given n pigeons and n — 1 pigeonholes, there exists at least one hole

Introduction to Ramsey Theory

Ramsey theory studies combinatorial structures and 1s interested in the size needed to ensure that an

Deeper Problems

substructure with a desired property is contained within the disorganized structure. Typically applied to with at least two pigeons. R(3 3, 3) < 17 : Goal 1s to ‘dlléll}'Z(.‘ all HI’})ltl'al’}' 3-(.‘()1()1’111g of the (*dg(.‘s of K 17 and find
Generalized : Given N pigeons and k& pigeonholes, there exists at least one hole with at

least [2-] pigeons.

a monochromatic K5.

graphs and hypergraphs, Ramsey theory can be extended to the general philosophy ; ; PR - . : :
Pick vertex v € V(K;7). which is connected to 16 other vertices with edges that are either

“There is no total chaos.” Ramsey Case : Given 2n — 1 pigeons and 2 pigeonholes, one hole will have at least n pi- : : : B : | - ,
. , , i , L , , B = N The idea of stuffing pigeons into red. blue. or green. Given 16 edges and 3 colors. fl-;-’ = 6. so by PHP there exists a color.
In other words, given a large enough disorganized system, it is certain that it will contain an organized SR L | . _ | holes sounds trivial, but PHP is a : : : ' . : .
hevst Proof : With 2n — 1 pigeons and 2 holes, we can find a hole with at least the following powerful counting argument say red, such that v is connected to six vertices by red edges. Looking at those six vertices,
subsystem. el S . : . 3 | i B | :
Y number of pigeons: i : implemented in profound proofs either there exists a red edge connecting two vertices, and thus we have found a red Kj.
vati on: ' e N e y o spanning a variety of branches of : . : . R
Motivating Question: How many people do you need to ensure that among them there exist three who === h=sl=n panniing % or no red edges exist. If no red edges exist among those six vertices. then the K induced

mathematics - set theory, number T : 5
Considering only 2n — 2 pigeons. we are not guaranteed a hole with n pigeons, since theory, analysis, and others (see Slll)gl'apll 1s 2-colored., and because R(3) = 6. we can conclude that either blue or green
supplemental materials for

are all friends with one another or three who are all strangers with one another?

monochromatic K3 exists among those vertices.

2n — 2_ : e
Graph Theory Backeround i probiemsand proofsapplying )
2 PHP). Ramsey’s work was an “ o
: . : S g . . . xtension of the pigeonhol '
Thus. with only 2n — 2 pigeons, it is possible for neither hole to hold n pigeons. © te. sion of the pigeonhole * e
G -y - Rk s 3 1 lat; WY " principle, and thus PHP has a v v
e | * ¢ ~ . Al el A LS < i € OO0 4 ¢ N all QeI ¥ O A TS . . .
raph : A graph, (. 1s a set of vertices, a set of edges, and a relation assigning two vertices ?\\ ?\ ,@x \ 2 natural application to studying ‘s \, !
to each edge. Fa N N A RA Ramsey numbers. " “
< Giia : : 4 s
Subgraph : : A subgraph of a graph G is a graph contained in GG (subset of vertex set. O O O O Ve Vs %
subset of edge set, same relation connecting vertices by edges as in G). R(n) > (n — 1)? : Idea is to show that there exists a 2-coloring of K,,_,): that does not

Complete Graph : A complete graph. K,,. is a graph on n vertices with the property that
each pair of vertices is connected by an edge. Note, K, has () edges.
2 — coloring : An arbitrary assignment of two colors, usually red and blue, to a collection

of items (e.g. vertices or edges of a graph)

contain a monochromatic K.
Proceeding by construction, partition K,_1)2z into n — 1 parts each containing n — 1 vertices.

Color the edges within each part red, and the edges connecting vertices in different parts

M h S : 1 , hich } S——— l A B A & blue. To achieve a red K, requires one more vertex than contained in one part, and so one
ﬁ S Onllat‘f ; n - ‘“‘l“p;]“ g‘,“‘l? ‘;“ 4 ‘“_“t““f“ oo t““‘ 2 ""‘ g “l‘ the ”‘l‘“““ i ‘z; Goal: Show that given any arbitrary 2-coloring on a collection would need to venture beyond one part which picks up a blue edge. To achieve a blue K,
ergrapi : ! iypergrapii, - s . CONsSISts oI a vertex set and an edge set / 8 . : . » . . . . o3 A .

IDE T YPEIETel (. ) 0 &% * of size six, there will exist an organized subsystem of size three. ¢ & F . would entail selecting one vertex from distinct parts, and so cannot happen with only n — 1

where E is a collection of subsets of V. Showcased bv examples: : : : : g :
: . . y ples: parts. Thus, this coloring of K, ;)2 contains no red or blue K.
Below, examples of monochromatic complete graphs, and a hypergraph (just for fun): S ‘ . . ]
B P E D R(3.4) 29 < R(3.4) > 8 : Idea is to show that there exists a 2-coloring of Ky that
) Party Problem Proof: ABFE & ANED B ‘ . : ‘ : ; ‘
\ m - : does not contain a monochromatic blue K; or monochromatic red K.
\ Q Our first goal 1s to show that among every group of 6 people there are 3 mutual friends or 3 mutual T
’ ’ strangers. Let's consider person A - who i1s either friends or strangers with the remaining five people. o Ke o BLUE Ko
Placing five people into two buckets, by PHP we are guaranteed at least three people in one of the (n-)
’ ’ - ¢ . ‘ buckets.
o, Thus, we know that person A 1s either friends with at least three people or Nerhices Count-:
7 . 2
P strangers with at least three people. (n-1) =(vJ\\-\‘)(n‘;D
.. \ Case 1: Person A 1s friends with three people. Among those three people, if any s, e
D eﬁnltl On Of Rams e ‘\ ‘ umb ers an d ? \)E two people are friends, then we have found three mutual friends. If none are “ # &
y 6" ____-\zc__J friends, then we have found three mutual strangers. \—/‘\(/\/
Frigndoniin smassus Case 2: Person A 18 strangers with three people. Among those three people, 1t "D arts

any two people are strangers, then we have found three mutual strangers. If
none are strangers, then we have found three mutual friends.
In both cases, we have either found three mutual strangers or three mutual friends, and we are done.

Theorem of Existence

Ramsey Number : Let n;,n, € N. Define R(n;.n2) = m to be the smallest integer

Bibliography

such that given an arbitrary 2-coloring of the edges K,,. there exists a monochromatic com- Graph Theory Proof : Given an arbitrary 2-coloring of the edges of Ky, select vertex
plete subgraph of K, on n; or n, vertices (1.e. monochromatic K,,, or K,, contained in any v € V(Kg). Since there are 5 edges (pigeons) and 2 colors (holes), by PHP v is connected Andras Gyarfas “Advanced Combinatorics Handouts” Budapest Semester in Mathematics
random 2-coloring of K,,). Note, we often denote R(n,n) as R(n). . ast v vertices bv either re - sy edoes 7 Y cav the ninate 1S : : : :
g m . to at least 3 other vertices by either red or blue edges. WLOG. sayv the dominate color is Attila Sali - Advanced Combinatorics Lectures, BSM CO2, Summer 2019
_ 3 red. Among the three vertices connected to v by red edges, either there exists a red edge : : : : :
Ramsey Existence Theorem (for Graphs) : Assume that n,.n, € N. There exists an : © = McGinley, Tamsen - Discrete Mathematics and Combinatorics Lectures, MATH 51&176, Fall 2018

and we've found a monochromatic K3 in red, or there do not exist any red edges and we've

found a monochromatic K; in blue. Scott, Rick - Graph Theory Lectures, MATH 177, Spring 2019

integer R(n;.n2) = m such that if the edges of K,, are colored red and blue any fashion.

then there exists a monochromatic Ky, or K,,. Further Reading on Ramsey Numbers -- http://mathworld.wolfram.com/RamseyNumber.html
Ramsey Existence Theorem (for Hypergraphs) : Assume that n.t € Z satisfying A ) “ r , Thank you tO. the REAL Progr.am and. the Depal:tl.nenF of Mathematlcs and
n < t. There exists an integer m (depending on n.t) with the following property: if the v . The tWO P roqfs above only give a.n upper bound, o(Zomputer SC.l ence.for supporting me in my participation in the Budapest Semester
edges of K! are arbitrarily 2-colored, then there exists a monochromatic K (i.e. n vertices v — v BVTf, Sh.OWIH_lg R(3) < 6. TQ prove eguahty, must show in Mathematics this summer.
with all the (’t') edges determined by them having the same color). K A e k(3) f"’ - The 2-coloring Ott K5 as ConSthteq
: contains no monochromatic K, thus showing that
Some Ramsey numbers are known, some are bounded, and most are beyond human capacity to calculate - v 6 must be the smallest number of vertices required
regardless, they exist! Paul Erdds, a renowned and incredibly prolific Hungarian mathematician, once Vo Bubi, to ensure the existence of a monochromatic K.
commented on finding R(5) and R(6): e
.
“Suppose aliens invade the earth and threaten to obliterate it in a year's time unless human beings X i

can find the Ramsey number for red five and blue five. We could marshal the world's best minds
and fastest computers, and within a year we could probably calculate the value. If the aliens
demanded the Ramsey number for red six and blue six, however, we would have no choice but to
launch a preemptive attack.”
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One Of Many Cases

Perforated Tableaux

An Example: Perforated Tableaux and e_i Operator

Proof of one case of Axiom 2

The following definitions explain perforated tableaux (1) as combinatorial objects of study. Left
justification (2) is described as a process which moves content within the layout of the perforated tableau

As an example, examine the perforated tableau *T and calculate €2(*7). I. Let j <iandm; <m,

(a) Assume j < i — 1. Examine first the movement of content on the LHS, e;e;(*T). Since row i is

while continuing to satisfy column strictness. The map e_i (4) describes how content and blanks swap in (T112 12 bel . L Rt 3 S e : 8
the original tableau *T in the resulting tableau e_i(*T). Notation is included in this discussion to account for =] “ro. 3 112 | 2 3 chass 100“* J: "01 0 t Justl cat"lon ;)Cclmf: n ‘_0“ tn ‘lj( ) e the content layout remains as
the running count, maximum count, and left most maximum column, which all play an important role in | 1122 3 [ 7 ] — it was in "I’ Thus, n i remains the leli-most max column in e;("T).
determining how e_i acts on *T and consequently in verifying the Stembridge Crystal Axioms. | 3133 1|1 3 |9 |3 Next examine the RHS, ¢;e;(*T). Since m; is positioned to the left of m;, the left justification of
: ¢i("T') does not impact column m;, and so the content layout remains as it was in *7". Thus, m;
(1) Perforated Tableaux 1yl 2)2)3)414(4) remains the left-most max column in *e;(*T).
DEFINITION:  An rectangular tableau T € PTab, will be called a perforated tableau if: | | | | (b) Assume j =i — 1. Examining the LHS, ¢;(e;(T")), we have the following layout:
o o After analyzing the running count, we can determine the max countin row 2, €59 = 2 | - o e :
1. All entries in T are positive, or left blank (unfilled, denoted []). _ mj|« - | m; mj|e - - |m;
The left most max column is then found to be the fourth column, so my = 4.
2. Positive integer content weakly increases in rows of T and strictly increases in columns of T. Therefore, when €2 is applied to *T, content in row 3 column 4 will swap up into row two AR J U |sn2 S (*T) : J A [BX
’ ’ ' S r =3 W
. s gy . . i k|- b i bl b
3. For each i € [n], the i’s appearing in T form a horizontal strip. ma2 SR :
I { l I I l . g0 xh o0 i i+ oo £ i+1 vos] £
4. If i,3 € |n| and © < j, every element in a horizontal stri 1 ’s lies outside the northwest shadow | oo W . = . S
: f_l' s ["]. s, el B ,m 8. faonesoninl iy o J:9;es oxtatie - Ble nonkunest sugouso) 2 1112 L1222 By Axiom 1 Case 2, we know that the impact of ¢; on ¢;(*T) resulted in contributing one to the
any entry in the horizontal strip of i’s. = | . . ' e , : ) RN : .
11212 2 (T M|1|2](2 3 running count in row . Since there is a blank in row i column m;, left justification of row j+4+1 =i
5. T has no column entirely composed of blanks (rows of all blanks are allowed). | L@ 33 > @ 1 31313 in ¢;(*T) terminates before or at column m;. This implies that the addition to the running count
(2) Left-Justification T[1(2|2(3[4]4[4 1111221344 ;uftrow ftlu ¢ j(T)l COllt?‘lb}lt(‘St ; +lg .to t-lfe I;lax .cou.nt tll.t c;)lzlum‘l m; , z;n;l honlcet lmf,t 1011:&;115 Fhe
DEFINITION:  Given some ptableau, T, we shall let *T denote the unique ptableau row equivalent to T in eft-most max column in "e;("T'). Since content in row i + 1 does not shift under left justification

of €;("T), ei(e;("T)) moves the same content as e;(T').
Examining now the RHS ¢;(e;(*T)), we first have content in column m; swapping. By hypothesis,

- - €i(ei(*T)) = €;(*T'), which implies that the addition of content into row ¢ = j+1 does not increase
te m l 1 ge I y Sta Xl O m S the maximum count in row j. Therefore, m; remains the left-most max column in row j. Content

in column m; is unaffected by left justification of ¢;(*T") since it is positioned to the left of m;,

which row content is moved as far to the left as possible, the “left-justified form”™ of T. The process of left
justification of a ptableau begins by shifting content to the left in the bottom row first. then moving sequentially
to higher rows.

Left justification of the ptableau T in the previous example vields the following. First the 1's in row 1,

the horizontal strip of 2’s remain fixed, then the 3 in row 3 slides left and the 4’s in row 4 slide as far left as Andl s contenk swapped. it cotumn fny Ancer €, e * 1)) tho aanic s thak swappecin ey (*T).
possible. Each step avoids violating column strictness. Axiom 2.1 SO. If e,i(T) = NULL, then fi(T) = ()
BE 111 1 T1 1 T1 Therefore, for j < i and m; < m;, we have e;(e;(T)) = e;(e;(T)).

Ti= = = s e Axiom 2.2 S1. Wheni,j €I andi # j, if T € PTab and e;(T') # NULL, then either €;(e;(T)) = €;(T) or

1 2|2 | 2.2 1 2|2 1]1 2|2 ei(e;(T)) =€ (T) + 1

22 (2] [3 2 |2 12223 1[2[2[2][3 S : | C 1 Sub

2 ' . o | rysta ubstructures
3|3 4|4 3 4 3 4|4 33|44 AxioMm 2.3 S2. Assume that i,5 € [ and i # j. If T € PTab with ¢;(T) > 0 and €;(ei(T)) = €;(T) > 0,

then eje;(T') =e;ei(T) and di(e;(T)) = ¢i(T).

(3) Covering Blanks and Covered Blanks + 1
DEFINITION: In a ptableau T, if a blank ts in row i with content directly below it, we say the blank is a AXIOM 2.4 53. Assume thati,j € I andi# j. If T € PTab with e; (e:i(T)) = €5 (T')+1>1 and fz‘(ej (T)) = 17 : > i
covering blank in row i (the blank is covering content). If, however, a blank in row i + 1 lies directly under &(T)+1>1 then e; e%ej (T)i= e.iejz-e.,;(T) # 0, and ¢;(e;(T)) = gb.i(e?e.i(T)) and ¢;(ei(T)) = ¢; (e?ej (T)) 2 / \
content in row i, we shall call the blank a covered blank of row i + 1 (the content covers the blank). With €1 T T
this, let 1]2

X e i o g G e w g ) , : | :
= l(J) = The number of covering blanks of row i in columns 1 through j Theorem. Perforated tableaux Wlth the e_l OperatOl‘ form q 11 1
and similarly =l 1 aE

combinatorial model for crystal structures that satisfies the
Stembridge Crystal Axioms.

€1

%( k) = The number of covered blanks of row i+1 in columns 1 through k

(4) Themap,e.i

DEFINITION: Given some i, for 1 < i < n, we define a map e; : PTab,, — PTab, U{NULL} as follows:
Suppose T' as colr-many columns.

Working from the left-justified form *T and reading the columns of *T from left to right, we intend to
count the number of covering blanks up to column j against the number of covered blanks up to column j—1.
Set C(Z5 — i%)("T, 1) =0 and then up to column j define

Axiom 2 shown above

Axiom 3 shown to the right 1
1] |
2] |

In the square diagram. we can examine Axiom 2 in action. Taking the tableau at the bottom to be *T,
we calculate e2(*T) = 1 and €3(e;("T)) = 1. Then by Axiom 2, we know that ey(ea2("T)) = ea(er("T)).
Similarly in the figure eight diagram we can observe Axiom 3. Again taking the tableau at the bottom as
the original *T', we have

X i ]
o
(a+l X X

)(“T.5) = (ii'l(f) -

(.-i—l)).. forj > 1

Then let

e(*T) =1 and ¢(*T) =1
€1(e2("T)) =2 and (e, ("T)) = 2

Therefore, since €;(e2(*T)) = €, (*T)+1 > 1 and €;(e,(*T)) = €(*T) +1 > 1, we conclude that e;efe;(*T) =
2 .
ejece;(*T).
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X ——)*T)= max C s J
(25 -0 = max, O - )(T.i)

and finally, set

m; = min{k : C(- : i)(*T) = C(i l o ’i‘

J("T, k)}

e.+l_‘\'

If in column m; there is a blank in row i and content in row i + 1, then e;(T) s the perforated tableau
obtained from *T by swapping the blank in row i of column m; with the content in row i + 1, column m;. In
all other cases, we let ¢;{(T) = NULL.

It is important to note that the effect of ¢; on a ptableau is to move content from row ¢4 1 up into row ¢ by

swapping the tiles creating a covering blank in the ptableau, when possible. We refer to C'( ?4'-L1 - i)( T3 Interesting pr_oblem to work on. _ _ _
or more simply denoted y;(*7,j). as the "running count” in row i of *T up to column j, as it keeps a Figure of three models representing the same crystal: words (left), tableaux (middle), and perforated tableaux (right) [ would also like to thank Dr. Naomi Andrews and Claire Shaw for their
tally of covering blanks against covered blanks at each previous column. The "maximum count” in row i is (Appleby&McGinley) leadership in the University Honors Program, and their mentorship and support

S e i}( *T), also denoted ¢;, and occurs first in m;, the "left-most max column.” over the past four years.



