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INTRODUCTION
In the 90’s, Gessel introduced the following generating function,
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summing over standard labeled binary trees, and its multivariate generalization,
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G is Schur-positive. We prove this conjecture in Theorem 2 by expanding G in terms of ribbon Schur
functions. We further show that a refinement of Schur-positivity to fixed canopy holds in Theorem 3.
We apply our results to hyperplane arrangements and local binary search trees in Theorems 4, 5 and 6.

EXAMPLE AND EXPANSION
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Let Bn be the coefficient of xn
/n! in B, and let Gn

be the degree n component of G.

B3 = 1((a1 + b2)
2 + a1b2)

+ 2((a1 + b2)(a2 + b1) + a1b2)

+ 2((a1 + b2)(a2 + b1) + a2b1)

+ 1((a2 + b1)
2 + a2b1).

G3 = r(3)((a1 + b2)
2 + a1b2)

+ r(2,1)((a1 + b2)(a2 + b1) + a1b2)

+ r(1,2)((a1 + b2)(a2 + b1) + a2b1)

+ r(1,1,1)((a2 + b1)
2 + a2b1).

SCHUR POSITIVITY
Let H(z) =

P
n�0 hnz

n. In unpublished work [1], Gessel proved that G satisfies the functional equation,

Theorem 1 (Gessel)

(1 + a1G)(1 + b2G)

(1 + a2G)(1 + b1G)
= H((a1b2 � a2b1)G+ (a1 � a2 � b1 + b2)),

thus proving G is symmetric in the xi variables, and he conjectured that it is Schur-positive.
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Corollary 1 G is Schur-positive. In particular, G expands positively in terms of ribbon Schur functions with
coefficients in N[a1 + b2, a2 + b1, a1b2, a2b1].

FIXED CANOPY
Theorem 3 For any fixed canopy v of length n � 1, let Gn,v be the weighted sum over labeled trees on n nodes
with canopy v. Then Gn,v is Schur-positive.

In order to prove Theorems 2 and 3, we define a weighted extension of the Push-Glide algorithm of
Préville-Ratelle and Viennot [2] to relate labeled paths and labeled trees while keeping track of weights.
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HYPERPLANE ARRANGEMENTS

Specializations of Bn yield the number of regions
in deformations of the braid arrangement.

Bn(1, 1, 1, 1) =n!Cat(n)

=#regions in Catalan arr.

Bn(1, 1, 1, 0) = (n+ 1)n�1

=#regions in Shi arr.
Bn(1, 0, 0, 1) =#regions in Linial arr.

Bn(1, ⇣6, ⇣
�1
6 , 1) =#regions in Semiorder arr.

Theorem 4 The specialization Gn(1, ⇣6, ⇣
�1
6 , 1) is the

Frobenius characteristic of the symmetric group action

on the regions of the semiorder arrangement given by
permuting coordinates.
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Theorem 5 The specialization Gn(a1, 0, 0, 1) is the
Frobenius characteristic of the Sn-action on Bernardi
trees [3], graded by number of right children.

�-POSITIVITY
Let fn,k be the number of standard local binary
search trees on [n] with k � 1 right descents.

Theorem 6 For n � 1, the distribution of right de-
scents over the set of standard local binary search trees
on n nodes is �-nonnegative. As a corollary, the se-
quence of coefficients {fn,k}k�1 is unimodal.
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Introduction to Ramsey Theory
Ramsey theory studies combinatorial structures and is interested in the size needed to ensure that an 
substructure with a desired property is contained within the disorganized structure. Typically applied to 
graphs and hypergraphs, Ramsey theory can be extended to the general philosophy 

“There is no total chaos.” 
In other words, given a large enough disorganized system, it is certain that it will contain an organized 
subsystem. 
Motivating Question: How many people do you need to ensure that among them there exist three who 
are all friends with one another or three who are all strangers with one another? 

Definition of Ramsey Numbers and 
Theorem of Existence

Some Ramsey numbers are known, some are bounded, and most are beyond human capacity to calculate - 
regardless, they exist! Paul Erdős, a renowned and incredibly prolific Hungarian mathematician, once 
commented on finding R(5) and R(6):

“Suppose aliens invade the earth and threaten to obliterate it in a year's time unless human beings 
can find the Ramsey number for red five and blue five. We could marshal the world's best minds 
and fastest computers, and within a year we could probably calculate the value. If the aliens 
demanded the Ramsey number for red six and blue six, however, we would have no choice but to 
launch a preemptive attack.” 

Graph Theory Background

Proving R(3) = 6
Goal: Show that given any arbitrary 2-coloring on a collection 
of size six, there will exist an organized subsystem of size three. 
Showcased by examples:

Party Problem Proof: 
Our first goal is to show that among every group of 6 people there are 3 mutual friends or 3 mutual 
strangers. Let's consider person A - who is either friends or strangers with the remaining five people. 
Placing five people into two buckets, by PHP we are guaranteed at least three people in one of the 
buckets. 

Thus, we know that person A is either friends with at least three people or 
strangers with at least three people. 
Case 1: Person A is friends with three people. Among those three people, if any 
two people are friends, then we have found three mutual friends. If none are 
friends, then we have found three mutual strangers.
Case 2: Person A is strangers with three people. Among those three people, if 
any two people are strangers, then we have found three mutual strangers. If 
none are strangers, then we have found three mutual friends.

In both cases, we have either found three mutual strangers or three mutual friends, and we are done.

This summer, I spent eight weeks studying mathematics in the Budapest Semester in Mathematics program. Hungary is highly regarded for specializing in combinatorics, the branch of mathematics 
that I intend to pursue in graduate school; I was greatly appreciative of my opportunity to study in an environment focused and prominent in advancing the field. I took classes in combinatorics and 
number theory, and audited the “infamous” Conjecture and Proof problem solving course. In Number Theory, I was able to apply my background in abstract algebra and field theory developed at 
Santa Clara to the study of integers, modular arithmetic, and the exploration of prime numbers.  In Advanced Combinatorics, our combinatorial structure of focus was hypergraphs, and many of the 
proofs we crafted included arguments using extremal theory, probabilistic method, linear algebra, and (almost daily) the pigeonhole principle. Having taken combinatorics and graph theory at Santa 
Clara in preparation for this course, I was excited to extend my knowledge of discrete mathematics as I set myself up to continue studying and researching in these fields. 
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Pigeonhole Principle Deeper Problems

The two proofs above only give an upper bound,     
showing                To prove equality, must show              
.             The 2-coloring of        as constructed 
contains no monochromatic        ,  thus showing that 
6 must be the smallest number of vertices required 
to ensure the existence of a monochromatic      .

The idea of stuffing pigeons into 
holes sounds trivial, but PHP is a 

powerful counting argument 
implemented in profound proofs 
spanning a variety of branches of 
mathematics - set theory, number 
theory, analysis, and others (see 

supplemental materials for 
problems and proofs applying 
PHP). Ramsey’s work was an 
extension of the pigeonhole 

principle, and thus PHP has a 
natural application to studying 

Ramsey numbers.

http://mathworld.wolfram.com/RamseyNumber.html
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One Of Many Cases
Proof of one case of Axiom 2

An Example: Perforated Tableaux and e_i Operator

Figure of three models representing the same crystal: words (left), tableaux (middle), and perforated tableaux (right) 
(Appleby&McGinley)

As an example, examine the perforated tableau  *T and calculate 

0 0 1 2 2 1 1 2 2

After analyzing the running count, we can determine the max count in row 2, 
The left most max column is then found to be the fourth column, so
Therefore, when        is applied to *T, content in row 3 column 4 will swap up into row two.  

The following definitions explain perforated tableaux  (1) as combinatorial objects of study.  Left 
justification  (2) is described as a process which moves content within the layout of the perforated tableau 
while continuing to satisfy column strictness.  The map e_i (4) describes how content and blanks swap in 
the original tableau *T  in the resulting tableau e_i(*T).  Notation is included in this discussion to account for 
the running count, maximum count, and left most maximum column, which all play an important role in 
determining how e_i acts on *T and consequently in verifying the Stembridge Crystal Axioms. 

(1) Perforated Tableaux

(3)      Covering Blanks and Covered Blanks

(4)     The map, e_i

(2)     Left-Justification

Theorem: Perforated tableaux with the e_i operator form a 
combinatorial model for crystal structures that satisfies the 

Stembridge Crystal Axioms. 

Crystal Substructures

Axiom 2 shown above
Axiom 3 shown to the right


