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Abstract

We define a filtered simplicial complex associated to the superlevel sets
of a sum of weighted Gaussians kernels f(x), with uniform scale parameter
h > 0. Regarding f as a kernel density estimator of a data set D ⊂ Rm,
we obtain a method for filtering persistent homology by density in low or
high dimensions. On the other hand, we also see that our construction
can be highly visually descriptive.

1 Introduction

Let f : Rm → R>0 be a sum of Gaussian kernels with uniform scale param-
eter h > 0 and positive coefficients ai > 0, centered at a collection of points
{x1, ..., xN} ⊂ Rm:

f(x) =

N∑
i=1

aiK(‖x− xi‖/h), K(r) = exp(−r2/2).

When the coefficients are all constant, f(x) is a standard kernel density esti-
mator for the collection D = {x1, ..., xN}, regarded as a point cloud in Rm.
In order to ensure that our proposed constructions ends up being finite, we
restrict ourselves to a bounded domain such as A = f−1[d0,∞), which is the
set of points with density value greater than some chosen cutoff d0 > 0. A
two-dimensional example coming from a well-known species distribution data
set is shown in Figure 2.1, which will be used as a running illustration.

We consider the problem of approximating the “landscape” of f(x) by the
data of a filtered simplicial complex. A filtered simplicial complex is a pair
(X,w) consisting of a simplicial complex together with together with a weight
function w : X → R whose sublevel sets X(a) = w−1(−∞, a] are subcomplexes.
The function w is a discrete approximation of f , which is reparametrized by the
direction-reversing function a = − log(d), so that higher weight corresponds to
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lower density. Thus, each sublevel set X(a) corresponds to the density superlevel
set f−1[e−a,∞).

In terms of persistent homology, such a complex would be said to be “filtered
by density” as opposed to other constructions such as Vietoris-Rips, which filter
by distance. One advantage to filtering by density is that while distance based
complexes such as Vietoris-Rips are stable under perturbation, they are sensitive
to outliers. As a result, it is often necessary to remove low-density points as
a preprocessing step. In density based methods, this would be unnecessary
because the weight function is itself a measure of sparsity.

The primary issue with filtering by density, or sublevel sets in general is that
the size of the complex tends to blow up combinatorially in higher dimensions.
In the case of sums of Gaussians for instance, it is shown that the number
of critical points, which are a natural candidate for the vertices of the com-
plex, may be larger than the data set in higher dimensions [13] (the extra ones
are called “ghost modes”). Thus, the problem of selecting vertices requires a
well-suited criteria for selecting landmark points. Unlike many other persistent
homology constructions, our landmark selection scheme is critical to the main
construction, and we expect it will be of independent interest.

We summarize our proposed method, which proceeds in several steps:

1. Fix a parameter 0 < s < 1 which controls the number of vertices, and a
bounded domain A, which will be called the reference set. In theory, A
may be taken to be f−1[d0,∞) as above, but in practice it may be taken
to be points in the data set itself, or some other finite set.

2. Using a particular algorithm, generate a function which is a max of Gaus-
sians with the same scale parameter, but different weights and centers

g(x) = max
i
biK(‖x− zi‖/h),

which satisfies g(x) ≤ f(x) ≤ s−1g(x) for all x ∈ A. The centers {zi} are
the desired landmark points.

3. Realize w(x) = − log(g(x)) as the weight function of a power diagram,
also known as a shifted Voronoi diagram, with centers {zi}, and powers
given by pi = −2h2 log(bi). Form the nerve of the corresponding covering,
denoted by X = DensAlpha(f,A, s).

4. Form the continuous map φ : |X| → |Sd(X)| → Rm which is linear on
the barycenteric subdivision whose value on a vertex [σ] ∈ Sd(X)0 is
the unique minimizer qσ of w on any nonempty intersection in the power
diagram, as defined in [5].

5. Define a filtered complex Y = SubDens(f,A, s) so that Y (a) is the maxi-
mal subcomplex of X with the property that |Y (a)| → |Sd(Y )(a)| → Rm
is entirely contained in f−1[e−a,∞). In practice, we will compute a
closely related complex denoted DensWit(f,A, s) using only the values
of − log(f(x)) at the barycenters qσ.
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Finding the function g(x) from item 2 is clearly a critical step, which is described
in Algorithm 1 below. While the algorithm itself is a straightforward search,
it exploits a crucial fact given in Lemma 3.1 below: for any postively weighted
sums of Gaussians f(x) and any point y ∈ Rm, there exists a unique weighted
Gaussian gy(x) = bK(‖x− z‖/h) with the same scale parameter, satisfying

gy(x) ≤ f(x), gy(y) = f(y).

The center point z turns out to be an explicit convex combination of the points
{xi}, whose coefficients are determined by fitting f(x) to first order at y. An
example of the resulting function for the species distribution example is shown
in Figure 3.2. The resulting complexes are shown in Figure 3.4.

The reader may also note that the computation of alpha complexes in higher
dimension is not a straightforward computation. We have created our own
algorithm based on dual quadratic programming which is mentioned in Section
2.4, and left for a separate paper.

Let A = f−1[e−a,∞) be the superlevel set and let Y = SubDens(f,A, s) for
some choice of s. Recall that we are reordering the filtration value according to
the above filtration so that density is given by e−a, and let us set ε = − log(s).
In Section 3.2 we prove the following theorem, which shows that the three spaces
are interleaved above the minimum density cutoff, showing that their persistent
homology groups approximate each other in a certain sense [7]:

Theorem A. The above complexes fit into a sequence of continuous maps

H∗(X(a))→ H∗(Y (a))→ H∗(f
−1[e−a,∞))→ H∗(X(a+ ε))

for a ≤ − log(d0), which form an interleaving on their domain of definition.

In Section 4, we present examples of persistent homology computations, as
well as graphical illustrations in low dimensional coordinate systems. Our higher
dimensional examples include a data set of simulated states of the Ising model
from statistical mechanics associated to certain graphs, and an analysis of local
patches in the MNIST data set, in the same spirit as the study of natural images
of [16]. In each case, a low-dimensional projection of the one-skeleta show visibly
recognizable topological features, such as the low energy landscape in several
instances of the Ising model, as well Klein bottle related shapes such as the
Möbius strip appearing in the case of MNIST.

1.1 Acknowledgements

Both authors were supported by the Office of Naval Research, project (ONR)
N00014-20-S-B001.

2 Notation and preliminaries

We summarize some preliminary definitions and notation, including the defini-
tion of the alpha and witness complexes.
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2.1 Kernel density estimation

Let D ⊂ Rm be a point cloud data set of N vectors in Rm. A Gaussian kernel
density estimator is a sum of the form

f(x) =

N∑
i=1

aiρ(x, xi), ai > 0 (1)

where
ρ(x, y) = K(‖x− y‖/h), K(r) = exp

(
−r2/2

)
.

We will be interested in the restriction of f(x) to a bounded domain A, such
as the superlevel set regions A = f−1[d0,∞) for some lower bound on density
d0 > 0. We will often use the notation D≥d0 = D ∩ f−1[d0,∞) to denote the
subset of the data set whose density is at least d0. Unless otherwise specified, if
D = {xi} is a data set of size N , the weights ai will be assumed to all be 1/N .
We are not including a standard volume normalizing term, because we would
like the value of f(x) to depend only on distance within the data set, and not
directly on the embedding dimension.

For simplicity we will assume that the norm is always the usual L2 met-
ric, as other quadratic forms may be converted into this form by a change of
coordinates. The following example will be referred to in several parts below.

Example 2.1. Figure 2.1 shows a well known species distribution data set from
[21]. The data points on the left show locations of two South American mam-
mals, namely 1536 instances of “Bradypus Variegatus,” the Brown-throated
Sloth, and 88 instances of “Microryzomys Minutus,” the forest small rat. On
the right is the corresponding kernel density estimator of the combined data
set using a heat map on a log scale. We chose h to be one degree of lati-
tude, or about 69 miles. While in some cases it may make sense to assign
different weights to the different species, we took every coefficient to be equal
ai = 1/1624. The minimum density cutoff, which determines the boundary on
the density estimator shown on the right, is set to be d0 = .005.

2.2 Topological preliminaries and notation

We review some background and notation from computational topology. For
more details, we refer the reader to [15].

By a simplicial complex on n vertices we will mean an abstract complex,
which is a subset X ⊂ P({1, ..., n}) of the power set that is closed under taking
subsets. All homology groups H∗(X) are assumed to be taken over a field, which
will be suppressed unless a particular one is of interest. We will denote by |X| ⊂
Rn+1 the geometric realization, and by |σ| ⊂ |X| the corresponding subspace
for any simplex σ ∈ X. We denote by Sd(X) the barycentric subdivison, which
has an identification |X| = |Sd(X)|.
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Figure 2.1: On the left: the data set of species distribution of Bradypus Varie-
gatus (green) and Microryzomys Minutus (brown) from Phillips et al. [21]. On
the right: a corresponding kernel density estimator of the whole data set shown
as a heat map in log coordinates. The boundary is determined by the minimum
density cutoff.

Definition 2.1. A filtered simplicial complex is a pair (X,w) where X is a
simplicial complex, and w : X → R is a function with the property that X(a) =
w−1(−∞, a] is a subcomplex of X for all a.

For a ≤ b the persistence maps

ia,b∗ : Hk(X(a))→ Hk(X(b)) (2)

are the ones induced by the inclusion maps ia,b : X(a)→ X(b).

Definition 2.2. Given a ≤ b, the kth persistent homology group of a filtered
complex X, denoted Ha,b

k (X), is the image of ia,b∗ : Hk(X(a))→ Hk(X(b)).

In this paper persistent homology groups will be represented by barcode
diagrams generated by javaplex [1].

If U = {Ui} is a collection of n closed or open sets in Rm, then the nerve
X = Nerve(U) is the complex

X = {σ ⊂ {1, ..., n} : Uσ0 ∩ · · · ∩ Uσk 6= ∅} . (3)

The nerve theorem states that whenever U is a good cover, for instance one
whose members are convex sets Ui ⊂ Rm, then the resulting complex is homo-
topy equivalent to the union, denoted |U| =

⋃
i Ui.

Suppose that each Ui is convex, and choose representatives qσ ∈ Uσ, where
Uσ denotes the intersection in (3). Then we have a linear map Γ : |Sd(X)| → Rm
on the barycentric subdivision of the nerve, whose value on each vertex σ is qσ,
as in [5]. By convexity, it is clear that its image is contained in |U|. We will
denote by

φ : |X| → |Sd(X)| → |U| (4)
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the corresponding piecewise linear map on |X|. The following proposition is
Theorem 3.1 from [5]:

Proposition 2.1. If U is convex then Γ (and therefore φ) is a homotopy equiv-
alence, specifically the one from the nerve theorem.

They determine an explicit homotopy inverse, Φ determined by a partition
of unity subordinate to the cover associated to |Sd(X)|. An illustration of
Proposition 2.1 is shown below in the case when the cover comes from a power
diagram.

Remark 2.1. The proposition would not necessarily hold if U is only a good
cover. On the other hand, if U were a covering by balls, not just convex sets,
then we would have a map |X| → U induced by the centers, which is linear on
|X|, not just |Sd(X)|.

2.3 Alpha and witness complexes

Let L = {z1, ..., zn} ⊂ Rm be a collection of points, and let p : L → R be
a function. The values pi = p(zi) are called the powers. We have a function
w : Rm → R defined by

w(x) = min
i
wi(x), wi(x) = ‖x− zi‖2 − pi. (5)

Definition 2.3. The weighted ball cover BallCov(L, p) is the filtered family of
collections U(a) = {Ui(a)} for each a ∈ R, where

Ui(a) = {x : wi(x) ≤ a} .

Definition 2.4. The power diagram (see [3, 12]) denoted PowDiag(L, p) is the
collection of closed regions V = {Vi} where

Vi = {x ∈ Rm : wi(x) ≤ wj(x) for all j} .

The intersections will be denoted by Vσ = Vσ0
∩ · · · ∩ Vσk . It is filtered by

V(a) = {Vi(a)}, where Vi(a) = Vi∩Ui(a) is the intersection of the covering with
the corresponding balls. We will also denote by Vσ(a) the intersection of the
Vi(a).

When pi = 0 for all i, we obtain the usual Voronoi diagram. More generally,
the regions are all determined by linear inequalities, in other words are sepa-
rated by hyperplanes. In fact, they come from the intersection of true Voronoi
diagrams with a linear subspace, with the powers pi representing the negative
squared normal distances. For more on this topic, we refer to [15].

The (weighted) Čech and alpha complexes are the filtered complexes defined
in terms of the corresponding nerves.

Definition 2.5. The weighted Čech complex X = Cech(L, p) is the filtered
complex determined by X(a) = Nerve(U(a)), where U = BallCov(L, p).
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Figure 2.2: A randomly generated power diagram V(a), and its alpha complex
mapped into |V(a)| via φ, taking {qσ} to the minimizers of the weight function.
We have used dashed lines to illustrate the map of 2-simplices. The resulting
map is a homotopy equivalence by Proposition 2.1.

Definition 2.6. The weighted alpha complex X = Alpha(A, p) is given by
X(a) = Nerve(V(a)), where V = PowDiag(L, p).

Said another way, the weight function on the alpha complex is given on a
simplex σ = (σ0, ..., σk) by

w(σ) = min
x∈Vσ

wσi(x) (6)

for any choice of i ∈ {0, ..., k}, all answers being equivalent. We will denote by
qσ the unique corresponding argmin in (6), which as described above defines a
map φ : |Alpha(L, p)| → Rm associated to any alpha complex. An example is
shown for a random power diagram in Figure 2.2.

Since |U(a)| = |V(a)|, the nerve theorem implies that the Čech and alpha
complexes are homotopy equivalent.

The witness complex [16] can be viewed as a refinement of a power diagram.

Definition 2.7. Let W ⊂ Rm be any subset, finite or infinite, and let (L, p) be
as above. The strong (weighted) witness complex is given by

Y (a) = {σ : W ∩ Vσ(a) 6= ∅} ,

where Vσ is the nonempty intersection following Definition 2.4.

In other words, it is the nerve of the power diagram intersected with W.
An element x ∈ W ∩ Vσ(a) is called a strong witness for σ, since its existence
confirms the existence of the corresponding simplex σ ∈ Y (a). In this case the
collection of the Y (a) form a filtered complex, but other filtrations are common,
such as ones that add slack to the condition of being in Vσ.

We have the definition of weak witnesses:
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Definition 2.8. A an element x ∈W a weak witness for σ if

wi(x) ≤ wj(x) for all i ∈ σ, j ∈ L− σ. (7)

Then we have a complex Y (a) for which σ ∈ Y (a) if for any face τ ≤ σ there
exists an element x ∈ W ∩ |U(a)| which is a weak witness for τ , where U =
BallCov(L, p).

A strong witness is the same as a weak witness if we also have equality in
(7) whenever i, j ∈ σ, from which it follows that the strong witness complex is
contained in the weak witness complex. On the other hand, de Silva’s theorem
[10] shows that we have equality in the case of W = Rm. Unlike the strong
witness complex, the weak witness complex has the advantage that each cell
has nonzero measure, so if a data set W = D is sufficiently dense, one may
reasonably expect that each cell will contain a witness.

2.4 Practical implementations

Generally, computations related to power diagrams and their associated alpha
complexes are determined by a family of quadratic programs, which are compu-
tationally expensive. An efficient algorithm in dimension 3 is given in [14]. To
compute these complexes in higher dimension we have formulated an algorithm
based on dual quadratic programming. This is in part because there are a large
number of potential simplices, but most can be ruled out. In dual program-
ming, early termination is built in to the setup. Our implementation of this
in MAPLE using a highly flexible and elegant recent active set algorithm due
to Ärnstrom, Bemporad and Axehill [2], which will be explained in a separate
paper.

3 Density filtered complex

We define a filtered complex associated to a density estimator f(x) and prove
our main result, which is the interleaving property described in the introduction.

3.1 Landmark selection

Let D = {x1, ..., xN} ⊂ Rm, and consider a sum f(x) of Gaussian kernels
as in (1). We begin with a landmark selection scheme which determines the
vertices, encoded by a certain approximation g(x) ≤ f(x) by a max of weighted
Gaussians, rather than a sum.

We first show that for every point y ∈ Rm, we can “fit” f to first order at
y by a single weighted Gaussian kernel of the form g(x) = bρ(z, x) using the
formula

z = c−1
∑
i

aiρ(y, xi)xi, b = ρ(z, y)−1c, c =
∑
i

aiρ(y, xi). (8)
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Said another way, z is the expectation of the random variable xi with respect to
the probability measure on {1, ..., N}, with density i 7→ aiρ(y, xi), normalized
so that the sum is 1. We denote the resulting function by g = GaussFit(f, y).

Lemma 3.1. We have that g(x) is the unique function of the form bρ(z, x)
satisfying g(x) ≤ f(x) for all x ∈ Rm, with equality at x = y.

Proof. First we have that g(x) agrees with f(x) to first order at y:

g(y) = f(y), ∇yg = ∇yf. (9)

To check this, substitute (8) into (9), and divide the second part by the first by
the first to obtain z, and then solve for b. Since (9) must hold for any function
g(x) satisfying the properties of the lemma, the uniqueness statement is clear.

For simplicity, suppose that h = 1, all coefficients are one, and the fitting is
performed at the origin y = 0. To see that g(x) satisfies the desired properties,
we first consider the case of dimension m = 1 and only two points, which gives:

f(x) = e−(x−x1)
2/2 + e−(x−x2)

2/2, g(x) = be−(x−z)
2/2.

Consider the function
q(x) = f(x)/g(x) =

b−1e(x−z)
2/2−(x−x1)

2/2 + b−1e(x−z)
2/2−(x−x1)

2/2 =

b−1ez
2/2
(
t1e

(x1−z)x + t2e
(x2−z)x

)
where ti = c−1aiρ(y, xi) is the coeffficient of xi in the construction of z, from
(8). Since ti > 0 by construction, we find that q is a strictly convex function of
x, so its global minimizer x∗ (if one exists) occurs if and only if q′(x∗) = 0. We
see that indeed q′(0) = 0, because

d

dx
q(x)

∣∣∣∣
x=0

= t1(x1 − z)e(x1−z)x + t2(x2 − z)e(x2−z)x
∣∣∣
x=0

,

= t1(x1 − z) + t2(x2 − z) = t1x1 + t2x2 − z = 0,

where the the last step uses the fact that t1 + t2 = 1 and the the definition of z
in (8).

Next, we have the case of two points in dimension m > 1. In this case it is
enough to notice that f(x)/g(x) is independent of the orthogonal direction to
the line through x1, x2, as both functions scale by a common factor.

Finally, suppose we have N points in Rm, and proceed by induction on N .
In the base case we obviously recover the original function g = f . For N > 1,
write f = f1 + f2 where

f1(x) = e−(x−x1)
2/2 + · · ·+ e−(x−xN−1)

2/2, f2(x) = e−(x−xN )2/2

and let gi = GaussFit(fi, 0). Then we have

g = GaussFit(f, 0) = GaussFit(f1 + f2, 0) =

9



GaussFit(g1 + f2, 0) ≤ g1 + f2 ≤ f1 + f2 = f

completing the proof.

Lemma 3.1 implies a method for approximating f(x) from below by functions
which are maxes of Gaussian kernels, as follows. First, fix a number 0 < s < 1
and a bounded domain A ⊂ Rm. We successively make the replacement g(x) 7→
max(g(x),GaussFit(f, y)) each time using a point y ∈ A for which g(y) < sf(y)
until there are none, described explicitly in Algorithm 1. The resulting center
points z will correspond to the vertices in our main construction.

Algorithm 1 Max of Gaussians

input (f,A, s)
A0 ← A

g0 ← (x 7→ 0)
n← 0
while An 6= ∅ do

n← n+ 1
yn ← argmaxAn−1

(f)
bnρ( , zn)← GaussFit(f, yn)
gn ← max(gn−1, bnρ( , zn))
An ← {y ∈ A : g(y) < sf(y)}

end while

We now have the following lemma:

Lemma 3.2. Let A ⊂ Rm be a bounded region, and let 0 < s < 1. Then
we have that Algorithm 1 terminates, and the resulting function g(x) = gn(x)
satisfies

g(x) ≤ f(x) ≤ s−1g(x) (10)

for all x ∈ A.

Proof. If the algorithm terminates, equation (10) is clear. To prove it termi-
nates, we use a Lipschitz argument: at the end of iteration n of Algorithm 1,
there are n locations yi where gn(yi) = f(yi). We will show that there exists
δ > 0, depending only on f , A, and s, such that ‖x − yi‖ ≤ δ =⇒ f(x) ≤
s−1g(x) for x ∈ A. This will suffice to prove the lemma, because it establishes
that the locations yi must all be a distance δ apart from one another, so the
number of iterations is bounded above by (for instance) the packing number of
A for balls of radius δ/2.

As f(x) is a mixture of Gaussians and A is bounded, there exist constants
c, C1 such that 0 < c ≤ f(x) and ‖∇f(x)‖ ≤ C1 for all x ∈ A. Since A × A

is also bounded, there also exists a constant C2 such that for all x, x′ ∈ A, we
have ‖∇h(x)‖ ≤ C2, where h = GaussFit(f, x′), so that C1 and C2 are Lipschitz
constants for f and all possible mixtures h:

|f(x)− f(x′)| ≤ C1‖x− x′‖
|h(x)− h(x′)| ≤ C2‖x− x′‖ .

10



For notational compactness, let hn = bnρ( , zn) = GaussFit(f, yn) be the con-
tribution to g in the n-th iteration, and let C := max{C1, C2}. We claim that

if δ = (1−s)c
(1+s)C , then ‖x− yn‖ ≤ δ =⇒ hn(x)/f(x) ≥ s, which will complete the

proof. For any x ∈ A, we have

hn(x)

f(x)
≥ hn(yn)− C‖yn − x‖

f(yn) + C‖yn − x‖
=
f(yn)− C‖yn − x‖
f(yn) + C‖yn − x‖

,

and so if ‖x− yn‖ ≤ δ, we have

f(yn)− C‖yn − x‖
f(yn) + C‖yn − x‖

≥ f(yn)− Cδ
f(yn) + Cδ

≥ c− Cδ
c+ Cδ

=
c− C

[
(1−s)c
(1+s)C

]
c+ C

[
(1−s)c
(1+s)C

] = s

as desired.

Remark 3.1. The proof of Lemma 3.2 does not depend on the criteria for
determining the choice of the next reference point, which is given by yn =
argmaxAn−1

(f) in Algorithm 1. We experimented with other criteria that seem
to give comparable results, another natural choice being the “greedy” one of
argminAn−1

(g/f). The reason we choose the densest remaining point is that
it leads to the useful property that gA≥d ≤ gA≥d′ for d ≥ d′, using the sub-
script to denote the resulting function for different reference sets (assuming we
have chosen a consistent criteria for breaking ties). This results in a desirable
compatibility property of the filtered complexes defined in Section 3.

In practice, we will take A to be a finite set, so that the algorithm obviously
terminates. Because of Lemma 3.2, we have that choosing a very dense reference
set does not result unboundedly large numbers of landmarks n, as illustrated
in one dimension in Example 3.1 below. In higher dimensions, dense subsets of
f−1[a,∞) are usually too large to consider. An alternative in this case that we
will use in Section 4 is to take the data set itself intersected with the minimum
density cutoff as the reference set, A = D≥d0 .

Example 3.1. The Old Faithful geyser data set consists of 272 measurements
of eruptions from the Old Faithful Geyser in Yellowstone [4]. We considered
the one-dimensional density estimator of the data set of eruption times with
h = .05 seconds, equal weights ai = 1/272, and minimum density of d0 = .03.
We applied Algorithm 1 to a dense finite set of 10000 points in the region
f−1[d0,∞). The results are shown in Figure 3.1. We see that g(x) is a max of
26 weighted Gaussians, and this number will not increase with more samples,
according to Lemma 3.2 (and also Remark 3.1).

3.2 An associated power diagram

We now make a critical observation, which is that the function g(x) resulting
from Algorithm 1 is piecewise Gaussian, and in fact determines the cells of a
power diagram. This is stated in the following lemma whose proof is clear:

11



(a) The inequality .5f(x) ≤ g(x) ≤ f(x)

.

(b) Equivalent inequality g(x) ≤ f(x) ≤ 2g(x) on a log scale.

Figure 3.1: The result of applying Algorithm 1 to eruption times from the Old
Faithful Geyser data set. Here f(x) is density estimator with scale parameter
h = .05 seconds, the domain A is a set of 10000 points with f(x) ≥ d0 = .03,
and s = .5. The horizontal range is 1.4 to 5.3 seconds, and the density cutoff is
the dashed line.

Lemma 3.3. Let g(x) = maxi biρ(x, zi) as in Algorithm 1. Then w(x) =
− log(g(x)) is the weight function of the power diagram with

L = {z1, ..., zn}, pi = −2h2 log(bi) (11)

Definition 3.1. The power diagram corresponding to the output of Algo-
rithm 1 and its associated alpha complex will be denoted PowDiag(f,A, s) and
DensAlpha(f,A, s) respectively.

Example 3.2. The resulting function from applying Algorithm 1 to the density
estimator from Example 2.1 and its associated power diagram are shown in
Figure 3.2, using a value of s = .8, and the previously used values of h, d0. We
have taken A to be a densely sampled region from f−1[d0,∞). Notice that we
always have the same number of cells as landmarks at the density cutoff, as
each cell necessarily contains a unique reference point yi, making it nonempty.
However, there are many landmarks zi that are not contained in their own cell.

3.3 Density based complexes

We can now define our main constructions.
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Figure 3.2: The max of Gaussians g(x) associated to the density estimator f(x)
from the species distribution data set, according to Algorithm 1 using s = .8,
and the resulting power diagram.

Definition 3.2. Let Y = SubDens(f,A, s) be the filtered complex with total
space X = DensAlpha(f,A, s), and weight function

w(σ) = max
x∈|σ|

− log(f(φ(x))). (12)

In other words, Y (a) is the maximal subcomplex of X = X(−∞) with the prop-
erty that the image of φ : |Y (a)| → Rm is completely contained in f−1[e−a,∞).

We now have the following theorem which says that the three filtered homol-
ogy groups H∗(X(a)), H∗(Y (a)), H∗(f

−1[a,∞)) are interleaved up to the min-
imum density cutoff, see [7] Definition 4.2. It is shown that when persistence
modules are strongly interleaved, their persistent homology groups approximate
one another according to a certain metric called the bottleneck distance.

Theorem 3.1. Let A = f−1[e−a0 ,∞), fix some 0 < s < 1, and set ε = − log(s).
Then X = DensAlpha(f,A, s) and Y = SubDens(f,A, s) define finite filtered
complexes. Moreover, we have a family of maps

H∗(X(a))→ H∗(Y (a))→ H∗(f
−1[e−a,∞))→ H∗(X(a+ ε)) (13)

defined for any a ≤ a0, which commute with the persistence maps ia,b∗ from
(2). The composition is equal to ia,a+ε∗ : H∗(X(a)) → H∗(X(a + ε)), and simi-
larly for the compositions H∗(Y (a− ε))→ H∗(Y (a)) and H∗(f

−1[e−a+ε,∞))→
H∗(f

−1[e−a,∞)).

Proof. By Lemma 3.2, we have that Algorithm 1 terminates so that X and Y
are well-defined and finite. Since g(x) ≤ f(x), we have that X(a) ⊂ Y (a). The
map |Y (a)| → f−1[e−a,∞) is induced by the restriction of φ : |X| → Rm to
|Y (a)|, whose image is contained completely in f−1[e−a,∞) by the definition
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of Y . By (10), we have that f−1[e−a,∞) ⊂ |V(a + ε)| = g−1[e−a−ε,∞), where
V = DensPow(f,A, s). We thus have a sequence of continuous maps

|X(a)| → |Y (a)| → f−1[e−a,∞)→ |V(a+ ε)|, (14)

which define the maps from (13) by taking homology, and applying the nerve
isomorphism H∗(|V(a+ ε)|) ∼= H∗(X(a+ ε)).

Next, we have that (14) is compatible with ia,b as continuous maps. Then
we find that (13) is compatible with the persistence maps by taking homology
of the resulting diagram, and adding an extra square on the right

· · · H∗(|V(a+ ε)|) H∗(X(a+ ε))

· · · H∗(|V(b+ ε)|) H∗(X(b+ ε))

coming from the functoriality of the nerve isomorphism.
Finally we check that the composition H∗(X(a)) → H∗(X(a + ε)) is equal

to ia,a+ε∗ , and similarly for Y (a − ε), f−1[e−a+ε,∞). First, the map |X(a)| →
f−1[e−a,∞) from (14) factors as φ : |X(a)| → |V(a)| composed with the inclu-
sion |V(a)| = g−1[e−a,∞) ⊂ f−1[e−a,∞). We then find that the induced maps
from taking homology in

· · · ⊂ f−1[e−a+ε,∞) ⊂ |V(a)| ⊂ f−1[e−a,∞) ⊂ |V(a+ ε)|

agree with the maps in (13) after extending cyclically to the left, and taking the
composition over H∗(Y (a)). We thus obtain the first and third compositions.

In the remaining case we have Y (a− ε) ⊂ X(a) ⊂ Y (a) as subcomplexes of
X, since taking the max over |σ| respects (10). It suffices to check that the first
induced map H∗(Y (a− ε))→ H∗(X(a)) is the corresponding composition from
(13) at a = a− ε. To check this, take homology of the diagram

|Y (a− ε)| |X(a)|

φ(|Y (a− ε)|) φ(|X(a)|) |V(a)|

Then the composition |X(a)| → |V(a)| induces the nerve isomorphism, whereas
the one from the upper left to lower right is the composition from (14).

Example 3.3. Figure 3.3 illustrates equation (14) from the proof of Theorem
3.1 using the Geyser data set of Example 3.1. The four subspaces given by
X = DensAlpha(f,A, s), Y = SubDens(f,A, s), f−1[a,∞), and |V(a+ ε)| of R
appear as the sublevel sets of the four graphs shown as solid lines. They appear
in order from top to bottom, whenever the persistence value of a, shown on the
y-axis, is below the dashed line a = a0.
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Figure 3.3: The four filtered subspaces of R from the proof of the main theo-
rem, given by |X(a)|, |Y (a)|, f−1[e−a,∞), |V(a+ ε)| for the Old Faithful Geyser
example, zoomed in on part of Figure 3.1b, shown as solid lines. The y-axis is
the persistence value of a.

In practice, we will use the following complex, which replaces the max in
(12) with a max over the just the barycenters of |σ|. Recall that qσ are defined
for any alpha complex as the minimizers of the weight function (6).

Definition 3.3. We define Y = DensWit(f,A, s) to have the same total space
as X as in Definition 3.2, but using the modified weight function

w(σ) = max
τ⊂σ
− log(f(qτ )). (15)

Remark 3.2. In light of our terminology, the reader may wonder in what
sense Y is a witness complex. While Y is not technically a witness complex,
a related weight function which replaces the max over τ ⊂ σ with a min over
τ ⊃ σ exhibits similar properties, and would yield a filtered family of witness
complexes Y (a) with witnesses W = {qσ : f(σ) ≥ e−a}. Moreover, the given
weight function in (15) would actually be an example of a weak witness complex
with the same choice of W, if we replaced the inequality in (7) with strict
inequality.

Example 3.4. We show the sequence of complexes in the case of Examples
2.1 and 3.2 in Figure 3.4, using the same values of (f,A, s), and the complex
Y = DensWit(f,A, s). In the upper left we have the part of the subcomplex
of |X| that is contained in |V(a0 + ε)|, which contains all witness that could
possibly appear in Y , assuming that A is sufficiently dense. The subfigure
in the upper right illustrates the last two containments in (14), showing the
1-skeleton of Y instead of SubDens(f,A, s), the middle one being the same
boundary of f−1[a0,∞) shown in Figure 2.1. The containment shown is not
actually guaranteed in this case, first because the reference set A is not actually
the entire superlevel set, second because we have used the approximation of
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Figure 3.4: Illustration of the containments from Theorem 3.1 in the con-
text of the species distribution example, using the previously used specifica-
tions. Top left: the map φ applied to the part of X = DensAlpha(f,A, s)
contained in |V(a0 + ε)| for a0 = − log(d0). Top right: the one-skeleton of
Y = DensWit(f,A, .8), the boundary of f−1[d0,∞), and |V(a0 + ε)|. Bottom
left: a heat map of the persistence values of the full two skeleton. Bottom right:
another coloring of Y by relative density values of each of the two species, eval-
uated at the barycenters.
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Figure 4.1: A data set of a torus D ⊂ R3 with Gaussian noise, and the 1 and
2-skeleta of DensWit(f,D≥.005, .6) with h = .3.

DensWit(f,A, s) instead of SubDens(f,A, s), and last because we have used the
values of the landmarks zi to map the complex two R2 instead of φ. Nevertheless,
we do still see the containment, indicating that all three approximations are
reasonable in this example. In the lower left we have the full complex Y using
the heat map from Figure 2.1. In the lower right, we overlayed a different color
map onto the total complex of Y (a0), by restricting separate density estimators
for the two different species, using their values at the vertices of φ in the upper
left. Notice that Y retains one-dimensional features of the data, due to the
congregation along various parts of the Amazon river for instance, while f(x)
does not. This happens because the centers zi are convex combinations of the
elements of D by (8).

4 Higher dimensional examples

We demonstrate the performance of the complex in higher dimensions using
some persistent homology computations, and by viewing the results using a low
dimensional projection.

4.1 Persistent homology computations

We start with two persistent homology computations using a torus data set with
noise, and simulated points from an ordered configuration space.

Example 4.1. We formed a data set of points on the two-dimensional torus
embedded in R3 by sampling

(cos(θ1)(1 + .5 cos(θ2)), sin(θ1)(1 + .5 cos(θ2)), .5 sin(θ2))

using 3000 random values of θ1, θ2. We then added noise using Gaussian sam-
ples, and considered the density estimator f(x) using the scale parameter h = .3.
We computed Y = DensWit(f,D≥.005, .6), shown in Figure 4.1. We found sizes
(|Y0|, |Y1|, |Y2|, |Y3|) = (466, 1581, 1308, 199), a reasonable number of simplices
for a data set that is centered around a two-dimensional manifold.
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Figure 4.2: The persistent homology groups for the torus with noise with
rescaled weights.

We then computed the persistence barcodes, which captured the β1-cycle
near the center, but failed to capture the remaining one, as well as the β2 = 1
feature due to the fact that the data is insufficiently dense around the periphery.
One might expect to capture the remaining features by using different values of
the scale parameter in different points of the data set. The problem of combining
complexes coming from power diagrams associated to different metric is indeed
an interesting one. However, we have a simpler available option in this case,
which is to simply rescale the weights ai. We computed the complex for the
result of scaling the weights of f(x) by distance from the origin, ai 7→ ‖xi‖ai,
thus increasing the density around the periphery by a factor of about 3 relative
to the inner circle. The resulting persistent homology groups capture all the
desired betti numbers, shown in Figure 4.2.

Example 4.2. We consider a space with more sophisticated homology groups,
namely the ordered configuration space Conf3(R2) of 3 ordered points in the
plane. The homology groups of this space are well-known in greater generality
[9]. We use a homotopy equivalent variant that is more suitable for density
estimation, in which the points must be a distance at least one apart, two of
those distances being equal to one.

To form a data set, we sampled pairs of points θ1, θ2 ∈ [0, 2π) uniformly at
random, and computed the unique triple (p1, p2, p3) ∈ (R2)3 = R6 whose mean
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Figure 4.3: Some points in configuration space.

is at the origin, satisfying

p2 − p1 = (cos(θ1), sin(θ1)), p3 − p2 = (cos(θ2), sin(θ2)).

We then discarded any triples with ‖p3 − p1‖ < 1, and permuted the order via
a random element of S3. We sampled 20000 instances to obtain a data set of
points D = {(p1, p2, p3)} ⊂ R6 with the property that the pairwise distances are
all at least 1, and all but one are equal to 1. Some typical elements are pictured
in Figure 4.3.

We then chose the corresponding density estimator f(x) with values of
h = .25 in the L2 metric, which does not represent a uniform measure on
the underlying space in any sense. We computed DensWit(f,D≥.006, .4) up
to the 3-simplices, and obtained a 3-dimensional filtered complex with sizes
(271,1264,1558,631). The persistent homology groups are shown in Figure 4.4.
The bars which extend indefinitely correspond to the desired betti numbers of
Conf3(R2) given by (β0, β1, β2) = (1, 3, 2). We also see that in the medium
density range, we have a value of β0 = 2 and β1 = 2, whose bars are too long
to be due to noise. This is due to the fact that the triples which nearly form an
equilateral triangle tend to be denser that triples which are colinear. As a result,
we obtain two disconnected loops in the medium density range, corresponding
to the two rotationally inequivalent permutations of the labels, when the points
lie on an equilateral triangle.

4.2 Local patches from the MNIST data set

In [16], the authors studied the topology of a certain space of local 3 × 3 high
intensity patches of the van Hateren data set of natural images, which was
investigated earlier by Lee, Mumford, and Pederson [17, 19]. They gave quan-
titative evidence using the witness complex that those patches lie along a two-
dimensional locus parametrized by the Klein bottle.

We illustrate our complex on a parallel construction of high intensity lo-
cal patches in the MNIST data set of 28 × 28 images of hand-drawn digits
[11]. Because digits tend to have lines in the middle of blank space, but rarely
the reverse, we expect those patches to lie in a sublocus of the Klein bottle
homeomorphic to the Möbius strip. Some points in the MNIST data set and a
parametrization of this Möbius strip are shown in the first two rows of Figure
4.5. The circle that traces around the boundary of the Möbius strip through
the top and bottom row is called the primary circle, and it usually contains
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Figure 4.4: Persistent homology groups of the Configuration space data set.

points of higher density than those in the middle row. The circle consisting of
the middle row is called the secondary circle, and it is more difficult to detect.
We will see that the density based complex exhibits descriptive visual models
of both primary and secondary circle features, with clear differences between
different digits.

To form a parametrization of image patches, we considered an inner product
on the l2-dimensional vector space Mat(l, l) of l × l image patches, given by

(A,B) =
1

22(l−1)

l∑
i=1

l∑
j=1

(
l − 1

i− 1

)(
l − 1

j − 1

)
Ai,jBi,j (16)

We then consider an orthonormal basis given by H l
a,b = H l

a ⊗ H l
b, where the

Ha ∈ Rl are a discrete form of the Hermite polynomials, given by applying the
Gram-Schmidt algorithm to the vectors of polynomial functions V a = (ia)li=1,
using the one-dimensional form of (16). For several reasons, we find the inner
product to be more robust than the usual dot product, which would lead to
products of Legendre polynomials. The bottom row of Figure 4.5 shows an
example of two such vectors, and the result of projecting an image patch onto
the span of the 6 Hermite polynomials up to quadratic order for l = 7.

We then constructed a data set as follows. For 50 instances each digit, we
sampled all l× l patches for various choice of l, and projected those patches onto
span(H l

1,0, H
l
0,1, H

l
2,0, H

l
1,1, H

l
0,2), the span of nonconstant terms up to quadratic
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order, to obtain a data set of size 50 · 28 · 28 = 39200 in R5 (assuming that
patches are extended by zero outside the domain of the image). We then chose
only those images whose norm is above a fixed number of r = .3, resulting in
a subset of roughly 10% of the original size. This is a version of the choice of
“high intensity patches” from [16]. We then normalized the resulting points to
arrive at a data set D(k) ⊂ S4 of size 3000-5000 for each digit k ∈ {0, ..., 9}.

We show the results of DensWit(f,A, s) using the values of l = 11, h = .16,
A = D(k)≥d0 , s = .5, with varying choices of d0 in the top row of Figure 4.6.
We see that primary circle features are dominant, corresponding to the dense
regions around the periphery, with secondary circle features connecting them.
The coordinate system is the one spanned by H11

1,0, H
11
0,1. In order to highlight

the secondary circle features, we produced a variant on the above data set, in
which high intensity is determined only by the norm of the quadratic terms,
and in which we normalize by that value. This has the effect of dimensionally
reducing just the second degree terms, thereby accentuating the secondary circle.
We then mapped the resulting complexes into low dimension using a similar
parametrization of the Klein bottle to the one given in [16]. In the case of the
digit 0, we see a very clear Möbius strip. In the case of the digit 2, we lowered
the density threshold, revealing a primary circle feature encircling the second
order ones.

4.3 The Ising model on a graph

In our final example, we consider density estimation on a simulated data set
consisting of trials of the Ising model [18] on a graph with m vertices, thought
of as a collection of real-valued vectors in Rm. In order to obtain a viable
density estimator on this data set, we use the Laplacian operator associated to
the graph, which has the effect of replacing each trial by something resembling
a continuous function.

Let G = (V,E) be an m ×m graph such as the ones shown in Figure 4.7,
represented by a symmetric adjacency matrix J , diagonal entries being zero.
For every discrete vector of “spins” σ ∈ {1,−1}m, we have the Hamiltonian
energy

HG(σ) = −
∑
i,j

Ji,jσiσj = Hmin + 2|{(i, j) ∈ E : σi 6= σj}|. (17)

Those points (i, j) ∈ E for which σi 6= σj are called transitions. For each
choice of β > 0, called the temperature parameter, one seeks to sample from
the Boltzmann distribution on {1,−1}m given by

Pβ(σ) =
1

Zβ
e−βH(σ), Zβ =

∑
σ

e−βH(σ) (18)

which is done using the single-flip Metropolis algorithm.
A collection of N trials can be interpreted as a data set

D(G, β) = {σ1, ..., σN} ⊂ Rm,
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Figure 4.5: Top row: some elements from the MNIST data set of 28 × 28
grayscale images of hand drawn digits. Middle row: a Möbius strip in the space
of image patches. Bottom row: on the left are two instances of the Hermite
polynomials H7

0,1 and H7
1,1. In the second from the right, a typical 7× 7 patch

from the data set, and its projection onto the span of the Hermite polynomials
up to quadratic order on the far right.
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(a) Digit 1 (b) Digit 7 (c) Digit 0 (d) Digit 2

(e) Digit 1 (f) Digit 7 (g) Digit 0 (h) Digit 2

Figure 4.6: Top row: The complex DensWit(f,A, s) for the digits {1, 7, 0, 2}.
All have the same parameters h = .16, s = .5, r = .3, and varying choices of d0.
Bottom row: a similar construction but defining intensity using only the second
order features.

by viewing the spin states σ as real vectors in Rm. We generated D(G, β) for the
three different types of graph G shown in Figure 4.7, but with different numbers
of vertices. Specifically, we took an interval consisting of 30 sites, a circle with
30 sites, and a graph with three flares of length 14 each coming from the center,
for a total of 43 vertices. For every one we chose β = 1.5, and N = 20000. In
the case of the interval, the distribution of the energy values is given by

(ak) = (4907, 7035, 4942, 2193, 709, 167, 41, 6, 0, ...)

where ak is the number of states σ ∈ D with k transitions. For instance, we
would have 4907 instances in which all spins are the same, and 6 instances in
which there are 7 transitions. These numbers are consistent with the predicted
values, which by a simple combinatorial argument are proportional to

ak ∼
(
m− 1

k

)
/2m−1e−2βk

for the given parameters.
Applying density estimation to these spaces directly would be subject to

the curse of dimensionality, and would not produce useful results. Instead of a
dimensional reduction, we will consider a blended form of the data set using the
left-normalized Laplacian operator I −D−1A. Here A is the adjacency matrix
of G, normalized so that the diagonal entry Ai,i is the degree of vi, and D is
the row-sum of A. There are several reasons for this choice of diagonal in A, for
instance a troublesome dependence of the eigenvalues of Lt on the parity of m
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Figure 4.7: Top row: three different graphs G used to simulate the Ising model,
denoted INT(11), CIRC(30), FLARES(22). The index corresponds to the num-
ber of vertices.

Figure 4.8: On the left: a typical data point in D(G, β) with three transitions
for (G, β) = (FLARES(43), 1.5). The spins ±1 are represented by black and
white. On the right: the same point after diffusion, i.e. right multiplication by
exp(−tLt) for t = 10.

when the diagonal entries are zero. In the case of the interval with 30 vertices,
the first few values of these eigenvalues are

Λ = (1.000, .997, .988, .974, .954, .928, .898, .863, .824, .781, ...).

We then make the replacement D(G, β) 7→ D(G, β) exp(−tLt) with the value of
t = 10, viewing the data set as an N ×m matrix, to produce a continuous form
of each data point as shown in Figure 4.8.

We then chose the density estimator f(x) with scale parameter h = 2.0,
and computed Y = DensWit(f,D(β, J)≥.001, .4) for each graph G up to the
3-simplices. In the case of the G = INT(30), we obtain a filtered complex with
sizes (|Y0|, |Y1|, |Y2|, |Y3|) = (210, 2213, 6500, 8570). The persistent homology
groups, shown in Figure 4.9, show the betti numbers of low energy states, which
are the ones of higher density. For instance, the β0 barcodes show two connected
components at high density, corresponding to the two states in which all spins
are the same.

Not surprisingly, if we then consider a smaller data of only those states σ with
low energy, our data set becomes concentrated around a smaller-dimensional
space, resulting in a smaller complex. This does not considerably affect the bar-
code diagram, as the current one is already essentially noiseless up to the chosen
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Figure 4.9: Persistent homology groups of DensWit(f,D(INT(30), 1.5)≥.001, .4),
with scale parameter h = 2.0.

cutoff, but it does result in a smaller computation. Perhaps more importantly,
the resulting complexes are more suitable for visual purposes. We computed
the complex on the smaller data sets on states of up to 2 transitions, leading
to a complex with sizes (|Y0|, |Y1|, |Y2|, |Y3|) = (106, 554, 825, 491) in the case of
the interval. We then projected the resulting one-skeleta onto R3 using the first
three eigenvectors of the transposed Laplacian matrix, which are orthonormal
with respect to the dot product weighted by the diagonal elements of D, fol-
lowed by a random projection onto a 2-dimensional subspace. The results for
all three types of graph, shown in Figure 4.10, show the geometry of the space
of low energy configurations, with not necessarily obvious results. For instance,
the edges of the cube in the case of the flares graph correspond to 6 dense states
with exactly one transition, and 6 less dense states with two transitions, with
one of them neighboring the center point of the graph.

4.4 Running time

In most examples, our complex was computed in a few seconds, and in all cases
the largest time cost was evaluating the kernel density estimator, either at the
reference set A, or the witness set {qσ}, whichever was bigger. In particular, it
took longer than the computation of the alpha complex and its representatives.
The cost of computing f(x) could be decreased by choosing a covering of the
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Figure 4.10: Low dimensional projections of of DensWit(f,A, s) using the
graphs INT(30), CIRC(30), and FLARES(43), and only states with at most
two transitions.

data set and ignoring the contribution from far away points ‖xi − x‖ > r. We
also note that both this step and the computation of the alpha complex may be
done in parallel.

The most time consuming example was that of the Ising model from Section
4.3, which took several minutes, due to the larger size of the data set, the fact
that we computed up to the 3-simplices, and because the data was embedded in
R30. Because our algorithm for computing the alpha complex is based on dual
programming and therefore takes only the dot products zi · zj and powers pi
as input, its running time is not directly affected by the higher dimensionality.
However, the running time of evaluating f(x) scales with dimension simply
because it requires more operations compute the distance.

5 Conclusions and future directions

In this paper we defined a filtered simplicial complex associated to a Gaussian
kernel density estimator, which we illustrated through persistent homology cal-
culations and by viewing the complex in low dimensions in several examples.
We conclude with a some potential extensions and future directions.

• Zeroth degree persistent homology group were shown to be a valuable way
of viewing clustering in [8]. In clustering applications, our algorithm would
not need to solve any quadratic programs, only to test when the (power-
shifted) midpoints between two landmark points have those points as their
nearest neighbors. This also results in a considerably smaller number of
points on which to evaluate f(x).

• We expect that the resulting clustering algorithm would be a strong candi-
date for the Mapper Algorithm [22], which combines the outputs of a given
clustering algorithm over multiple overlapping intervals or other types of
covering, through a filter function. One reason is that the density-based
approach is not sensitive to outliers or small changes in the data. Another
is that other than perhaps the scale parameter h, our construction has no
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tuning parameters which could require different choices for different inter-
vals. Enlarging the other parameters (A, s) leads to a finer approximation,
but not a different target.

• It is often necessary to consider data sets with varying metric. If D is par-
titioned into groups associated to different quadratic forms, one may use a
combined complex by solving a quadratic program over the intersection of
cells defined in different power diagrams. In another direction, recall from
Section 2.1 that our density estimators do not included a volume normal-
izing factor of (1/

√
2π)m. As a result, we have that f(x) ≤ f ′(x) when

f, f ′ are density estimators for the same data set with scale parameters
h ≤ h′, leading to a multidimensional persistence setting [6, 20, 23].

• It would be interesting to determine to what extent Lemma 3.1 applies to
diffusion-based density estimators in manifolds M other than Rm, such as
the examples D ⊂ S4 of Section 4.2. At a minimum, it is clear that the
conclusions of the Lemma would hold when M is the product of a vector
space and a compact torus, by interpreting a data set D ⊂ Rm × (S1)m

′

as a periodically repeating one in Rm+m′ . In the case of a circle, f(x)
would take the form of an infinite periodic sum of Gaussian kernels on R,
or equivalently as a finite sum of Jacobi theta functions defined on the
circle.

• In a further extension, our construction applies to the convolution of any
distribution by the diffusion process, not just a discrete one coming from a
data set. It would be interesting to consider a distribution defined in terms
of Fourier modes on the torus (S1)m, in which the diffusion operator acts
diagonally. It then becomes a calculus problem to represent the Gaussian
fit function in that basis.
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