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Abstract

We present an application of topological data analysis (TDA) to dis-

crete optimization problems, which we use to improve the performance of

the 2-opt local search method for the traveling salesman problem. We then

construct a filtered simplicial complex associated to every a stochastic ma-

trix with a steady state vector (P, π), which is tailored to optimization

problems through Markov chain Monte-Carlo algorithms. When P is in-

duced from a random walk on a finite metric space, this complex exhibits

similarities with standard constructions such as Vietoris-Rips, but is not

sensitive to outliers, as sparsity is a natural feature of the construction.

We interpret the persistent homology groups in several examples coming

from random walks and discrete optimization.
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1 Introduction

The concepts of local search and local optimality are foundational to the field

of optimization. For continuous problems, the most famous examples are the

Lagrange multiplier theorem and the KKT conditions, which establish neces-

sary conditions for local optimality for constrained problems. Unconstrained

problems are almost universally solved using descent methods in which one con-

structs a sequence of iterates whose objective values are consistently improving,

and which converge to a local minimizer provided that appropriate regularity

conditions are satisfied.

Local optimality is equally ubiquitous in the design of heuristics for discrete

optimization problems. The most common manifestation is in the notion of k-

optimality, which is commonly applied to (for example) the travelling salesman

problem [5] and the quadratic assignment problem [8]: a candidate solution is

said to be k-optimal if it is at least as good as all other solutions that differ

by at most k terms. Another prominent example is Lloyd’s location-allocation

algorithm, which finds evenly spaced points in subsets of Euclidean spaces, and

forms the basis for the so-called naïve k-means algorithm in machine learning

[6].

Not surprisingly, a major drawback of local search methods is the possibil-

ity of being stuck at a locally optimal solution that is of poor overall quality.

A second well-known drawback of local search schemes arises in multi-criteria

decision making: in practice, when one has multiple (possibly competing) ob-

jectives that must be simultaneously reconciled, it may be useful to study the

“landscape” consisting of all plausible solutions to the problem (perhaps in an

ad hoc fashion), such as the Pareto frontier.

In this paper we develop an approach to these problems using topological

methods, specifically topological data analysis (TDA) and persistent homology.
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This happens in two parts. First, in Section 2, we apply TDA to a data set whose

points are local minimizers of the travelling salesman problem (TSP). We devise

a scheme for incorporating the persistent zero-th Betti number (i.e. connected

components) of the Vietoris-Rips construction into a local search procedure, and

show that it leads to improved performance. We then outline a general basic

pipeline for applying persistent homology to (discrete) optimization problems.

In Section 3, we present a new filtered simplicial complex motivated by statis-

tical mechanics. This construction associates to every pair of a stochastic matrix

(i.e. a Markov chain) and a steady state row vector (P, π), a filtered simplicial

complex (X, f), which is particularly tailored for use in Monte Carlo methods

in optimization, such as simulated annealing. Unlike the previous construction,

which regards the simulated outputs as a data set, this new construction takes

advantage of available structure that the data set comes from simulating a ran-

dom process. One feature of this complex is that unlike Vietoris-Rips, zero

simplices have nontrivial persistence values, which measure a form of density.

We then illustrate Construction 1 in several specific examples. Our first ex-

ample shows that the first persistent homology groups of a simple Markov chain

corresponding to a random walk in a “Jeu-de-Taquin” game have a natural in-

terpretation as in terms of the configuration space of three ordered points in

the plane, showing that (X, f) is a viable answer to the “landscape” issue de-

scribed earlier. Next, we present an application of (X, f) in the case when (P, π)

represents a random walk on a finite metric space. We find several advantages

even in this scenario over standard constructions such as Vietoris-Rips, for in-

stance insensitivity to outliers, which is typically handled by directly removing

all points with low density values. Finally, we give an application which shows

how higher homology groups may be applied to study connected components in

high-dimensional optimization problems.
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1.1 Related work

To the best of our knowledge, the fields of optimization and TDA have had very

little cross-pollination. The best example to our knowledge is [9], which notes

that certain procedures in TDA have natural interpretations as optimization

problems:

Finding good representatives for qualitative features often turns

out to be a case of searching within such a class for an optimal

member.... Another area where homology shows up as a tool for

optimization is inevaluating coverage for sensor agents – such as

ensembles of robots, or antenna configurations.

The paper [4] does not apply TDA per se, but uses sheave theory and Poincaré

duality to generalize the famous max flow-min cut theorem; their generaliza-

tion lends itself to applications in multi-commodity flows, among others. Very

recently, the paper [3] gives an application of persistent homology to the image

correspondence problem, which is used to produce 3D reconstructions of scenery

from two or more cameras. They produce a complex whose nontrivial homology

groups correspond to recognizable anomalies in image pairs, such as repeated

patterns, which contribute to nonconvexity of the objective function.

2 Local search with TDA

This section describes a simple metaheuristic that uses persistence barcodes to

identify features that we deem likely to be present in good local minimizers.

In order to compare our approach with related work, we briefly describe other

metaheuristics that arise commonly in optimization literature:

Guided local search augments the objective function with a penalty term

that causes the local search procedure to avoid local minimizers that it has
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already encountered; the idea is to make previous local minimizers more

costly than the surrounding search space. Given an objective function

f(x) and a collection of features indexed by a term i, guided local search

seeks to minimize the augmented objective function

g(x) := f(x) + λ
∑
i

Ii(x)pi ;

here λ is an intensity parameter, Ii(x) is a binary function that indicates

whether or not feature i is present in candidate solution x, and pi is a

penalty parameter for that feature. A simple example of a feature would

be “Ii(x) = 1 if xi = 1”, for instance. The penalty parameters pi are

initially all set to zero, and increase as the metaheuristic finds more and

more local minimizers.

Tabu search avoids previous local minimizers by maintaining a tabu list of

local search moves that are prohibited. In general, a local search move is

prohibited if it takes the search back to a state that it has recently visited.

Simulated annealing decides probabilistically whether to move from a state

x to a new state x′, even if x′ has a worse objective value. For example, if

f(x′) > f(x), one might move from x to x′ with probability aeb(f(x)−f(x′)),

for suitable constants a and b. This moves the search away from poor

local minimizers by allowing the possibilities of climbing out of a basin of

attraction.

Our proposed local search with TDA is similar to the above approaches; its main

distinction is that, rather than forbidding certain moves, the goal is to identify

features that are present in many disparate local minimizers, and to encourage

their presence in subsequent runs.
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2.1 A pipeline for local search with TDA

The following is an informal outline for using TDA to guide a local search pro-

cedure, for fixed positive integers M and N and a given optimization problem:

1. Perform M local searches with randomly seeded inputs and record the

local minimizers x̂(1), . . . , x̂(M) that are obtained.

2. Compute persistence barcodes for data points x̂(1), . . . , x̂(M), using (for

instance) a Čech complex or a Vietoris-Rips complex.

3. Determine a representative clustering by looking at the barcodes corre-

sponding to β0, the 0-th Betti number. Let C1, . . . , Cm denote these clus-

ters.

4. Identify features that are common to the clusters C1, . . . , Cm.

5. Perform N local searches with randomly seeded inputs, but require that

the common features from step 4 be present.

6. Return the best solution obtained over all M +N iterations.

This description is purposefully vague and we show a concrete example applied

to the travelling salesman problem in the next section.

2.2 The traveling salesman problem

Here we describe an implementation and show an example of the algorithm

from Section 2 that applies TDA to the well-known 2-opt heuristic [5] for the

travelling salesman problem (TSP) with a symmetric and complete distance

matrix D = [dij ]. 2-opt is a simple strategy that works as follows: given an

existing tour of the input points, take 2 edges (a, b) and (c, d) from the tour

and remove them. Then, form a new tour by inserting edges (a, d) and (c, b).

Update the tour if the objective value decreases, which occurs if and only if
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Figure 1: A 2-opt exchange on a tour of 8 points. The edges (3, 7) and (4, 5) in
(1a) are replaced with (3, 4) and (7, 5) in (1b).

dab + dcd > dad + dcb. This is illustrated in Figure 1. The search completes

when there are no pairs of edges that result in a cost reduction.

In our experiment, steps 1-6 from Section 2 now take the following form:

1. PerformM local search instances with randomly seeded inputs and record

the local minimizing tours x̂(1), . . . , x̂(M) that are obtained. Each local

search instance consists of taking a random permutation of the input

points, and selecting the 2-opt move that reduces the tour cost as much

as possible (this means that we enumerate through all
(
n
2

)
possible pairs

of edges, where n is the number of points). For our example, we collected

a set of 1000 local minimizing tours on a TSP instance of 100 points.

2. Compute persistence barcodes for data points x̂(1), . . . , x̂(M) using a Čech

complex, where the metric is the Hamming distance: the distance between

two tours x̂(i), x̂(j) is

d(x̂(i), x̂(j)) = #(edges belonging to only one of x̂(i) and x̂(j))

In our example, we construct a Vietoris-Rips complex V R(X, ε) on the

metric space X of the local minimizing tours equipped with the Ham-

ming distance as the metric. This simplicial complex is a variant of
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the Čech complex where {x̂(1), . . . , x̂(k)} spans a k-simplex if and only

if d(x̂(i), x̂(j)) ≤ ε for all 0 ≤ i, j ≤ k. The β0 persistence barcodes result-

ing from one such complex are shown in Figure 2a. The figure indicates

that there are two persistent (long) barcodes.

3. Let C1, . . . , Cm be the m longest barcodes corresponding to the 0-th Betti

number. Whilem can be determined from the β0 persistence barcodes gen-

erated by the Čech/Vietoris-Rips complex, in practice it can be difficult

to identify m visually due to the large vertex set. In this case, a strong

witness complex may provide a clearer visual aid. Using a strong wit-

ness complex can also reduce the computational expense of the Vietoris-

Rips complex, which utilizes all of X as the vertex set. Given a set of

landmark points L ⊆ X, we define for every point x̂(i) ∈ X a distance

dx̂(i) = minl∈L d(x̂(i), l), i.e. its minimum distance to the set L. The

strong witness complex W (X,L, ε) is then constructed with vertex set L

with the following rule: {l1, . . . , lk} spans a k-complex if and only if there

exists an x̂(i) ∈ X such that d(x̂(i), lj) ≤ dx̂(i) + ε for all 1 ≤ j ≤ k. The

landmark points L can be chosen via a variety of methods, including ran-

dom selection. Here we chose a set of 50 landmark points using sequential

maxmin, a greedy selection process. The β0 persistence barcodes for this

example are shown in Figure 2b. This figure more clearly identifies the

presence of the two persistent intervals first identified in the Vietoris-Rips

complex, and confirms our choice of the m = 2 longest barcodes for this

step. Furthermore, now that we have detected two connected components

within the set X of local minimizing tours, we can examine a sample of

tours from each of these components. Figure 3 shows a sample of 20 local

minimizing tours from each of the two connected components.
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(a) β0 persistence barcodes, V R(X, ε) (b) β0 persistence barcodes, W (X,L, ε)

Figure 2: The β0 persistence barcodes for a set of 1000 local minimizing tours
from a TSP instance on 100 points. One can see that the two longest barcodes
are more evident in the witness complex.

(a) Sample of size 20 from Component 1 (b) Sample of size 20 from Component 2

Figure 3: Local minimizing tours from a TSP instance on 100 points
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4. For each edge e, define probability weights

we =

m∏
i=1

Pr(e appears in X|X is uniformly sampled from Ci) .

When we is high, it means that e appears frequently in all of the clusters

Ci, and is therefore more likely to be part of the optimal solution.

5. Perform N local searches with randomly seeded inputs, subject to the

constraint that all edges e such that we ≥ α are present (here α is specified

beforehand).

6. Return the best solution obtained over all M +N iterations.

2.3 Computational experiments

We implemented the procedure from section 2.2 and applied it to 41 bench-

mark problem instances from the TSPLIB library [7]: for efficiency’s sake,

we restricted ourselves only to those instances with up to 300 nodes, and set

M = N = 500, m = 3, and α = 10−3. Our comparison procedure is as follows:

after computing the first M minimizers, we then compute one additional set of

N minimizers with TDA information, and another set of N minimizers without

TDA information (that is, they are obtained using the same procedure as the

originalM). Table 1 shows the best objective values obtained with and without

TDA. Out of the 41 instances, there are 30 for which local search with TDA is

superior, 7 where the two are tied, and 4 where local search with TDA is inferior

to vanilla local search.
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Instance name TDA No TDA
a280 2729 2751
att48 33556 33601

berlin52 7545 7545
bier127 119282 119353
ch130 6133 6236
ch150 6705 6790
d198 16010 16010
eil101 659 660
eil51 434 431
eil76 555 558
gil262 2489 2501
gr137 710 711
gr202 498 498
gr229 1682 1683
gr96 517 520

kroA100 21311 21357
kroA150 26991 26991
kroA200 30165 30193
kroB100 22322 22441
kroB150 26716 26582
kroB200 30351 30419
kroC100 20770 20944
kroD100 21538 21559
kroE100 22226 22334
lin105 14383 14496
pr107 44463 44495
pr124 59031 59031
pr136 98280 98698
pr144 58535 58535
pr152 73822 74221
pr226 80883 80729
pr264 50984 50871
pr299 49417 49889
pr76 108305 108305
rat195 2473 2477
rat99 1234 1264
rd100 7953 7979
st70 678 684
ts225 126905 127316
tsp225 4034 4041
u159 42768 42781

Table 1: Best objective values obtained on TSPLIB benchmark problem in-
stances, with and without TDA. A bold and underlined number indicates the
superior (i.e. smaller) objective value.
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3 A filtered complex for simulated annealing

We now present our main construction, which is a filtered complex associated

to a stochastic matrix (in other words, a Markov chain), together with a steady

state vector. We then consider several examples, with applications to discrete

optimization and TDA. We find for instance in Section 3.2 that when the Markov

chain is defined as a random walk on a finite metric space, we obtain a new

construction for measuring the persistent homology of a data set. An advantage

this has over Vietoris-Rips for instance, is that the zero-simplices now have

nontrivial persistence value, making the common practice of removing sparse

points unnecessary, as sparsity is a natural consequence of the construction.

By a filtered topological space, we mean a pair (X , F ) where X is a topo-

logical space, and F : X → R is a continuous function. We then have the

sublevel set persistent homology, defined as the image H∗(X a) → H∗(X b) for

a < b, where Xa = F−1(−∞, a] is the sublevel set. Similarly, a filtered complex

is a pair (X, f) where X is an abstract simplicial complex, and f : X → R

has the property that f(∆′) < f(∆) whenever ∆′ is a face of ∆. We then

have a similar definition of the persistent homology group Ha,b
∗ (X) as the image

H∗(X
a) → H∗(X

b). Rather than considering specific values of a, b, one usu-

ally considers the persistence diagram or barcode diagram, which contains all

of those groups at once, and has longer bar for more robust homology classes.

Let P be an n× n transition matrix satisfying

Pi,j ≥ 0,

n∑
j=1

Pi,j = 1 for all i,

and let π ∈ Ω be a steady state row vector, which is an element of

Ω =
{

(p1, ..., pn) ∈ Rn
≥0 : p1 + · · ·+ pn = 1

}
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satisfying πP = π. Notice that Ω can be thought of as the geometric realization

space of the complete (n − 1)-dimensional simplicial complex, Ω = |Kn|. We

construct a filtration function F : Ω→ R, which favors distributions supported

on denser points, and also favors distributions whose support is localized at

points that are close together in a Markovian sense.

Construction 1. Let (P, π) be an n× n Markov chain together with a steady

state. Define a second n× n matrix Q

Qi,j = sup
m≥1

(
(Pm)i,j − πj

)
, (1)

noticing that Qi,j ≥ 0 for all i, j. We define a pair (X , F ) by

F : Ω→ R ∪ {∞}, F (p1, ..., pn) = − log

 n∑
j=1

πi

n∏
i=1

Qpi

i,j

 (2)

where 00 = 1, and let X ⊂ Ω be the subset on which F is finite. We have the

discretized version, which is the filtered complex (X, f) given by

f : X → R, f(∆) = min
p∈|∆|

F (p), (3)

where X ⊂ Kn is the subcomplex of the complete simplicial complex Kn of all

simplices for which f(∆) is not infinite. In other words, f(∆) is the min of F (p)

over all p ∈ Ω for which pj = 0 for j /∈ ∆.

The motivation is to extend a natural measure of sparsity which is − log(πj),

to a continuous function on Ω, in a way that captures geometric features of the

Markov chain. We find that the weighted geometric mean in (2) will be small

between two points that are far apart in a Markovian sense, and interpolates

between points that are close together. The discrete complex (X, f) is just the

natural one to consider given (X , F ).
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The density measure on zero simplices is not exactly the same as the one

mentioned in the previous paragraph. However, if Q is replaced by Pm for any

power m in equation (2), then the value of F at any vertex i would simply

be − log(πi), since π is a steady state. We found this to produce interesting

results, but it has the undesirable property that one has to make a particular

choice of m. Low values could lead to the space being disconnected, whereas

larger values would create too much blending, by filling in features. Considering

the matrix Q as the max in (1) resolves this issue in a way that is independent

of the time-scale coordinate. Notice that the effect of subtracting πj becomes

negligible if πj is small, but makes a difference when there are a small number

of states.

In practice, we have found the min in (3) may be taken by discretizing the

simplex |∆|, taking the min only over those points whose coordinates are integer

multiples of 1/k. In most of our examples below, we have simply taken k = 2,

which corresponds to taking the endpoints in Barycentric subdivision. We may

also replace the supremum over all m in (2) with the max over a finite set

m ∈ S, provided we replace negative values of Qi,j with 0, so that the weighted

geometric mean is real-valued. Choosing S = {m} to have one element is the

same as just setting Q = Pm, as in the last paragraph.

3.1 Jeu de Taquin and configuration space

Consider a simple Markov chain whose states are the 9·8·7 = 504 ways of placing

the numbers 1,2,3 into distinct boxes in the 3×3 grid, and whose transitions are

all ways of moving any number into an adjacent square, without moving into

the space of another number, and with no self-transitions. Every legal move is

then given the same probability. One can easily obtain a steady state exactly

in this case.
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(a) β0-diagram
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Dimension 1

(b) β1-diagram

Figure 4: The persistence diagrams for Construction 1 applied to the “jeu de
taquin” Markov chain. The 100 longest bars are shown. Despite having many
shorter ones, one can see three lasting bars in the β1 diagram.

The zeroth and first persistence diagrams of (X, f) are shown in Figure 4.

One can see that there are three lasting β1-bars. To interpret these classes,

consider the (ordered) configuration space of three points in the plane:

X =
{

(p1, p2, p2) : pi ∈ R2, p1 6= p2 6= p2

}
.

Its homology groups are well-known, and in fact H1(X ,Q) = Q3. We interpret

the three longest bars as being a discretized version of this homology group.

To justify this interpretation, we have shown a particular cycle representative

in Table 2, which shows a loop in the space, in which the three numbers move

around each other and return to their original position. Other cycles involve

a single number being fixed, while the remaining two encircle each other. The

natural continuous versions of such loops define nonzero classes in H1(X ,Q).

Note that Construction 1 does not require edges to connect only adjacent ver-

tices; they simply turn out to be the ones with the lowest persistence values in

this example.
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Table 2: The sequence of vertices in a representative cycle for the jeu de taquin
game, generated by Javaplex.

3.2 Data sets and sparse points

In this example, we apply our complex to the standard application of persistent

homology, which is to measure homological features of a point-cloud contained

Rn, typically using the Euclidean metric. To apply the construction, we simply

replace the data set by the Markov chain of a random walk on it. We give an

example which shows more prominent features when compared with Vietoris-

Rips, and additionally does not require the usual preliminary step of removing

outliers, as sparsity is already part of the construction.

Let D ⊂ R2 be the data set in Figure 5, which is sampled from a distribution

with two visible modes (dense regions), and two more prominently visible voids.

We have generated a stochastic matrix P whose states are in correspondence

with points p ∈ D, and the transitions are determined by taking the 5 nearest

neighbors to p, and then choosing one at random (no self-transitions). We then
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(d) β1-diagram

Figure 5: Persistence diagrams built from the data set in Figure 5a. Figure
5b shows the results of applying Vietoris-Rips, which shows some β1 features
reflecting the two voids in the data set. Figures 5c and 5d are built using a
random walk, and show more distinguishable features, because outliers produce
high persistence values.

took the unique steady state π, and built the pair (X, f) from Construction 1.

The resulting persistence diagrams are shown in Figures 5c and 5d. One can

see a prominent bar in the the β0 diagram, and a smaller one reflecting the two

denser regions. In the β1-diagram, there are two fairly clear one-dimensional

bars. The Vietoris-Rips construction is less clear due to the presence of out-

liers, which are given high persistence values in Construction 1. Perhaps more

importantly, the results are harder to predict, as adding more sampled points

also produces more outliers.
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3.3 Minimizing paths

The next example illustrates an application of higher-rank Betti numbers to

optimization problems in high-dimensional state spaces. A similar idea here has

been carried out in two dimensions with an application to the “stereo vision”

problem in [3], for continuous optimization.

Let F (x, y) be the two-variable Beale function [1] on the domain X = [0, 1]×

[0, 1], shown in Figure 6a. Consider the optimization problem whose states Ω

are continuous functions ϕ : [0, 1]→ [0, 1], and whose cost function is given by

E(ϕ) = max
x∈[0,1]

F (x, ϕ(x)).

This problem is nonconvex, and indeed has visible local optimizers given by

the four paths described in Figure 6. In the context of Section 2, the next

step would be to to study the zeroth persistent homology for the sublevel set

filtration on Map([0, 1], [0, 1]). It is unclear how to implement this, given the

infinite-dimensional nature of the domain.

However, we also have a lower-dimensional space, which has interesting β1-

features as follows: let A = {0, 1} × [0, 1] ⊂ X denote the union of the left and

right boundary segments of X , corresponding to the values x = 0, 1. Then each

path ϕ with E(ϕ) ≤ a represents a cycle which defines a relative homology class

in Ha,b
1 (X ,A) for any b > a. Thus, we may divide the connected components

of E−1(−∞, a] into groups by associating to each ϕ ∈ E−1(−∞, a] the induced

class ϕ∗(x), where

ϕ∗ : H1([0, 1], {0, 1})→ Ha,b
1 (X ,A),

and x is a generator of H1([0, 1], {0, 1}) ∼= H1(S1).

To implement this, we created a Markov chain whose states are the dis-
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cretized points of X using a 35× 35 grid. The transition matrix is determined

be the simulated annealing algorithm, to favor low values of F (x, y), with di-

agonal steps allowed so that there is a unique steady state. Again there are no

self-transitions. To represent the relative homology groups, we define X to be

the complex from Construction 1, together with a “point at infinity,” and we

add the complete simplicial complex connecting this point with each of the 70

points on the left and right boundary. We see in Figures 6e and 6f that we have

four homology classes, as expected, as well as a nontrivial β0 feature, indicating

that there are two modes. We have used m ∈ {1, 2} for the supremum in (2)

instead of all numbers m ≥ 1. The filtration function on 0-simplices f(p) is

shown for various other ranges {1, ..., k} for comparison.

4 Conclusions and future directions

Construction 1 provides a viable definition of a filtered topological space asso-

ciated to a stochastic matrix P (in other words a Markov chain), and a steady

state vector π. For more involved applications to discrete optimization, comput-

ing its persistent homology directly from definition may not be practical if the

number of simplices is prohibitively large. For instance, the traveling salesman

example of Section 2 is itself an example of a Markov chain using the simulated

annealing procedure, but the number of states of that Markov chain is 2|E|,

where E is the edge set of the graph.

One direction is to approximate complex to (X, f) using “landmark points”

in place of the entire state space. In an upcoming article [2], the first two authors

have studied one such construction in the case of continuous optimization, which

is described here:

Construction 2. Suppose {x1, ..., xn} are sampled from X , and F : X → R is

bounded below. We define a filtered complex (X, f) by
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Figure 6: A Beale function F (x, y) on a region shown in 6a, then modeled on
a 35 × 35 grid. There are 4 types of path ϕ(x) with low values of F (x, ϕ(x)),
upper left/lower left through upper right/lower right. The values of f(p) on 0-
simplices p ∈ X for the complex from Section 3.3 are shown with m ∈ {1, ..., k},
for various values of k. Notice that the diagram for k = 8 is already quite similar
to the k =∞ case, which is the default in Construction 1. The major bars for
the relative first Betti numbers correspond to the four paths in 6f. Notice there
is a second bar in 6e corresponding to two dense regions.
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1. The vertices of X are the numbers {1, ..., n}.

2. We have a k-dimensional simplex ∆ with endpoints {i0, ..., ik} if the region

ΩJ =
{
x ∈ Rd : xj0 , ..., xjk are the closest points to x, in order

}
is nonempty for all (k+1)! orderings J = (j0, ..., jk) of the indices {i0, ..., ik}.

3. The filtration of a simplex ∆ = {i0, ..., ik} is given by

f(∆) = max
J

inf
x∈ΩJ

F (x), (4)

where the max is taken over the orderings J from item 2.

Optimizing a complex such as this one for discrete optimization problems is

an interesting question which is left for future papers.

A second direction is to interpret the states of discrete optimization prob-

lems such as TSP as spaces of functions, and develop an approach along the

lines of Section 3.3. The viability of this method is supported by the fact that

only β0-features, i.e. connected components were applied in Section 2, and that

an analogous version was implemented in [3], in the case of the stereo corre-

spondence problem from computer vision. To extend this method to TSP, the

underlying graph must be endowed with some relevant geometry, which should

most likely depend on the annealing procedure, such as 2-opt, or some other

local search algorithm.
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