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1 Introduction

Persistent homology ([3], [13]) is a fundamental tool in the area of compu-
tational topology. It can be used to infer topological structure in data sets
(see [1], [4]), but variations on the method can be applied to study aspects
of the shape of point clouds which are not overtly topological ([5], [8]). The
methodology assigns to any finite metric space (such as are typically obtained
in experimental data of various kinds) and non-negative integer k a bar code,
by which we will mean a finite collection of intervals with endpoints on the
real line. The integer k specifies a dimension of a feature (zero-dimensional
for a cluster, one-dimensional for a loop, etc.), and an interval represents
a feature which is “born” at the value of a parameter (the persistence pa-
rameter) given by the left hand endpoint of the interval, and which “dies”
at the value given by the right hand endpoint. These barcodes have been
demonstrated to identify structure in spaces of image patches in [1] and [4],
and have been demonstrated to distinguish between handdrawn letters in
[8]. Because of the unusual structure of the invariant, i.e. as a collection
of intervals rather than numerical quantities, the method currently requires
substantial knowledge of topological methods. It would clearly be useful to
assign and interpret various numerical quantities attached to bar codes, so
that these outputs could be used as input to standard algorithms within ma-
chine learning, cluster analysis, and other methods. It is the purpose of this
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paper to identify an algebra of functions on the set of bar codes which is
defined in a conceptually coherent way.

The main idea is the following. A bar code with exactly n intervals
can be specified by a vector (x1, y1, x2, y2, . . . , xn, yn), where xi denotes the
left endpoint of the i-th interval and yi the right endpoint. However, this
representation is many to one, in that the bar code structure does not retain
the ordering on the intervals. In fact, the set of bar codes with exactly n
intervals can be identified with the set

Spn(R2)

the n-fold symmetric product of R2. For any set X, Spn(X) is defined to
be the orbit space of the action of the symmetric group on n letters on the
product Xn given by permuting the coordinates. On the other hand, the
space (R2)n is an algebraic variety over R ([10]). In fact, it is an affine space
of dimension 2n, and the symmetric group action mentioned above is an
algebraic action. It is then known (see [12]) that the orbit space inherits the
structure of an algebraic variety, and the elements of its affine coordinate
ring ([10]) are functions on the set of bar codes with exactly n intervals.
These affine coordinate rings are well known algebras referred to generically
as rings of multisymmetric polynomials ([9]). They can be quite complicated,
since it turns out that any set of algebra generators for them will satisfy non-
trivial relations or syzygies. It turns out, though, that there are inclusions of
algebraic varieties

Spn(R2)→ Spn+1(R2) (1)

which produce an inverse system of graded affine coordinate rings

· · · → A[Spn+1(R2)]→ A[Spn(R2)]→ · · ·

whose inverse limit we will denote, by abuse of notation, by A[Sp∞(R2)].
The notation A[−] denotes the affine coordinate ring. This algebra is known
to be freely generated on a set of minimal algebra generators ([9]).

The analysis of the system (1) above is not sufficient, though. This system
identifies a point ((x1, y1), . . . , (xn, yn)) ∈ Spn(R2) with the point

((x1, y1), . . . , (xn, yn), (0, 0)) ∈ Spn+1(R2)

In other words, a set S of n intervals is identified with the set of n + 1
intervals obtained by adjoining the interval of length zero whose two end-
points are zero. However, in the parametrization of the isomorphism classes

2



of persistence vector spaces in [13] by barcodes, any interval of length zero
is identified with the zero module. So, we would like to determine the ring
of all algebraic functions (i.e. the elements of A[Sp∞(R2)]) which have the
property that they take the same value on any barcode as on the result of
adjoining any interval of length zero to it. In this paper, we will identify
this subring, describe its structure, and describe the algebra generators ex-
plicitly so that they can be used effectively by those interested in analyzing
databases of shapes.

2 The Ind-scheme B

We first discuss the set of bar codes, without any algebraic variety structures.
For every n, we first consider the set of bar codes containing exactly n inter-
vals. We will permit intervals of length zero. The set of intervals I can be
identified with the subset of R2 consisting of pairs (x, y) with x ≤ y. A bar
code containing n intervals is therefore identified with the n-fold symmetric
product Spn(I), where for any set X, Spn(X) is defined to be the orbit space
of the action of the symmetric group on n letters on the product Xn given
by permuting the coordinates. One can assemble these sets into a directed
system

I
i1→ Sp2(I)

i2→ Sp3(I)
i3→ Sp4(I)→ · · ·

where the maps in : Spn(I)→ Spn+1(I) are given by

in({I1, . . . , In}) = {I1, . . . , In, [0, 0]}

The direct limit of this system will be denoted by Sp∞(I). We are interested
in studying functions on Sp∞(I). Such a function can be identified with
an infinite vector (f1, f2, f3, . . .) of functions fn : Spn(I) → R satisfying the
compatibility condition

fn+1 · in = fn

The set of all such vectors of functions forms a ring R under coordinate-
wise addition and multiplication. It is not exactly what we want, however.
The reason is that under the parametrization of persistence vector spaces as
described in [3] and [13], intervals of length zero correspond to zero vector
spaces, and therefore all intervals of length zero should be considered equal.
This means that we should consider only functions F : Sp∞(I) → R for
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which
F ({I1, I2, . . . , In, [ξ, ξ]}) = F ({I1, I2, . . . , In, [η, η]})

for all possible values of ξ and η. The set of all such functions is a subring
R′ ⊆ R. This set of functions can be defined as the set of all functions on
the set B defined by

B =
∐

n

Spn(I)/ '

where ' is the equivalence relation generated by all relations of the form
{I1, I2, In, [ξ, ξ]} ' {I1, I2, . . . , In}.

Remark: The reader may suggest that one consider instead only the
subset I+ consisting of intervals of positive length. This will produce a
disjoint union of sets of barcodes, partitioned into the sets containing a fixed
positive number of intervals of positive length. Such a description does not
take into account the fact that we would like to topologize the space of all
bar codes in such a way that

limε→0{I1, I2, . . . In, [xn+1, xn+1 + ε]} = {I1, I2, . . . , In}

The reason for this is that small perturbations to the input data to the persis-
tence algorithms can modify the barcodes by modifying lengths of intervals a
small amount and add intervals of small length. This is the stability theorem
for persistence diagrams proved in [7].

The ring of functions R′ is too large to deal with effectively. Even the
much smaller ring of continuous functions on B is still too complex to describe
completely. We will observe that B is described as a colimit of algebraic
varieties, and that it is therefore possible to define the ring of algebraic
functions on B. It is this ring we will analyze.

Throughout this paper, k will denote the field R. All varieties will be over
k. We consider the affine space An = A(n) of dimension 2n, parametrized
with coordinates (x1, y1, x2, y2, . . . , xn, yn). Its affine coordinate ring is the
polynomial ring Bn = k[x1, y1, . . . , xn, yn]. There is an action of the sym-
metric group Sn on n letters on An, and from [12] it follows that the set of
orbits on the set of points of the variety is itself an affine algebraic variety,
with affine coordinate ring equal to the invariant subring BSn

n . Let Wi ⊆ An

denote the subvariety yi − xi = 0. We let Dn ⊆ Bn denote the subring of
functions whose restriction to Wi is independent of xi for all i. We wish to
characterize this subring algebraically.
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Proposition 1. The ring Dn is characterized algebraically as the subring of
all f for which

(
∂

∂xi
+

∂

∂yi
)f ∈ (yi − xi)

for all i.

Proof: We fix i, and consider all the functions f for which f |Wi is indepen-
dent of xi (and therefore yi). The operator ∂

∂xi
+ ∂

∂yi
induces a differential

operator on the quotient ring Qn = Bn/(yi−xi), which is identified with the
partial differential operator 2 ∂

∂xi
in

Qn
∼= k[x1, y1, . . . , yi−1, xi, xi+1, . . . , xn, yn]

The requirement is that the image f of f in Wi is independent of xi, and this
is equivalent to the condition ∂

∂xi
(f) = 0. This condition is to hold for each

i, which gives the result.

3 The ring of algebraic functions on B

We begin by changing coordinates via the formulae ξi = xi + yi and ηi =
yi−xi. It is clear that Bn can also be identified with k[ξ1, η1, . . . , ξn, ηn], and
that the symmetric group in the new coordinate system permutes the ξi’s
and ηi’s. Under this transformation, the operator ∂

∂xi
+ ∂

∂yi
is carried into the

operator 2 ∂
∂ξi

. This means that the ring Dn is identified with the subring of

functions f(ξ1, η1, . . . , ξn, ηn) for which ∂f
∂ξi
∈ (ηi) for all i.

Proposition 2. A k-basis for the Dn is given by the set of monomials

ξa11 ξ
a2
2 · · · ξann ηb11 ηb22 · · · ηbnn

for which ai > 0 implies bi > 0.

Proof: We note that the operator ∂/∂ξi carries each monomial to a constant
multiple of a single monomial, namely the monomial obtained by decreasing
ai by one. Moreover, containment in the ideal (ηi) is also given purely by
conditions on monomials, i.e. that bi > 0. We conclude that Dn is spanned
by monomials lying in Dn. But it is clear that a monomial µ lies in Dn

exactly if it is the case that whenever ξi divides µ, then ηi also divides µ.
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This corresponds to the above numerical condition on the exponents in the
monomial.

The symmetric group action clearly preserves the subring Dn. Moreover,
it preserves the basis of monomials within Dn. Let {µα}α∈A denote a set
of orbit representatives of the Sn-action on the set of monomials defined in
Proposition 2. Let σα denote the sum of all the elements in the orbit of µα.

Proposition 3. We let DSn
n denote the subring of elements of Dn which are

invariant under the action of Sn. Then the elements σα form a k-basis of
DSn
n .

Proof: This result plainly holds for any algebra over a field of characteristic
zero on which there is a G-action which preserves a basis of monomials.

We have restriction maps πn,m : Dn → Dm, when n ≥ m, defined by
πn,m(ξi(resp ηi)) = ξi(resp ηi) for i ≤ m, and πn,m(ξi) = 0 for i > m. The
map πn,m is Sm-equivariant, where Sm acts by permuting the first m pairs of
variables. It follows that we may construct composites

DSn
n ↪→ DSm

n

πSm
n,m→ DSm

m

which we denote by σn,m, and therefore the inverse system

· · · σn+1,n−→ DSn
n

σn,n−1−→ D
Sn−1

n−1
σn−1,n−2−→ · · · σ2,1−→ D1

We will denote the inverse limit of this graded system by D.
We next recall some of the notation and basic facts about multisymmetric

polynomials, which can be found in Dalbec [9]. Let Rn,r be the polynomial
ring in nr variables,

Rn,r = k[x11, x21, ..., xnr],

and let
Λn,r = RSn

n,r,

denote the ring of Sn invariants, where the symmetric group acts diagonally.
There is an inverse system parallel to the one constructed above involving
the rings Λn,r. We have evaluation maps

πn,m : Rn,r → Rm,r, m ≤ n

defined by setting xir = 0 if i > m. The map πn,m is Sm-equivariant, when
Sm ⊆ Sn is the subgroup of permutations of the first m elements of the set
{1, . . . ,m}. We have the composites
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Λn,r = RSn
n,r ↪→ RSm

n,r

πSm
n,m→ RSm

m,r = Λm,r

which we denote by ρn,m. The inverse limit of the system

· · · ρn+1,n−→ Λn,r
ρn,n−1−→ Λn−1,r

ρn−1,n−2−→ · · · ρ2,1−→ Λ1,r

as graded rings will be denoted by Λr, and referred to as the ring of r-
multisymmetric functions. Its grading is given by

Λr =
⊕

k

Λk
r

induced by the grading on Rn,r. There is an evident embedding D ↪→ Λ2.
We will use this embedding to identify the structure of D.

The ring of multisymmetric functions has several interesting sets of gen-
erators. Given some nonzero vectors

ai = (ai1, ..., air) ∈ Nr\0,
we define the multisymmetric monomials by

ma1,...,ak
= Symxa1111 · · ·xakrkr ∈ Λr,

where Sym is the symmetrization map. Sym applied to a monomial yields
the sum of all monomials which are in the orbit of the Sn-action.

They form a vector space basis of Λn,r, for any n. It is known that Λn,r is
generated as an algebra by the symmetrizations of monomials involving only
{x11, x12, . . . , x1r}. They are given by the formulae

pa = ma =
∑

i

xa1i1 · · ·xarir ,

and are called the multisymmetric power sums. While there are relations
among the power sums in finitely many variables, they freely generate the
inverse limit Λr, making it a polynomial algebra. See [9] for details.

We will be interested in the case r = 2. Let us set

xi = xi1, yi = xi2,

and let
An = Rn,2 = k[x1, y1, ..., xn, yn].

The subalgebra D ⊆ Λ2 now has the following characterization.
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Theorem 1. As a subalgebra of Λ2, D is freely generated by elements of the
form pa+1,b − pa,b+1.

Checking that these generators are contained in B, and that there are no
relations between them is easy. The work is in calculating Hilbert series,

P (Ω) =
∑

k≥0
dimR(Ωk)tk,

with induced grading on Ω. We do this in the following lemmas.

Lemma 4. An R-basis for Bn is given by the set of monomials

(x1 − y1)a1yb11 · · · (xl − yl)alybll
for which bi > 0 implies ai > 0.

Proof. Make the substitution zi = xi − yi, which corresponds to an isomor-
phism

A = R[z1, y1, ..., zn, yn],

and notice thatBn is exactly the kernel of the differential operator ∂/∂zi. The
operator ∂/∂zi carries each monomial to a constant times a single monomial,
namely the monomial obtained by decreasing ai by one. Moreover, contain-
ment in the ideal (zi) is also given purely by conditions on monomials, i.e.
that ai > 0. We conclude that Bn is spanned by monomials lying in Bn. But
it is clear that a monomial µ lies in Bn exactly if it is the case that whenever
yi divides µ, then zi also divides µ. This clearly corresponds to the above
numerical condition on the exponents in the monomial.

Lemma 5. The Hilbert series of Ω is

P (Ω) =
∏

d≥1
(1− tk)−k.

Proof. The above proposition shows that Bn has a basis of monomials which
are invariant under the Sn-action. Whenever this is true, any set of orbit
representatives constitute a basis of BSn

n over a field of characteristic zero.
We define such a set of representatives by the monomials of the form

za11 y
b1
1 · · · zall ybll , ϕ−1(ai, bi) ≥ ϕ−1(ai+1, bi+1)

8



where l ≤ n, and ϕ : N+ → N+ × N is the bijection

(ϕ1, ϕ2, ...) = ((1, 0), (1, 1), (2, 0), (1, 2), (2, 1), (3, 0), (1, 3), ...)

onto the set of possible nonzero exponents. The dimension of the k-graded
component of BSn

n is just the number of these monomials of degree k.
Let us say that (a, b) ≤ (c, d) when ϕ−1(a, b) ≤ ϕ−1(c, d), and let f(a, b, k)

denote the number of sequences (a1, b1, ..., al, bl) such that

(a, b) ≥ (a1, b1) ≥ · · · ≥ (al, bl), (ai, bi) ∈ N+ × N

with no restrictions on l. It is easy to check that it satisfies the recursion
relation

f(a, b, k) =
∑

(c,d)≤(a,b)
f(c, d, k − c− d),

which leads to the formula

∑

k≥0
f(a, b, k)tk = (1− ta+b)−a

∏

1≤k≤a+b−1
(1− tk)−k.

We then have

lim
n→∞

P (BSn
n ) = lim

(a,b)→∞

∑

k≥1
f(a, b, k)tk =

∏

k≥1
(1− tk)−k.

We can now prove the theorem.

Proof. Let
Ω′ = R[p10 − p01, p11 − p20, ...].

It is simple to check that Ω′ ⊂ Ω. There are no relations between these
generators because the homomorphism

Λ2 → Λ2, pa+1,b 7→ pa+1,b − pa,b+1, p0,b 7→ p0,b

is an isomorphism. It remains to show that the two rings have the same
Hilbert series. But P (Ω′) obviously equals the generating function in lemma
5, because there are k generators in degree k.
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4 Machine Learning on B with examples

4.1 Digits Example

To illustrate the classification potential of this technique, we apply it to the
MNIST database [11], of handwritten digits. We emphasize that the aim is
not to outperform existing machine learning algorithms for digit classifica-
tion, but to present an example that demonstrates one way of combining this
technique with existing machine learning techniques. While it is clear that
pure topological classification cannot distinguish between the digits (there
are three numbers that do not have any loops, three that always have loops,
one that has two loops and three that have style-dependent loops), we can
use the power of persistent homology to sift out more information. We begin
by showing the full analysis of a few digits and then give the empirical results
of applying this technique to a subset of the MNIST database.

4.1.1 Topological Methods

We begin by describing a particular graph construction given a digital image.
We treat the pixels as vertices and add edges between adjacent pixels (includ-
ing diagonals). We can now define a filtration on the vertices of the graph
corresponding to the image pixels. A natural filtration could be constructed
using the pixel intensities of the original image (see Figure 6, Section 4.2).
Another filtration, used in [8], can be constructed by thresholding, to pro-
duce a binary image, and adding 1-pixels as we sweep across the image. This
adds spatial information into what would otherwise be a purely topological
measurement. Since the orientation of the digit matters (a 6 is the same as
a 9 given a 180 degree rotation), we choose the latter approach and sweep
across the rows and columns of each digit.

By taking into account spatial information, we get a rough view of the
location of various topological features. For example, though a ‘9’ and ‘6’
both have one connected component and a single loop, the loop will appear
at different locations in the top-down filtration for the ‘9’ and ‘6’. The digits
and one of the resulting barcodes are shown in Figures 1 and 2. Using all
four sweeps, and both the Betti 0 and Betti 1 barcodes, reveals additional
differences between each of the digits.
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Figure 1: No Loop Digits with Betti 0 barcode, sweep to right

Figure 2: Loop Digits with Betti 1 barcode, sweep to top

4.1.2 Feature Selection

We can use the techniques described in this paper to coordinatize the bar-
code space B. In machine learning terminology, these coordinates are called
features. This allows us to characterize the barcodes generated by each data
point as a compact feature vector. This also gives us great flexibility in se-
lecting features that work well with our data. We can then apply a standard
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machine learning algorithm, such as a support vector machine (SVM), to
classify the data.

We selected a set of four features from the invariants discussed in this
paper. Intuitively, the exponents in each polynomial will give the relative
value of small bars or endpoints compared to large bars or endpoints. For
example, if comparing two bars of length b

2
and b, the first bar will have

more weight in an invariant linear polynomial than in an invariant quadratic
polynomial. Indeed,

(
b

2

)2

=
b2

4
,

(
b

2

)3

=
b3

8
,

(
b

2

)4

=
b4

16
,

...

We selected four features,

∑

i

xi(yi − xi)
∑

i

(ymax − yi)(yi − xi)
∑

i

x2i (yi − xi)4

∑

i

(ymax − yi)2(yi − xi)4

which when applied to the four sweeps, each with a 0-dimensional and 1-
dimensional barcode, gives a feature vector of total size 32 which we then
arranged into a feature matrix. Intuitively speaking, the first two features
take all of the bars, lengths and endpoints, into account. The second two
features heavily favor the arrangement of longer bars. A visualization of
a matrix of 10,000 digits using classical multidimensional scaling (MDS) is
shown in Figure 3 and the spectrum of the matrix is shown in Figure 4.
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(a) A 2D View of the Data
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(b) A 3D View of the Data

Figure 3: Visualization of Data using Topological Features
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As is typical when using a SVM, we scaled each coordinate such that the
values were between 0 and 1. The SVM was implemented using software
provided by [6].

4.1.3 Classification Results

We applied these methods on a subset of 1000 digits from the MNIST
database to tune parameters of the algorithm and test various kernels. For
the radial basis function e−γ|u−v|

2
(RBF, also known as the Gaussian kernel),

we used γ = 8. For the polynomial kernel (γ(u ∗ v) + a)d, we used d = 3
with γ = 2 and a = 2. In both functions, u and v represent the calculated
feature vectors. After this, we progressively increased the size of the subset
to 10,000 handwritten digits.

The classification accuracy was measured by partitioning the data set into
one hundred subsets and using cross-validation successively on each subset.
The results are shown in Table 2.

14



Table 1: Classification Accuracy of two SVM Kernels

SVM 1000 Digits 5000 Digits 10000 Digits
Gaussian 87.70% 91.54% 92.04%
Polynomial 88.00% 91.62% 92.10%

With the polynomial kernel, an error of 7.9% is seen. As mentioned above,
the purpose of this test is not to outperform existing classification algorithms
but to demonstrate one application of the topological features. In line with
this, we examined some of the digits that the algorithm failed on. Figure 5
shows a few of the typical problem digits.

(a) Stylistic Problems

(b) Spurious Topological Changes

Figure 5: Common Misclassifications

The most common confusion is between a ‘5’ and a ‘2’ written with no
loop. Other confusions often occur between the shown style of ‘7’ and slanted
‘3’s and between a certain style of ‘4’ and a ‘9’. These confusions are not
unexpected since these numbers are topologically the same. The extra spatial
information added by the directional sweeps is sensitive to variations in the
slant or style of handwriting and a visual inspection of these digits suggests
why the algorithm has difficulty classifying these particular examples. Other
common confusions occur when topological changes occurred to the digit,
specifically when the writer adds or removes a loop.
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4.2 Hepatic Lesion Classification

In this example, we apply topological features to classifying hepatic lesions.
The dataset consists of computed tomography (CT) scans of 132 hepatic
lesions that are outlined and annotated by radiologists. There are nine di-
agnoses represented in the data: cysts (45 lesions), metastases (45 lesions),
hemangiomas (18 lesions), hepatocellular carcinomas (HCC, 11 lesions), focal
nodules (5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN, 3
lesions), a single laceration and a single fat deposit. Additionally, there are
no controls for the size of the lesion and the lesions vary from under 100
pixels to 10,000 pixels. Because of the unbalanced nature of the data, we
focus on the subset of cysts, metastases, and hemangiomas.

Classification results using the barcode metric (matching metric) were
first presented in [2], and we follow the same methods for processing and
generating barcodes from the data. We will briefly describe the methods
here. For a more detailed account, please read [2].

4.2.1 Topological Methods

As mentioned above, a natural filtration for an image is to filter by the pixel
intensity. An example of this filtration is given in Figure 6. The variation
in pixel intensity allows us to use a one-dimensional filtration on the pixel
intensity, but as the results will show, the classification is improved when
geometric information is added into the filtrations.

As there is no rotational orientation of the lesions, we cannot add in
geometric information using the sweeps described in the previous section.
Instead, we use the lesion border provided by the radiologist and assign
each pixel its distance from the border. Then, by using two-dimensional
homology, we achieve improved results, especially in the case of the heman-
giomas which are characterized by large dense regions on the outer part of
the lesion. Because two-dimensional filtrations are computationally intensive,
we approximate the two-dimensional filtration with one-dimensional barcode
‘slices’ along the border filtration axis. We use 7 slices per lesion and both
the Betti 0 and Betti 1 barcodes.

Note that we can look at each filtration from each direction and catch
different features. The intensity filtration can add high intensity pixels first
or low intensity pixels first. The boundary filtration can begin with pixels
near the boundary first or pixels far from the boundary first. This yields 56
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one-dimensional barcodes per lesion.
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(a) Simple image with filtered complex

(b) β0 barcode for above image

(c) β1 barcode for above image

Figure 6: Constructing an increasing 1D-filtration on an image [2]

4.2.2 Feature Selection

We use a slightly different set of four features as compared to the digits
example. These features are shown below. The two sets of features that
focus on long bars and features which take into account shorter bars is used
here. In this application, this is analogous to filtering the barcode to remove
the large number of smaller bars. Because of the variations in lesion size,
we look at the average over each bar to try and eliminate the effects of large
variations in lesion size.
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n∑

i

xi(yi − xi)/n

n∑

i

(ymax − yi)(yi − xi)/n

n∑

i

x2i (yi − xi)4/n

n∑

i

(ymax − yi)2(yi − xi)4/n

As mentioned above, we have 56 barcodes per lesion. With four features,
this yields a feature vector of 224 features for each lesion.

4.2.3 Classification Results

We apply the SVM using only the Gaussian kernel and use an exponential
parameter sweep to find optimal values of γ for each method. We use LOOCV
to calculate the classification accuracies. The results are shown below. Table
2 gives the results for 1D and 2D filtrations for several different datasets
while Table 3 shows how well the algorithm performs on different lesion
types for the different filtrations. Table 4 demonstrates the effect of size on
classification.

Table 2: SVM Classification Accuracies for 1D and 2D Filtrations

Filtration Full HcHeCM HeCM CM
1D (Intensity) 53.03% 59.66% 65.74% 75.56%
2D 67.42% 74.79 % 81.48% 86.67%

Using [2], we see that that topological features are comparable with using
the matching metric to generate features. The results from the HeCM dataset
for the two methods are shown below. They reflect the correct classification
of a single lesion using a the topological features, making the two methods
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Table 3: HeCM % Classification Accuracy by Lesion Type

Filtration % of HeCM % of Heman. % of Cysts % of Metas.
1D 65.74% 33.33% 75.56% 68.89%
2D 81.48% 61.11% 86.67% 84.44%

Table 4: Classification by Lesion Size of HeCM

Lesion Size by Area % Accu. # of Heman. # of Cysts # of Metas.
All 81.48% 18 45 45

<10000 px 82.52% 18 42 43
<5000 px 84.78% 16 39 37
<2500 px 86.25% 14 32 34
<1250 px 88.514% 8 28 23

virtually the same for this subset of the data. Comparing with the other
results in [2] shows that the two results are very close in most categories,
with each slightly outperforming the other in certain subsets of the data.

Table 5: Classification Methods

Filtration Barcode Features Matching Metric
1D 65.74% 63.80%
2D 81.48% 80.56%

4.3 Discussion

These two examples demonstrate the classifying power of topological fea-
tures when applied to real world datasets. This was done using off-the-shelf
machine learning algorithms showing that these features can easily be com-
bined with more traditional classification methods adding a set of additional
classification features to the machine learning toolbox.
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These examples also show the power of combining topology with geome-
try. In both datasets, this is an integral part of the classification procedure.
The results in the hepatic lesion dataset provide an especially good example
of the potential gains that can be achieved by combining both fields.

In summary, using algebraic geometry and invariant theory, we have iden-
tified a family of coordinates on the space of finite metric spaces, or sampled
shapes. These coordinates can serve as a method for organizing the collec-
tion of all barcodes, and therefore any database whose members produce
barcodes. Of course, we can also use various metrics on barcode space, such
as the bottleneck or Wasserstein distances. It would be extremely interesting
to analyze the relationship between these distances on barcode spaces with
various more algebraic notions of distance on the barcode coordinates. It
would also be very interesting to define and analyze analogous coordinates
on spaces of multidimensional persistence modules, where they might give
information which is currently not accessible due to the complexity of the
algebraic descriptions of multidimensional persistence modules.
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The Ring of Algebraic Functions on
Persistence Bar Codes

Aaron Adcock Erik Carlsson Gunnar Carlsson ∗

April 3, 2013

1 Introduction

Persistent homology ([3], [13]) is a fundamental tool in the area of compu-
tational topology. It can be used to infer topological structure in data sets
(see [1], [4]), but variations on the method can be applied to study aspects
of the shape of point clouds which are not overtly topological ([5], [8]). The
methodology assigns to any finite metric space (such as are typically obtained
in experimental data of various kinds) and non-negative integer k a bar code,
by which we will mean a finite collection of intervals with endpoints on the
real line. The integer k specifies a dimension of a feature (zero-dimensional
for a cluster, one-dimensional for a loop, etc.), and an interval represents
a feature which is “born” at the value of a parameter (the persistence pa-
rameter) given by the left hand endpoint of the interval, and which “dies”
at the value given by the right hand endpoint. These barcodes have been
demonstrated to identify structure in spaces of image patches in [1] and [4],
and have been demonstrated to distinguish between handdrawn letters in
[8]. Because of the unusual structure of the invariant, i.e. as a collection
of intervals rather than numerical quantities, the method currently requires
substantial knowledge of topological methods. It would clearly be useful to
assign and interpret various numerical quantities attached to bar codes, so
that these outputs could be used as input to standard algorithms within ma-
chine learning, cluster analysis, and other methods. It is the purpose of this
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paper to identify an algebra of functions on the set of bar codes which is
defined in a conceptually coherent way.

The main idea is the following. A bar code with exactly n intervals
can be specified by a vector (x1, y1, x2, y2, . . . , xn, yn), where xi denotes the
left endpoint of the i-th interval and yi the right endpoint. However, this
representation is many to one, in that the bar code structure does not retain
the ordering on the intervals. In fact, the set of bar codes with exactly n
intervals can be identified with the set

Spn(R2)

the n-fold symmetric product of R2. For any set X, Spn(X) is defined to
be the orbit space of the action of the symmetric group on n letters on the
product Xn given by permuting the coordinates. On the other hand, the
space (R2)n is an algebraic variety over R ([10]). In fact, it is an affine space
of dimension 2n, and the symmetric group action mentioned above is an
algebraic action. It is then known (see [12]) that the orbit space inherits the
structure of an algebraic variety, and the elements of its affine coordinate
ring ([10]) are functions on the set of bar codes with exactly n intervals.
These affine coordinate rings are well known algebras referred to generically
as rings of multisymmetric polynomials ([9]). They can be quite complicated,
since it turns out that any set of algebra generators for them will satisfy non-
trivial relations or syzygies. It turns out, though, that there are inclusions of
algebraic varieties

Spn(R2)→ Spn+1(R2) (1)

which produce an inverse system of affine coordinate rings

· · · → A[Spn+1(R2)]→ A[Spn(R2)]→ · · ·

whose inverse limit we will denote, by abuse of notation, by A[Sp∞(R2)].
The notation A[−] denotes the affine coordinate ring. This algebra is known
to be freely generated on a set of minimal algebra generators ([9]).

The analysis of the system (1) above is not sufficient, though. This system
identifies a point ((x1, y1), . . . , (xn, yn)) ∈ Spn(R2) with the point

((x1, y1), . . . , (xn, yn), (0, 0)) ∈ Spn+1(R2)

In other words, a set S of n intervals is identified with the set of n + 1
intervals obtained by adjoining the interval of length zero whose two end-
points are zero. However, in the parametrization of the isomorphism classes
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of persistence vector spaces in [13] by barcodes, any interval of length zero
is identified with the zero module. So, we would like to determine the ring
of all algebraic functions (i.e. the elements of A[Sp∞(R2)]) which have the
property that they take the same value on any barcode as on the result of
adjoining any interval of length zero to it. In this paper, we will identify
this subring, describe its structure, and describe the algebra generators ex-
plicitly so that they can be used effectively by those interested in analyzing
databases of shapes.

2 The Ind-scheme B

We first discuss the set of bar codes, without any algebraic variety structures.
For every n, we first consider the set of bar codes containing exactly n inter-
vals. We will permit intervals of length zero. The set of intervals I can be
identified with the subset of R2 consisting of pairs (x, y) with x ≤ y. A bar
code containing n intervals is therefore identified with the n-fold symmetric
product Spn(I), where for any set X, Spn(X) is defined to be the orbit space
of the action of the symmetric group on n letters on the product Xn given
by permuting the coordinates. One can assemble these sets into a directed
system

I
i1→ Sp2(I)

i2→ Sp3(I)
i3→ Sp4(I)→ · · ·

where the maps in : Spn(I)→ Spn+1(I) are given by

in({I1, . . . , In}) = {I1, . . . , In, [0, 0]}

The direct limit of this system will be denoted by Sp∞(I). We are interested
in studying functions on Sp∞(I). Such a function can be identified with
an infinite vector (f1, f2, f3, . . .) of functions fn : Spn(I) → R satisfying the
compatibility condition

fn+1 · in = fn

The set of all such vectors of functions forms a ring R under coordinate-
wise addition and multiplication. It is not exactly what we want, however.
The reason is that under the parametrization of persistence vector spaces as
described in [3] and [13], intervals of length zero correspond to zero vector
spaces, and therefore all intervals of length zero should be considered equal.
This means that we should consider only functions F : Sp∞(I) → R for
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which
F ({I1, I2, . . . , In, [ξ, ξ]}) = F ({I1, I2, . . . , In, [η, η]})

for all possible values of ξ and η. The set of all such functions is a subring
R′ ⊆ R. This set of functions can be defined as the set of all functions on
the set B defined by

B =
∐

n

Spn(I)/ '

where ' is the equivalence relation generated by all relations of the form
{I1, I2, In, [ξ, ξ]} ' {I1, I2, . . . , In}.

Remark: The reader may suggest that one consider instead only the
subset I+ consisting of intervals of positive length. This will produce a
disjoint union of sets of barcodes, partitioned into the sets containing a fixed
positive number of intervals of positive length. Such a description does not
take into account the fact that we would like to topologize the space of all
bar codes in such a way that

limε→0{I1, I2, . . . In, [xn+1, xn+1 + ε]} = {I1, I2, . . . , In}

The reason for this is that small perturbations to the input data to the persis-
tence algorithms can modify the barcodes by modifying lengths of intervals a
small amount and add intervals of small length. This is the stability theorem
for persistence diagrams proved in [7].

The ring of functions R′ is too large to deal with effectively. Even the
much smaller ring of continuous functions on B is still too complex to describe
completely. We will observe that B is described as a colimit of algebraic
varieties, and that it is therefore possible to define the ring of algebraic
functions on B. It is this ring we will analyze.

Throughout this paper, k will denote the field R. All varieties will be over
k. We consider the affine space An = A(n) of dimension 2n, parametrized
with coordinates (x1, y1, x2, y2, . . . , xn, yn). Its affine coordinate ring is the
polynomial ring Bn = k[x1, y1, . . . , xn, yn]. There is an action of the sym-
metric group Sn on n letters on An, and from [12] it follows that the set of
orbits on the set of points of the variety is itself an affine algebraic variety,
with affine coordinate ring equal to the invariant subring BSn

n . Let Wi ⊆ An

denote the subvariety yi − xi = 0. We let Dn ⊆ Bn denote the subring of
functions whose restriction to Wi is independent of xi for all i. We wish to
characterize this subring algebraically.
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Proposition 1. The ring Dn is characterized algebraically as the subring of
all f for which

(
∂

∂xi
+

∂

∂yi
)f ∈ (yi − xi)

for all i.

Proof: We fix i, and consider all the functions f for which f |Wi is indepen-
dent of xi (and therefore yi). The operator ∂

∂xi
+ ∂

∂yi
induces a differential

operator on the quotient ring Qn = Bn/(yi−xi), which is identified with the
partial differential operator 2 ∂

∂xi
in

Qn
∼= k[x1, y1, . . . , yi−1, xi, xi+1, . . . , xn, yn]

The requirement is that the image f of f in Wi is independent of xi, and this
is equivalent to the condition ∂

∂xi
(f) = 0. This condition is to hold for each

i, which gives the result.

3 The ring of algebraic functions on B

We begin by changing coordinates via the formulae ξi = xi + yi and ηi =
yi−xi. It is clear that Bn can also be identified with k[ξ1, η1, . . . , ξn, ηn], and
that the symmetric group in the new coordinate system permutes the ξi’s
and ηi’s. Under this transformation, the operator ∂

∂xi
+ ∂

∂yi
is carried into the

operator 2 ∂
∂ξi

. This means that the ring Dn is identified with the subring of

functions f(ξ1, η1, . . . , ξn, ηn) for which ∂f
∂ξi
∈ (ηi) for all i.

Proposition 2. A k-basis for the Dn is given by the set of monomials

ξa11 ξ
a2
2 · · · ξann ηb11 ηb22 · · · ηbnn

for which ai > 0 implies bi > 0.

Proof: We note that the operator ∂/∂ξi carries each monomial to a constant
multiple of a single monomial, namely the monomial obtained by decreasing
ai by one. Moreover, containment in the ideal (ηi) is also given purely by
conditions on monomials, i.e. that bi > 0. We conclude that Dn is spanned
by monomials lying in Dn. But it is clear that a monomial µ lies in Dn

exactly if it is the case that whenever ξi divides µ, then ηi also divides µ.

5



This corresponds to the above numerical condition on the exponents in the
monomial.

The symmetric group action clearly preserves the subring Dn. Moreover,
it preserves the basis of monomials within Dn. Let {µα}α∈A denote a set
of orbit representatives of the Sn-action on the set of monomials defined in
Proposition 2. Let σα denote the sum of all the elements in the orbit of µα.

Proposition 3. We let DSn
n denote the subring of elements of Dn which are

invariant under the action of Sn. Then the elements σα form a k-basis of
DSn
n .

Proof: This result plainly holds for any algebra over a field of characteristic
zero on which there is a G-action which preserves a basis of monomials.

We have restriction maps πn,m : Dn → Dm, when n ≥ m, defined by
πn,m(ξi(resp ηi)) = ξi(resp ηi) for i ≤ m, and πn,m(ξi) = 0 for i > m. The
map πn,m is Sm-equivariant, where Sm acts by permuting the first m pairs of
variables. It follows that we may construct composites

DSn
n ↪→ DSm

n

πSm
n,m→ DSm

m

which we denote by σn,m, and therefore the inverse system

· · · σn+1,n−→ DSn
n

σn,n−1−→ D
Sn−1

n−1
σn−1,n−2−→ · · · σ2,1−→ D1

We will denote the inverse limit of this system by D.
We next recall some of the notation and basic facts about multisymmetric

polynomials, which can be found in Dalbec [9]. Let Rn,r be the polynomial
ring in nr variables,

Rn,r = k[xi,j; 1 ≤ i ≤ n, 1 ≤ j ≤ r]

We let the symmetric group Sn act on Rn,r via the formula σ(xij) = xσ(i)j,
and let

Λn,r = RSn
n,r,

denote the ring of Sn invariants. There is an inverse system parallel to the
one constructed above involving the rings Λn,r. We have evaluation maps

πn,m : Rn,r → Rm,r, m ≤ n
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defined by setting xir = 0 if i > m. The map πn,m is Sm-equivariant, when
Sm ⊆ Sn is the subgroup of permutations of the first m elements of the set
{1, . . . ,m}. We have the composites

Λn,r = RSn
n,r ↪→ RSm

n,r

πSm
n,m→ RSm

m,r = Λm,r

which we denote by ρn,m. The inverse limit of the system

· · · ρn+1,n−→ Λn,r
ρn,n−1−→ Λn−1,r

ρn−1,n−2−→ · · · ρ2,1−→ Λ1,r

will be denoted by Λr, and referred to as the ring of r-multisymmetric func-
tions. It has a grading

Λr =
⊕

k

Λk
r

induced by the grading on Rn,r. There is an evident embedding D ↪→ Λ2.
We will use this embedding to identify the structure of D.

The ring of multisymmetric functions has several interesting sets of gen-
erators. Given an array of nonnegative integers




a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
. . .

...
ak1 ak2 · · · akr




with k ≤ n and ai = (ai1, ..., air), we define the multisymmetric monomials
by

ma1,...,ak
= Sym(xa1111 · · ·xakrkr ) =

∑

σ∈Sn

∏

i,j

x
aij
σ(i)j ∈ Λr,

Sym applied to a monomial yields the sum of all monomials which are in the
orbit of the Sn-action.

They form a vector space basis of Λn,r, for any n. It is known that Λn,r is
generated as an algebra by the symmetrizations of monomials involving only
{x11, x12, . . . , x1r}. They are given by the formulae

pa = ma =
∑

i

xa1i1 · · ·xarir ,

and are called the multisymmetric power sums. While there are relations
among the power sums in finitely many variables, they freely generate the
inverse limit Λr, making it a polynomial algebra. See [9] for details.
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Our interest is in the case r = 2. Let us set

ξi = xi1, ηi = xi2,

and as before
Bn = Rn,2 = k[ξ1, η1, ..., ξn, ηn].

The subalgebra D ⊆ Λ2 now has the following characterization.

Theorem 1. As a subalgebra of Λ2, D is freely generated by the set ∆ of
elements of the form pa,b where b ≥ 1.

Proof: We first consider the subalgebra k[∆] ⊆ D generated by ∆. Because
∆ is a subset of the free generating set of Λ2, it is clear that the composite

k[∆]→ D ↪→ Λ2

is injective and isomorphic onto a polynomial subalgebra, and therefore that
k[∆] is itself a polynomial subalgebra of D. In order to prove that k[∆] = D,
we only need to count dimensions, and we formulate the counting in terms
of the Hilbert series. Recall that for a graded k-vector space V∗, we have the
Hilbert series

P (V∗) =
∑

i

dimk(Vi)t
i

The Hilbert series for a polynomial algebra on a single generator x of grading
i is (1− ti)−1. Moreover, if we are given two graded vector spaces V∗ and W∗,
then P (V∗ ⊗W∗) = P (V∗)P (W∗). Since there are n monomials of degree n
in ∆, we find that the Hilbert series for k[∆] is

P (k[∆]) =
∏

n

(1− tn)−n

If we can show that the Hilbert series for D is equal to this series, the proof
will be complete.

In Proposition 3, we found that a k-basis for D may be identified with
a set of orbit representatives of the Sn-action on the set of all monomials
which have the property that if the exponent of ξi is non-zero, then so is the
exponent of ηi. Such a set of representatives is given by the set of monomials
of the form

ξa11 η
b1
1 · · · ξall ηbll , ϕ−1(ai, bi) ≥ ϕ−1(ai+1, bi+1)
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where l ≤ n, and ϕ : N+ → N+ × N is the bijection

(ϕ1, ϕ2, ...) = ((1, 0), (1, 1), (2, 0), (1, 2), (2, 1), (3, 0), (1, 3), ...)

onto the set of possible nonzero exponents. The dimension of the k-graded
component of BSn

n is just the number of these monomials of degree k. Let us
say that (a, b) ≤ (c, d) when ϕ−1(a, b) ≤ ϕ−1(c, d), and let f(a, b, k) denote
the number of sequences (a1, b1, ..., al, bl) such that

(a, b) ≥ (a1, b1) ≥ · · · ≥ (al, bl), (ai, bi) ∈ N+ × N

and
l∑

1

(ai + bi) = k

with no restrictions on l. It is easy to check that it satisfies the recursion
relation

f(a, b, k) =
∑

(c,d)≤(a,b)
f(c, d, k − c− d),

This corresponds to a rule for the generating function fa,b(t) =
∑

k f(a, b, k)tk,

fa,b(t) = 1 +
∑

(c,d)≤(a,b)
tc+dfc,d(t) = 1 +

∑

(c,d)<(a,b)

tc+dfc,d(t) + ta+bfa,b(t)

Solving for fa,b(t) gives

(1− ta+b)fa,b(t) = 1 +
∑

(c,d)<(a,b)

fc,d(t) = fa′,b′(t),

where (a′, b′) is the element immediately below (a, b) under ϕ. It is readily
verified that the formula

ga,b(t) = (1− ta+b)−a
∏

1≤k≤a+b−1
(1− tk)−k,

satisfies the same recursion relation, and therefore that fa,b(t) = ga,b(t). Tak-
ing limits

lim
n→∞

P (BSn
n ) = lim

(a,b)→∞

∑

k≥1
f(a, b, k)tk =

∏

k≥1
(1− tk)−k

gives the result.
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4 Machine Learning on B with examples

4.1 Digits Example

To illustrate the classification potential of this technique, we apply it to the
MNIST database [11], of handwritten digits. We emphasize that the aim is
not to outperform existing machine learning algorithms for digit classifica-
tion, but to present an example that demonstrates one way of combining this
technique with existing machine learning techniques. While it is clear that
pure topological classification cannot distinguish between the digits (there
are three numbers that do not have any loops, three that always have loops,
one that has two loops and three that have style-dependent loops), we can
use the power of persistent homology to sift out more information. We begin
by showing the full analysis of a few digits and then give the empirical results
of applying this technique to a subset of the MNIST database.

4.1.1 Topological Methods

We begin by describing a particular graph construction given a digital image.
We treat the pixels as vertices and add edges between adjacent pixels (includ-
ing diagonals). We can now define a filtration on the vertices of the graph
corresponding to the image pixels. A natural filtration could be constructed
using the pixel intensities of the original image (see Figure 6, Section 4.2).
Another filtration, used in [8], can be constructed by thresholding, to pro-
duce a binary image, and adding 1-pixels as we sweep across the image. This
adds spatial information into what would otherwise be a purely topological
measurement. Since the orientation of the digit matters (a 6 is the same as
a 9 given a 180 degree rotation), we choose the latter approach and sweep
across the rows and columns of each digit.

By taking into account spatial information, we get a rough view of the
location of various topological features. For example, though a ‘9’ and ‘6’
both have one connected component and a single loop, the loop will appear
at different locations in the top-down filtration for the ‘9’ and ‘6’. The digits
and one of the resulting barcodes are shown in Figures 1 and 2. Using all
four sweeps, and both the Betti 0 and Betti 1 barcodes, reveals additional
differences between each of the digits.
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Figure 1: No Loop Digits with Betti 0 barcode, sweep to right

Figure 2: Loop Digits with Betti 1 barcode, sweep to top

4.1.2 Feature Selection

We can use the techniques described in this paper to coordinatize the bar-
code space B. In machine learning terminology, these coordinates are called
features. This allows us to characterize the barcodes generated by each data
point as a compact feature vector. This also gives us great flexibility in se-
lecting features that work well with our data. We can then apply a standard
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machine learning algorithm, such as a support vector machine (SVM), to
classify the data.

We selected a set of four features from the invariants discussed in this
paper. Intuitively, the exponents in each polynomial will give the relative
value of small bars or endpoints compared to large bars or endpoints. For
example, if comparing two bars of length b

2
and b, the first bar will have

more weight in an invariant linear polynomial than in an invariant quadratic
polynomial. Indeed,

(
b

2

)2

=
b2

4
,

(
b

2

)3

=
b3

8
,

(
b

2

)4

=
b4

16
,

...

We selected four features,

∑

i

xi(yi − xi)
∑

i

(ymax − yi)(yi − xi)
∑

i

x2i (yi − xi)4

∑

i

(ymax − yi)2(yi − xi)4

which when applied to the four sweeps, each with a 0-dimensional and 1-
dimensional barcode, gives a feature vector of total size 32 which we then
arranged into a feature matrix. Intuitively speaking, the first two features
take all of the bars, lengths and endpoints, into account. The second two
features heavily favor the arrangement of longer bars. A visualization of
a matrix of 10,000 digits using classical multidimensional scaling (MDS) is
shown in Figure 3 and the spectrum of the matrix is shown in Figure 4.
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(a) A 2D View of the Data
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(b) A 3D View of the Data

Figure 3: Visualization of Data using Topological Features
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Figure 4: Normalized Spectrum of Topological Feature Matrix

As is typical when using a SVM, we scaled each coordinate such that the
values were between 0 and 1. The SVM was implemented using software
provided by [6].

4.1.3 Classification Results

We applied these methods on a subset of 1000 digits from the MNIST
database to tune parameters of the algorithm and test various kernels. For
the radial basis function e−γ|u−v|

2
(RBF, also known as the Gaussian kernel),

we used γ = 8. For the polynomial kernel (γ(u ∗ v) + a)d, we used d = 3
with γ = 2 and a = 2. In both functions, u and v represent the calculated
feature vectors. After this, we progressively increased the size of the subset
to 10,000 handwritten digits.

The classification accuracy was measured by partitioning the data set into
one hundred subsets and using cross-validation successively on each subset.
The results are shown in Table 2.
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Table 1: Classification Accuracy of two SVM Kernels

SVM 1000 Digits 5000 Digits 10000 Digits
Gaussian 87.70% 91.54% 92.04%
Polynomial 88.00% 91.62% 92.10%

With the polynomial kernel, an error of 7.9% is seen. As mentioned above,
the purpose of this test is not to outperform existing classification algorithms
but to demonstrate one application of the topological features. In line with
this, we examined some of the digits that the algorithm failed on. Figure 5
shows a few of the typical problem digits.

(a) Stylistic Problems

(b) Spurious Topological Changes

Figure 5: Common Misclassifications

The most common confusion is between a ‘5’ and a ‘2’ written with no
loop. Other confusions often occur between the shown style of ‘7’ and slanted
‘3’s and between a certain style of ‘4’ and a ‘9’. These confusions are not
unexpected since these numbers are topologically the same. The extra spatial
information added by the directional sweeps is sensitive to variations in the
slant or style of handwriting and a visual inspection of these digits suggests
why the algorithm has difficulty classifying these particular examples. Other
common confusions occur when topological changes occurred to the digit,
specifically when the writer adds or removes a loop.
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4.2 Hepatic Lesion Classification

In this example, we apply topological features to classifying hepatic lesions.
The dataset consists of computed tomography (CT) scans of 132 hepatic
lesions that are outlined and annotated by radiologists. There are nine di-
agnoses represented in the data: cysts (45 lesions), metastases (45 lesions),
hemangiomas (18 lesions), hepatocellular carcinomas (HCC, 11 lesions), focal
nodules (5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN, 3
lesions), a single laceration and a single fat deposit. Additionally, there are
no controls for the size of the lesion and the lesions vary from under 100
pixels to 10,000 pixels. Because of the unbalanced nature of the data, we
focus on the subset of cysts, metastases, and hemangiomas.

Classification results using the barcode metric (matching metric) were
first presented in [2], and we follow the same methods for processing and
generating barcodes from the data. We will briefly describe the methods
here. For a more detailed account, please read [2].

4.2.1 Topological Methods

As mentioned above, a natural filtration for an image is to filter by the pixel
intensity. An example of this filtration is given in Figure 6. The variation
in pixel intensity allows us to use a one-dimensional filtration on the pixel
intensity, but as the results will show, the classification is improved when
geometric information is added into the filtrations.

As there is no rotational orientation of the lesions, we cannot add in
geometric information using the sweeps described in the previous section.
Instead, we use the lesion border provided by the radiologist and assign
each pixel its distance from the border. Then, by using two-dimensional
homology, we achieve improved results, especially in the case of the heman-
giomas which are characterized by large dense regions on the outer part of
the lesion. Because two-dimensional filtrations are computationally intensive,
we approximate the two-dimensional filtration with one-dimensional barcode
‘slices’ along the border filtration axis. We use 7 slices per lesion and both
the Betti 0 and Betti 1 barcodes.

Note that we can look at each filtration from each direction and catch
different features. The intensity filtration can add high intensity pixels first
or low intensity pixels first. The boundary filtration can begin with pixels
near the boundary first or pixels far from the boundary first. This yields 56
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one-dimensional barcodes per lesion.
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(a) Simple image with filtered complex

(b) β0 barcode for above image

(c) β1 barcode for above image

Figure 6: Constructing an increasing 1D-filtration on an image [2]

4.2.2 Feature Selection

We use a slightly different set of four features as compared to the digits
example. These features are shown below. The two sets of features that
focus on long bars and features which take into account shorter bars is used
here. In this application, this is analogous to filtering the barcode to remove
the large number of smaller bars. Because of the variations in lesion size,
we look at the average over each bar to try and eliminate the effects of large
variations in lesion size.

17



n∑

i

xi(yi − xi)/n

n∑

i

(ymax − yi)(yi − xi)/n

n∑

i

x2i (yi − xi)4/n

n∑

i

(ymax − yi)2(yi − xi)4/n

As mentioned above, we have 56 barcodes per lesion. With four features,
this yields a feature vector of 224 features for each lesion.

4.2.3 Classification Results

We apply the SVM using only the Gaussian kernel and use an exponential
parameter sweep to find optimal values of γ for each method. We use LOOCV
to calculate the classification accuracies. The results are shown below. Table
2 gives the results for 1D and 2D filtrations for several different datasets
while Table 3 shows how well the algorithm performs on different lesion
types for the different filtrations. Table 4 demonstrates the effect of size on
classification.

Table 2: SVM Classification Accuracies for 1D and 2D Filtrations

Filtration Full HcHeCM HeCM CM
1D (Intensity) 53.03% 59.66% 65.74% 75.56%
2D 67.42% 74.79 % 81.48% 86.67%

Using [2], we see that that topological features are comparable with using
the matching metric to generate features. The results from the HeCM dataset
for the two methods are shown below. They reflect the correct classification
of a single lesion using a the topological features, making the two methods
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Table 3: HeCM % Classification Accuracy by Lesion Type

Filtration % of HeCM % of Heman. % of Cysts % of Metas.
1D 65.74% 33.33% 75.56% 68.89%
2D 81.48% 61.11% 86.67% 84.44%

Table 4: Classification by Lesion Size of HeCM

Lesion Size by Area % Accu. # of Heman. # of Cysts # of Metas.
All 81.48% 18 45 45

<10000 px 82.52% 18 42 43
<5000 px 84.78% 16 39 37
<2500 px 86.25% 14 32 34
<1250 px 88.514% 8 28 23

virtually the same for this subset of the data. Comparing with the other
results in [2] shows that the two results are very close in most categories,
with each slightly outperforming the other in certain subsets of the data.

Table 5: Classification Methods

Filtration Barcode Features Matching Metric
1D 65.74% 63.80%
2D 81.48% 80.56%

4.3 Discussion

These two examples demonstrate the classifying power of topological fea-
tures when applied to real world datasets. This was done using off-the-shelf
machine learning algorithms showing that these features can easily be com-
bined with more traditional classification methods adding a set of additional
classification features to the machine learning toolbox.

19



These examples also show the power of combining topology with geome-
try. In both datasets, this is an integral part of the classification procedure.
The results in the hepatic lesion dataset provide an especially good example
of the potential gains that can be achieved by combining both fields.

In summary, using algebraic geometry and invariant theory, we have iden-
tified a family of coordinates on the space of finite metric spaces, or sampled
shapes. These coordinates can serve as a method for organizing the collec-
tion of all barcodes, and therefore any database whose members produce
barcodes. Of course, we can also use various metrics on barcode space, such
as the bottleneck or Wasserstein distances. It would be extremely interesting
to analyze the relationship between these distances on barcode spaces with
various more algebraic notions of distance on the barcode coordinates. It
would also be very interesting to define and analyze analogous coordinates
on spaces of multidimensional persistence modules, where they might give
information which is currently not accessible due to the complexity of the
algebraic descriptions of multidimensional persistence modules.
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