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Abstract

We present an application of persistent homology to the image
correspondence problem, also known as image registration, which is
used to produce 3D reconstruction of scenery from two or more cam-
eras. We present a novel filtered complex in the sense of persistent
homology, and show that nontrivial homology groups in its persistence
diagrams correspond to recognizable anomalies in images pairs, such
as repeated patterns, which contribute to nonconvexity of the relevant
cost function. We present examples with actual image pairs, and prove
a basic result that the corresponding homology classes are invariant
under certain continuous deformations.

1 Introduction

Suppose we are given a pair of pictures of the same scene from different
angles, represented by grayscale images called the source and target respec-
tively. We will denote them as functions Ij : Dj → R for j = 1, 2 for
the source and target respectively, where both domains are the unit square
D1 = D2 = [0, 1] × [0, 1], and the value of Ij(p) = Ij(x, y) is the inten-
sity. The goal of image correspondence is to find a suitable transformation
T : D1 → D2 with the property that E(T ) is as small as possible, where E
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is some cost function measuring the difference between I1(x, y) and the the
composition I2(T (x, y)). In typical applications, the correspondence T might
be considered suitable if it is continuous, differentiable, of bounded variation,
or some other niceness criteria. If the source and target come from cameras
at the same height (e.g. a person’s left and right eyes), it is natural to require
that T satisfy the“epipolar” condition that corresponding pairs p, ϕ(p), have
the same y-coordinate. A basic example of a cost function is the L2-measure

E(ϕ) =

∫
D1

‖I1(p)− I2(ϕ(p))‖2 dp, (1)

which might also contain a term penalizing high variation in ϕ. Another
possibility if I1, I2 are continuous is to replace the integral in (1) with the
supremum over D1.

A common problem with the optimization approach is that E(ϕ) may
have local minimizers. Some are simply due to noise in the images, which can
be resolved by a smoothing of the objective function, for instance by blurring
the images. More serious ones occur when the source image matches with
more than one region in the target, or when there is occlusion by foreground
objects, so that regions in the source do not have a unique match in the
target. One way to deal with this is to only study key points of the two
images, as is the case for the highly successful SIFT and SURF methods
[1, 6].

In this paper, rather than smooth away local basins, we propose a novel
construction which uses persistent homology to classify them, and identify re-
gions in which they are present. We present a new filtered simplicial complex
associated to a pair of images, with the property that its persistent homology
groups encode robust categories of correspondences, which respect continu-
ous deformation in a particular sense defined in Section 5. In Section 4, we
present practical examples in which confounding properties of image pairs
such as repeated patterns can be identified with long bars in the persistent
diagram of the corresponding complex.

There are several ways such classifiers could be used to address the original
correspondence problem. First, if persistent homology detects the presence
of one or more correspondences in a particular domain, one could divise
algorithms for producing one or more correspondences that represent a given
homology class, which is part of the general problem of producing cycle
representatives of homology classes when they exist. Such representatives
may then serve as highly informed initial guesses that avoid obstructions,
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due to confounding features of the image detected by topology. Conversely,
if there are no persistent homology classes, that represents a certificate that
there are no viable correspondences in a particular domain, as described in
Corollary 1 below. The solver would therefore be well served to move on
to another region of the source images, rely on other cameras, or move on
to a different formulation of the correspondence problem. This leads to the
possibility of searching for subregions of the source image of maximal size
which satisfy the property that topologically, they are expected to contain a
unique correspondence.
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2 Definitions

In this section we recall some relevent concepts from persistent homology,
and formulate the correspondence problem.

2.1 Persistent homology

In this paper, a simplicial complex X will mean an abstract simplicial com-
plex with no particular imbeding in space. In other words, X is a collection
of subsets ∆ of some index set S such that if ∆ ∈ X, and ∆′ ⊂ ∆, then
∆′ ∈ X. The subsets ∆′ ⊂ ∆ are called the faces of ∆. Its geometric re-
alization will be denoted |X|. For any i, let Xi denote the i-dimensional
simplices. Fix a field F, and denote the set of i-chains, i-cycles, i-boundaries,
and the boundary operator over F by Ci(X), Zi(X), Bi(X), and ∂, respec-
tively. In applications, it is most efficient to let F be a finite field. If A ⊂ X
is a subcomplex, then we have the long exact sequence in (reduced) relative
homology,

· · · → Hi(A)→ Hi(X)→ Hi(X,A)
δ−→ Hi−1(A)→ · · · (2)

where Hi(X,A) is the relative homology group, and δ is the connecting ho-
momorphism.
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If X is induced from a triangulation of a closed region with boundary in
Rn, then its boundary is the image of a subcomplex ∂X ⊂ X. The orientation
on Rn determines a well-defined fundamental class

[X] =
∑

∆∈Xn

±e∆ ∈ Hn(X, ∂X),

where there is a minus sign if the ordering of the indices on ∆ is the reverse
of the orientation on Rn.

A filtration function on X is a function f : X → R ∪ {∞} such that
whenever ∆′ is a face of ∆ ∈ X, we have f(∆′) ≤ f(∆). For any a, the set

Xa = {∆ ∈ X : f(∆) ≤ a} ,

is a subcomplex, with an inclusion map ιa,b : Xa → Xb for a ≤ b. A
complex together with a filtration function is called a filtered complex. We
will denote Ca

i (X) = Ci(X
a), and similarly for the cycles, boundaries, and

homology groups. Then ιa,b induces an inclusion map ia,b∗ : Ca
i (K) ↪→ Cb

i (X)
that commutes with the boundary operator, which in turn induces a map
Ha
i (X) → Hb

i (X), that need not be injective or surjective. For a ≤ b,
let Ha,b

i (X) denote the persistent homology group, which is the image of
Ha
i (X) ∈ Hb

i (X).
For any numbers a ≤ b, we have a nonnegative integer

ρK(a, b) = dimHa,b
i (K) = rk

(
Ha
i (K)→ Hb

i (K)
)
.

The ranks are encoded in the barcode diagram [2, 3, 9], which is the unordered
collection of intervals in R+ ∪ {∞}, with the property that

ρK(a, b) = # {[c, d] ∈ barcode(K) : [a, b] ⊂ [c, d]} . (3)

It is constructed by assuming that a, b take a discrete set values in Z · ε ⊂ Q.
Then considering all the homology groups at once as a graded module

F[x]→M =
⊕
a

Ha(X), x 7→ ι =
∑
a

ιa,a+ε
∗ .

The barcode is then determined by decomposing M as a module over a
principal ideal domain. For an explanation of how these barcodes that can
be generated, we refer to the JavaPlex tutorial [8].
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2.2 Image correspondences

Denote a source and target image I1, I2 respectively by functions from the
unit square

Ij : Dj → C, D1 = D2 = [0, 1]× [0, 1],

into some set of possible colors C, for instance [0, 1]3 for color images or [0, 1]
for grayscale. We suppose that both images are pictures of the same scene,
taken from different predetermined locations and angles. For each p ∈ D1

belonging to the domain of the source image, we choose a parametrization
of the epipolar line of the form

qp : [0, 1]→ R2, q(x,y)(t) = (x+ ct+ d, y)

for some numbers c, d determined by the relative placement of two cameras,
and lower and upper bounds on the x coordinate of corresponding points. In
other words, the line parametrizes the points in the target which could be in
correspondence with points in the source, assuming the cameras are parallel
to the ground, of the same height, and pointed in the same direction. Our
examples are all of this form, which is called being rectified, but in general
the parametrization could be more complicated.

Now select a triangulation of D1 represented by an inclusion of a pure
2-dimensional simplicial complex p : |K| → D1. Suppose we are also given
a continuous distance function d(T,T′) for every pair of triangles T,T′ ∈ D1,
measuring the distance between the restriction of I1 to T, and the restriction
of I2 to T′. The basic function we will use in the examples section is to
affinely map T and T′ to the unit right triangle whose vertices are (0, 0),
(1, 0), and (0, 1), and evaluate the L2 metric between them. That is,

d([p0, p0 + u1, p0 + u2], [q0, q0 + v1, q0 + v2]) =∫ 1

s=0

∫ 1−s

t=0

dC (I1(p0 + su1 + tu2), I2(q0 + sv1 + tv2)) dsdt (4)

where dC is just the L2-metric on the color space C = [0, 1]3. Another
extension we will use involves a penalty term when T′ is highly warped,
meaning it is very far from being equilateral, or has the opposite orientation
as T.

Define a simplicial correspondence to be an element of the set

Γ(K) = {ϕ : K0 → I}
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of functions on the vertex set, representing a piecewise linear function on
|K| = D1. The cost function E : Γ(K) → R+ is given by the worst-case
triangle

E(ϕ) = max
[i0,i1,i2]∈K

d ([p0, p1, p2], [qp0(ϕ(i0)), qp1(ϕ(i1)), qp2(ϕ(i2))]) (5)

for pa = p(ia).

3 Main construction

In this section we present the main object of the paper, define the complex
described in the introduction in the case of two-dimensional images, and
present the general pipeline to be followed in the examples of Section 4.

3.1 Illustration in the continuous case

We describe the idea in the case of one dimensional images. Suppose I1, I2

are functions on the interval D1 = D2 = [0, 1]. Consider a correspondence to
be a continuous increasing function T : D1 → D2, with the property that

d(x, T (x)) = ||I1(x)− I2(T (x))||2 ≤ a

for some upper bound a > 0 on the dissimilarity between I1 and I2. For the
functions in Figure 1, and a > 0, there will be infinitely many correspon-
dences. However, one can see that there are essentially three groups of them
up to continuous deformation, corresponding to the upward and rightward
moving paths from the lower boundary of Figure 1c to the upper one, avoid-
ing the shaded regions which have high dissimilarity (the fact that the three
paths only move up and to the right is equivalent to the requirement that T
has to be increasing).

Let X = D1 × D2 be the set of (x, y) pairs in Figure 1c. We have the
persistent homology group for the sublevel set filtration

Ha,b
i (X) = im

(
Hi (X

a)→ Hi

(
Xb
))

(6)

for any a < b, where Xa = d−1(−∞, a] ⊂ X. The relevant barcodes for these
groups are shown in Figure 2. Let π : X→ D1 be the projection π(x, y) = x,
and let

A = π−1(∂D1) = π−1({0, 1}) = {0, 1} × [0, 1]
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(a) Source function I1(x) (b) Target function I2(x)

(c) Dissimilarity measure d(x, y) = ||I1(x)− I2(y)||2

Figure 1: A source and target function, shown in 1a and 1b, where the
source is on the vertical axis and the target is on the horizontal axis. A
correspondence is an increasing continuous function T satisfying d(x, T (x)) ≤
a. For a relatively small, there are essentially three for these two signals,
corresponding to three up and right moving paths from the bottom to the
top of 1c avoiding the shaded regions, for which d(x, y) > a.
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(a) β0

(b) β1

Figure 2: The barcodes for the zeroth and first persistent homology groups
of the function d : [0, 1]× [0, 1]→ R from Figure 1c.

be the inverse image of the boundary ∂D1. We now similarly have persistent
homology for the restriction of d to A, and also the relative homology groups
Ha,b
i (X,A).

A correspondence then induces a continuous section T̃ : D1 → X satisfy-
ing

π(T̃ (x)) = x, d(x, T̃ (x)) ≤ a,

for all x. It induces a persistent homology class

[T ]a,b = T̃∗([D1]) ∈ im
(
H1(Xa,Aa)→ Ha,b

1 (X,A)
)

(7)

for any b > a, where

[D1] ∈ H1(D1, ∂D1) ∼= H1(S1)

is a generator of the first homology of ∂D1, which is equivalent to the circle.
If T ∼ T ′ are homotopy equivalent in (Xb,Ab), meaning T can be deformed
into T ′ without ever leaving Xb, keeping the endpoints in Ab, they will induce
the same class [T ]a,b = [T ′]a,b. We also have the image

[∂T ]a,b = δ ([T ]a,b) ∈ Ha,b
0 (A). (8)

under the connecting homomorphism from the long exact sequence (2). The
elements [T ]a,b and [∂T ]a,b are the one-dimensional version of the classifiers
referred to in the introduction.

In the case of two-dimensional image correspondence, we have few dif-
ferences. First, the domain of an image is now D1 = D2 = [0, 1] × [0, 1] as
in Section 2.2. We would then expect the space X from Section 3.1 to have
dimension 4. But by the epipolar condition that corresponding points have
the same y-coordinate, we instead take

X = {(p, q) ∈ D1 ×D2 : p2 = q2} ,
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which is three-dimensional. The preimage of the boundary ∂D1 is now a
cylinder, A = π−1(∂D1) = S1 × [0, 1], where π(p, q) = p, and S1 is identified
with the boundary of the square. The dimensions of the persistent homology
groups are moved up by one dimension,

[T ]a,b ∈ H2(X,A), [∂T ]a,b ∈ H1(A).

We have found that the second class [∂T ]a,b is favorable in practice, for
one thing because homology in one-dimension is a smaller computation. In
examples of correpondence, we will be interested in the persistence diagram
of the filtered vector space containing this class, which is

im (H2(X,A)→ H1(A)) = ker (H1(A)→ H1(X)) . (9)

Its elements may be thought of as classes of correspondences on the boundary
∂D1, which may be extended to the interior, and therefore map to zero
in H1(X). The setup of each of our examples in Section 4 is to present a
correspondence problem, exhibit the persistence diagram associated to the
filtered vector space on the right side of (9), and show that features of the
diagram, i.e. long bars, correspond to pertinent features of the image pair.

3.2 Definition of the filtered complex

The preceding section shows how persistent homology classes can in principal
be used to classify image correspondences up to continuous deformation,
if the relative persistent homology groups Ha,b

i (X,A) can be computed in
practice. In this section, we construct a simplicial complex X representing
X, together with a filtration function f : X → R≥0 in place of d. We also
define a simplicial complex K associated to a triangulation of the base D1,
and a complex A ⊂ X representing A ⊂ X, which is also filtered by f .

Choosing a simplicial complex to represent a space is an interesting prob-
lem in general. The motivation for the construction of this paper is that it
is fibered as a complex of the base X → K representing π : X→ D1, so that
a correspondence T determines a section ϕ : K → X. It is therefore possible
to define

[ϕ]a,b ∈ Ha,b
2 (X,A), [∂ϕ]a,b ∈ Ha,b

1 (A)

analogous to (7) and (8). A biproduct of doing this is that X does not come
from a triangulation of X, nor is it embeddable in R3.
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To do this, begin with a triangulation p : |K| → D1, and let ∂K ⊂ K
denote the boundary, as in Section 2.2. The underlying complex of X is
given as follows.

1. Choose some natural numbers Ni for every vertex i ∈ K0, and define
the set of 0-simplices as

X0 = {(i, j) : i ∈ K0, 1 ≤ j ≤ Ni} .

2. Include every 2-simplex ∆ = [(i0, j0), (i1, j1), (i2, j2)] for which [i0, i1, i2]
is a 2-simplex in K2, and call these the horizontal faces of X.

3. Add every 3-simplex [(i0, j0), (i1, j1), (i2, j2), (i3, j3)] satisfying

(a) There are only three distinct elements in {i0, i1, i2, i3}, and they
are the vertices of a 2-simplex in K.

(b) If ia = ib for a 6= b, then ja = jb ± 1.

In other words, we have added a 3-simplex whenever it includes two
horizontal faces differing only in one coordinate by a j-value of one.

4. Include all the faces of every simplex added thus far, making X a
legitimate simplicial complex. The 2-simplices that have been added
as a result will only contain two distinct i-values, and will be called
vertical faces.

The effect of adding the 3-simplices in item 3 is to “fill in” the space between
correspondences. Notice that there is an obvious surjective map π : X → K
of complexes

π([(i0, j0), ..., (ik, jk)]) = [i0, ..., ik],

that forgets the j-values. Let A = π−1(∂K) be the subcomplex of X whose
i-values lie in the boundary ∂K ⊂ K.

We next define a filtration on this complex. For every horizontal 2-
simplex, define

f([(i0, j0), (i1, j1), (i2, j2)]) =

min
ja−1≤sa≤ja

d ([p0, p1, p2], [qp0(s0), qp1(s1), qp2(s2)]) , (10)

where d is choice of distance measure from Section 2.2. On every 3-simplex,
we define the value of f to be the minimum of the two horizontal 2-simplices
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that are its faces. For every remaining simplex, the weight is inductively
defined as the maximum of all simplices for which it is a face. We also obtain
a filtration on A by restriction.

As described in Section 3.1, the persistent homology groups we are inter-
ested in are the persistence digrams for the kernel of the map induced by the
inclusion

ker (H1(A)→ H1(X)) . (11)

In order to generate a persistence diagram in JavaPlex we will make use of a
workaround introduced in [4], which was used to study the image (11) in the
case whereA is the ideal Klein bottle, andX is a filtered complex representing
a dataset of natural images. In this setup, we select an parameter t0 > 0,
and define Xt0 to have the same underlying complex as X, but where the
persistence value of all interior simplices ∆ ∈ X − A (which includes all
horizontal simplices) begin at t0. This encodes the map A → X into single
complex, by having the persistence values in the interior X − A begin at
t0, by simply shifting the persistence values. We have found this approach
to be sufficient for our purposes, though in future applications we expect to
study the kernel in (9) directly, for instance using persistence for kernels and
images in Dionysus [7].

We now describe how to interpret the persistence diagram of Xt0 in terms
of image correspondences. For each image pair, the persistence diagram will
show the following types of bar:

1. Multiple short bars: these may be disregarded as noise.

2. Multiple long bars, which begin to the right of the chosen offset pa-
rameter t0: these represent partial solutions in some subregion in the
interior, that do not extend to the boundary values.

3. Long bars, with left endpoint slightly greater than zero, and right end-
point slightly greater than t0: they represent elements of the kernel
(11), which come from correspondences of the entire source image. In
other words, they represent true solutions to the correspondence prob-
lem.

4. Even longer bars whose right endpoint is significantly greater than t0:
They represent correspondences near the periphery of the source im-
age, but do not extend to the entire diagram, and so are not in the
kernel (11). In other words, they are partial solutions which solve the

11



correspondence problem near the boundary of the image, but which do
not match on some regions in the interior.

3.3 Pipeline

Here we give an explicit description of the complex Xt0 that determines
classes of correspondence between two images. We assume that we are given
two images I1 and I2, as indicated in Figure 3a. The construction is as
follows:

1. Let L be a collection of evenly-distributed landmark points in D1, such
as a hexagonal lattice (Figure 3b).

2. Associated with each landmark point p ∈ L, we have a collection of
possible images of that landmark point Q(p) in the domain of I2, which
are the possible q-values from the last section. The set Q could be
infinite or finite, and is determined by some prior knowledge about the
camera placement or other initial pre-processing. In our example, we
have two cameras that are horizontally aligned, so we restrict Q(p) to
a horizontal interval, which we discretize to obtain a finite complex, as
shown in Figure 3c. The set Q partially characterizes the “niceness”
of the correspondence map that we seek, by restricting the plausible
locations that we think that p could land under a “nice” mapping T .
The 0-simplices of the complex X are the union

⋃
p∈LQ(p).

3. Build a Delaunay triangulation of L. For each triangle T = (x, y, z) in
the triangulation, and for every triangle T′ of the form (u, v, w), with
u ∈ Q(x), v ∈ Q(y), and w ∈ Q(z), we do the following:

If the shape of T′ is “similar” to that of T, then add a 2-simplex
to X (by “similar”, we mean for example that the lengths of the
perimeters of T and T′ are not too different, and that their orienta-
tions are the same). Its persistence value is d(T,T′), where d(·, ·) is
the distance measure in Equation (4), or any similar counterpart,
such as earth mover’s distance. We have done this instead of the
minimum taken in equation (10) only in the interest of speed, and
because in our examples the values do not vary much in that do-
main, making this an acceptable approximation. In more sensitive
applications we would expect to produce each value by solving an
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(a) Source and target images

(b) Landmark points in the source

p

(c) A landmark point p in the source and the set Q(p) in the target.

(d) A few triangles T′ associated with the magnified triangle T in the source. The
source triangle T is an element of the Delaunay triangulation of the landmark points.

Figure 3: The construction of our proposed complex. The source and target
images are slightly skewed from one another, to suggest different camera
angles of the same scene. The middle of the five triangles in the target image
of 3d will have the lowest value of d(T,T′).
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actual optimization problem in a highly localized domain. This
obviously adds component 1- and 0-simplices as well, whose per-
sistence values are not defined yet.

This process is shown in Figure 3d.

4. Set the persistence values of the lower-dimensional simplices in the
natural way: each 1-simplex has a persistence value equal to the min-
imum persistence value among all 2-simplices containing it, and each
0-simplex has a persistence value equal to the minimum persistence
value among all 1-simplices containing it.

5. Choose a value t0 > 0 which is somewhere between the expected left and
right endpoints of the important bars in the persistence diagram. For
each simplex ∆ (of any dimension), if ∆ contains an interior vertex, add
t0 to its persistence value. Call the complex with the new persistence
values Xt0 .

4 Practical Examples

In this section present three example applications, following the description
of the pipeline from Section 3.3. Each example contains an image pair and a
description of the correspondence problem, technical information such as the
choice of the dissimilarity function and the value of the t0 parameter, and
the persistence diagram for the complex Xt0 described at the end of Section
3.2.

4.1 Example: identical black discs

Our first example is primarily a conceptual warmup example which illustrates
some of the interesting features in Example 4.3. We choose our source and
target to be the two identical black opaque circles shown in Figure 4.

The source image is triangulated by a complex K with 100 equilateral
triangles. Our distance function is the L2-distance from (4). We remove
all 2-simplices of X which are either orientation reversed, or are sheared
to a width of more than double that of the based triangle, by setting the
persistence score to infinity. The t0 parameter is chosen to be 4.6 × 104. In
place of the desired min in equation (5), we take a rough approximation of the
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(a) Source image (with Delaunay trian-
gulation)

(b) Target image

Figure 4: Two identical source and target images

min in (10) by only sampling a single value for speed purposes as described
in Section 3.3.

The persistence diagram is shown in Figure 5. The important information
is that there are three long bars, shown bolder in the picture, beginning before
t0. Two of these continue well beyond t0, while the lower one stops almost
immediately after it. The bar that stops near t0 represents correspondences
which correctly correspond points in the entire image. The two longer bars
correspond to two types of correspondence of the boundary which cannot be
extended to the entire picture, represented by those which carry the boundary
of the source entirely in the white space to the left of the black disc in the
target, and those that are entirely on the right.

4.2 Example: dot mesh

The second correspondence problem is to find a mapping ϕ that preserves
vertical coordinates between the point clouds shown in Figures 6a and 6b.
Although not remotely apparent to the naked eye, there are actually two
correspondences between the two, as illustrated in Figures 6c, 6d and 6e.
The two triangulations show that there are essentially two different ways to
map the source points into the second.

Our distance measure is defined by

E(ϕ) = max
p∈A

min
q∈B
‖p− q‖. (12)

For speed, we have simply replaced the maximum by the values at a sample
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D
im

 1

Figure 5: The JavaPlex barcode diagram for the images of black discs in
Figure 4.
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(a) Source image (b) Target image

(c) Triangulated source (d) First correspondence (e) Second correspondence

Figure 6: Two different correspondences of a mesh filled with a point cloud
into the same target.

we did for the circle example. The 2-simplices in X whose width is more than
double that of the associated triangles in the domain of the source image D1

are effectively removed by setting their persistence score to infinity, and also
those triangles in which the orientation has been reversed. The t0 parameter
is set to 180. Figure 7 shows the complexes Xa for a few choices of a. Notice
that the interior triangles begin appearing in Figure 7c, once the t0 parameter
is passed.

The persistence diagram shown in Figure 8 shows two long bars, which
detect the two possible types of correspondence shows in Figures 6d and 6e.

4.3 Example: Pennies on a tablecloth

Next consider two real images of a penny sitting on a tablecloth with an
interesting pattern shown in Figure 9. We began by quantizing color values
using a filter, and then used a Wasserstein distance function. We eliminated
highly skewed triangles using the same criteria from Examples 4.1 and 4.2.
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(a) X<50
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(b) X<150
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(c) X<200

Figure 7: Some diagrams showing the complex X<a for a few values of a for
the dot mesh shown in Figure 6.
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D
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Figure 8: The JavaPlex barcode diagram for the images in Figure 6.
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(a) Source image (b) Target image

Figure 9: Two pictures of a penny on a tablecloth

0 0.5 1 1.5 2 2.5 3 3.5 4

×104

D
im

 0

0 0.5 1 1.5 2 2.5 3 3.5 4

×104

D
im

 1

Figure 10: The JavaPlex barcode diagram for the images in Figure 9

The parameter is t0 = 2.6× 104.
The persistence diagram is shown in Figure 10. We have removed all

barcodes of length < 30 for visual purposes. The first Betti number output
appears similar to the first example, which is to be expected. However,
beyond the extra noise due to the fact that have used a picture from real
life, this image has additional features due to the repeating pattern of the
tablecloth:

1. We now have interesting Betti zero features (connected components of
X) corresponding to the different translations of the tablecloth pattern.
They represent the fact that the boundary of the source image can be
matched to three different positions on the target.

19



2. The Betti one features are the same as in Example 4.1, but for a differ-
ent reason. This time every correspondence of the boundary encircles
the penny, but there are three different classes of them due to the pat-
tern. If the left and right borders of the frame in the source are moved
in even slightly, so that the border is in the black stripe region at the
same height as the source penny, the two additional Betti one barcodes
will disappear. This is because the penny in the target will raise the
persistence value even for boundary correspondences.

5 A deformation invariance result

We now define the classes associated to a correspondence ϕ described in Sec-
tion 3.1, and prove that they are invariant under certain smooth deformations
in Theorem 1. The existence of a theorem such as this one is the reason the
discussion in each example in Section 4 is valid, as they are implicitly de-
scribing classes of correspondences which are equivalent up to homotopy.

Let us call ϕ an a-correspondence if E(ϕ) < a, denote the set of these
elements by Γ(K, a). Let us also define X<a in the same way as Xa but with
strict inequality, and the same for A<a. Assume the dissimilarity function d
is continuous as a function of the six vertices of a pair of triangles, so that
we may regard Γ(K, a) as an open subset U ⊂ RN , where N is the number
of landmark points, i.e. zero simplices in K0.

We will say that ϕ, ϕ′ are b-equivalent, and write ϕ ∼b ϕ′ if there exists a
continuous function h : [0, 1]→ Γ(K, b) satisfying h(0) = ϕ, h(1) = ϕ′. for all
s ∈ I. In other words, they are in the same connected component of Γ(K, b) ⊂
RN , since path connected and connected are the same for open subsets. We
will be interested in studying the set Γ(K, a)/∼b of a-correspondences up
to b-equivalence for a ≤ b, the set being empty otherwise. For instance,
Γ(K, a)/∼a is just the discrete set of connected components of the open set
U , whereas choosing b > a results in collapsing more of these components.
If ϕ ∈ Γ(K, a), the equivalence class of ϕ will be written ϕ̃a,b ∈ Γ(K, a)/∼b.

For any correspondence ϕ ∈ Γ(K, a), we have an injective map of com-
plexes sϕ : K → X by

sϕ([i0, ..., ik]) = [(i0, j0), ..., (ik, jk)], ja = bNiaϕ(ia)c. (13)

It is a section of π, meaning πsϕ = Id, which in particular implies that
sϕ(∂K) ⊂ A. By (10), we can see that if ϕ ∈ Γ(K, a), then sϕ(K) ⊂ X<a.
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Definition 1. For any a-correspondence ϕ ∈ Γ(K, a), let

[ϕ]a = sϕ∗ ([K]) ∈ H2(X<a, A<a), [∂ϕ]a = δ ([ϕ]a) ∈ H1(A<a),

where δ is the connecting homomorphism from (2). Let [ϕ]a,b, [∂ϕ]a,b denote

their images in Ha,b
2 (X,A), Ha,b

1 (A), where in this section we use the per-
sistent homology groups using strict inequality, i.e. replacing Xa, Aa with
X<a, A<a.

Theorem 1. If ϕ, ϕ′ ∈ Γ(K, a), and ϕ ∼b ϕ′, then [ϕ]a,b = [ϕ′]a,b, and
[∂ϕ]a,b = [∂ϕ′]a,b. In particular, we have well-defined maps

Γ(K, a)/∼b → Ha,b
2 (X,A)→ Ha,b

1 (A),

sending ϕ̃a,b to [ϕ]a,b, and [∂ϕ]a,b, respectively. Furthermore, for any ϕ, both
of these classes are nonzero.

Corollary 1. If either Ha,b
2 (X,A), or Ha,b

1 (A) are trivial, then Γ(K, a) is
empty.

We need a simple lemma:

Lemma 2. If p, q are in the same connected component of an open subset
U ⊂ RN , there is a continuous function h : [0, 1]→ U satisfying

a) It connects the points h(0) = p, h(1) = q.

b) For every 1 ≤ i ≤ N , the set of points t ∈ [0, 1] with coordinate function
hi(t) ∈ Z is finite.

c) No point in the path has two integer-valued coordinates simulatenously,
i.e. hi(t) and hj(t) are not both integers for i 6= j.

Proof. Since connected implies path connected for open sets, we may suppose
there is a continuous function satisfying part a), and by Whitney approxi-
mation, we may assume that it is smooth. Part b) can easily be obtained
using standard transversality results, noting that the set of points where the
ith coordinate is integral is a codimension one submanifold of U , and a sub-
manifold of [0, 1] of dimension zero is finite. See for instance [5]. Part c) is
then easy to obtain by a simple perturbation argument.

We now move onto the proof of Theorem 1.
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Proof. Let U = Γ(K, a) be as above, so that ϕ, ϕ′ define points p, q in the
same connected component of U . Suppose we have a function h as in Lemma
2. Then applying the definition of jk in (13) to h(s) gives functions jk :
[0, 1] → {1, ..., Nk} such that jk(s) has jumps from one natural number to
an adjacent one at certain values of s. By the lemma, we may suppose that
each jk(s) has jumps at finitely many values of s, and that jk(s) and jl(s)
never have simultaneous jumps for k 6= l.

We now have a sequence ϕ = ϕ0, ..., ϕn = ϕ′ ∈ Γ(K, b) by taking ϕi =
h(si) where s0 = 0, sn = 1, and si is any value between the between the
ith and (i + 1)st jump for 1 ≤ i ≤ n − 1. It now suffices to show that
[ϕi]a,b − [ϕi+1]a,b = 0 for all i ∈ {0, ..., n− 1}. Given any such i, let k be the
coordinate that jumps between i and i+ 1. Then we have

sϕi
∗ ([K])− sϕi+1

∗ ([K]) = ±∂ [St[(k, jk(si)), (k, jk(si+1))]]

where [St ∆] is the class of the star of ∆, in other words the sum of all 3-
simplices which have ∆ as a face, which in the equation is a 1-simplex. By
construction, each of these 3-simplices are contained in X, since the second
coordinates differ by 1. They are also in X<b, as we may take ϕi as an upper
bound for the the min in (10).

Finally, we check that neither class vanishes. Since πia,bsϕ : K → K is
the identity map, we have

π∗([∂ϕ]a,b) = π∗(δ([ϕ]a,b)) = δ([K]) = [∂K] ∈ H1(∂K),

which is nonzero, so that [∂ϕ]a,b 6= 0. Since [∂ϕ]a,b = δ([ϕ]a,b), we must have
[ϕ]a,b 6= 0 as well.
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