Math 115A Homework 6

1) Let \(n \in \mathbb{Z} \) with \(n > 1 \). Prove that \(n \) is a prime number if and only if \((n - 2)! \equiv 1 \pmod{n} \).

2) Let \(p \) be an odd prime number.
 a) Prove that \(\left(\frac{p-1}{2}\right)! \equiv (-1)^{(p+1)/2} \pmod{p} \).
 b) If \(p \equiv 1 \pmod{4} \), prove that \(\left(\frac{p-1}{2}\right)! \) is a solution of the quadratic congruence \(x^2 \equiv -1 \pmod{p} \).
 c) If \(p \equiv 3 \pmod{4} \), prove that \(\left(\frac{p-1}{2}\right)! \) is a solution of the quadratic congruence \(x^2 \equiv 1 \pmod{p} \).

3) Using Fermat’s Little Theorem, find the residue \(\pmod{m} \) of each integer \(n \) below
 a) \(n = 29^{202}, m = 13 \).
 b) \(n = 71^{71}, m = 17 \).
 c) \(n = 3^{1000000}, m = 19 \).

4) Let \(n \) be an integer. Prove that \(n^{21} \equiv n \pmod{30} \).

5) Let \(a \) and \(b \) be integers not divisible by the prime number \(p \).
 a) If \(a^p \equiv b^p \pmod{p} \), prove that \(a \equiv b \pmod{p} \).
 b) If \(a^p \equiv b^p \pmod{p} \), prove that \(a^p \equiv b^p \pmod{p^2} \).

6) How difficult was this homework? How long did it take?