Practice Final Solutions

1. True or false:

(a) If a is a sum of three squares, and b is a sum of three squares, then so is ab.
False: Consider a = 14, b = 2.

(b) No number of the form 4™(8n + 7) can be written as a sum of two squares.
True: Since it cannot be written as a sum of three squares, it cannot be written as
a sum of two squares.

(¢) A number can be both a quadratic residue modulo an odd prime p, and a primitive
root modulo p.
False: If a is a quadratic residue mod p then by Euler’s criterion a®~1/2 = 1 and
so the order of a is not p — 1.

(d) A perfect number must have at least four divisors.
True: If n > 1 is perfect then o(n) = 2n. If it has just two divisors then o(n) =
n + 1 < 2n. Hence it must have a third divisor d and thus also a fourth divisor
n/d (which may be d and then you can argue why there must then be yet another
divisor).

(e) An infinite simple continued fraction never converges to a rational number.

True: proved in class.

2. Let p be an odd prime. Find a formula for the Legendre symbol
5)
p
5)-G)6)
p p p

Let us find a formula for when this is equal to 1. The two cases are 1 -1 = 1 and

(=1) - (=1) = 1. The first is the case if p=1 mod 4 and p = £1 mod 8. This means
that one needs p = 1 mod 8. The second is the case if p =3 mod 4 and p =3 or 5

SOLUTION: One has

mod 8. This means that p =3 mod 8. Hence

2)-



if and only if p=1 or 3 mod 8.

3. Let p=1 mod 4 be a prime and a a quadratic residue mod p. Decide with justification

if then automatically p — a is quadratic residue mod p.

SOLUTION: Since p — a = —a mod p it suffices to decide if —a is a quadratic residue.

(3)-()()-cm o

since a is a quadratic residue and p =1 mod 4.

4. (a) Calculate ¢(7!).
SOLUTION: Note that

m=1.2-3.22.5.2.3.7=2%.32.5.7

Hence

o(T1) = (2")6(32)6(5)¢(7) = 23246 = 273

(b) Suppose p and ¢ are twin primes, i.e. ¢ = p + 2. Show that

SOLUTION: Since p and g are primes one has
@) =q—1=p+2-1=(p—-1)+2=0(p)+2

(¢) Suppose

n=22"
Find 7(n) and o(n).
SOLUTION:
(n)=2%+1
o(n) =221 —1

5. Find the 8th convergent of v/2
As we saw in class, v/2 = [1,2]. We find p7/q¢r (if you found ps/gs, that’s ok).

Po=1,p1 =2+1=3,ps=6+1="7,p3=14+3 =17, ps =34+7 =41, ps = 82+17 =
99, pg = 198 + 41 = 239, p; = 478 + 99 = 577.

=1 =2=2¢p=4+1=5,g3=10+2=12,qs =24 +5=29,¢5 = 58 + 12 =
70, g6 = 140 + 29 = 169, g7 = 338 + 70 = 408.

Hence the eighth convergent, C7 is 577/408.



6. Suppose p is prime and n > 2 and a?” =1 mod n. Show that ord,a = p? if and only
if a? 21 mod n.

SOLUTION: Since a?” = 1 mod n it follows that the order of a divides p?. Tt is hence
one of 1,p,p? since p is a prime. It is then clear that the order is p? precisely when
a? Z1 mod n.

7. 9is asquare, so it is a quadratic residue modulo any prime that is relatively prime to 9. Hence it is a
quadratic residue modulo all primes not equal to 3.

8. Find a number A between 200 and 250 such that for every n|¢(\) there exists an integer
A such that ordy(4) = n.

SOLUTION: 233 is a prime number, so there is a primitive root r mod 233. So, if
n|$(233) = 232, we have that the order of r232/" is precisely n mod 233, since it is
ordags(r)/(ordass(r),232/n) = 232/(232/n) = n.

9. (a) State the Mobius inversion formula.

(b) Show that for all n > 1 one has

S r(du(n/d) = 1

d|n

SOLUTION: Let

f=7xp
By Mobius inversion one has

T=fx1
But one also has

T=1x1
Hence

(F+D)sp=(1x1)xp
and hence
fxd=1%0
and hence
f=1

and this implies the desired result.



10.

(a)

Find all primitive roots modulo 23.

First, note that 5 is a primitive root mod 23, since its order mod 23 must divide
#(23) = 22, and so it must be 2,11, or 22. We have 52 = 2 and 5'1 = (52)° . 5 =
32-5 =45 #£ 1 (mod 23), and so ords3z(5) = 22. Then we have that the set of
primitive roots is 5,53, 5%, 57,52, 513, 515 517 519 521 gince all of these powers have
ged 1 with ordas(5) = 22.

How many primitive roots are there modulo 1717

SOLUTION: 171 is 9-19, and by the primitive root theorem there are no primitive
roots modulo a number of this form (since it is not a power of a prime, or twice

the power of a prime).

How many primitive roots are there modulo 1737
SOLUTION: 173 is prime, so there are ¢(4(173)) = ¢p(172) = ¢p(4-43) = 2-42 = 84

primitive roots (mod 1)73.

11. How many primitive roots are there modulo 261007

12.

13.

SOLUTION: None: by the Primitive Root Theorem, only modulo numbers of the form

1, 2,4, p™, and 2 - p™ where p is an odd prime and m > 1 is an integer can one have a

primitive root.

Find the order of 12 modulo 35.

SOLUTION: We have that this order must divide ¢(35) = 24, and cannot be 24 since

there are no primitive roots modulo 35. Hence we check that

122=4 (mod 35), 123 =13 (mod 35), 12* =16 (mod 35), 12° =29 (mod 35).

The only remaining possible order is 12 is 12, so this is the order.

OI'd35 (12) =12

Write down the continued fraction expansion for v/29. Find its first five convergents.

SOLUTION: |v/29] = 5, so the first term of the expansion is 5. The next term is

{ 1 J_ V45| _,
V29 -5 4 '
The next term is

][5

V29 -3 20 5



The next term is

1K¢E+3_D B 5 _[5V29+10] | V29+2)
5 V29 -2] 25 - 5 o
The next term is
1K¢E+2—1)-’ 5 _[5V29415 | |V29+3]
5 V29 -3] 20 N 4 T
The next term is
V2943 4 44/29 + 20
{/( - ) {¢575J . V2945 =10

The next term is

1
- | =9
{\/@ -5 J
from before. Clearly, from now on the terms will repeat the period 2,1,1,2,10, so the

continued fraction expansion is
V29 = [5,2,1,1,2,10].
The first five convergents are
5,[5,2],[5,2,1],[5,2,1,1],[5,2,1,1,2],

which are 5,11/2,16/3,27/5,70/13.

. Which quadratic irrational does the continued fraction [4,2, 1] correspond to?

SOLUTION: First we note that if 8 = [2, 1], then

1
B=2+—,
1+1
SO
=2, 1
B B+l
, SO

BE+B=28+2+B=38+2

, and so 32 — 283 — 2 = 0, meaning

_2+w4+8Or 2—4+38
B 2

8 B="3



15.

16.

17.

18.

It cannot be the latter, as it is positive, so 8 = 1 + v/3. Now, we have

1 1 V3—-1 V347
4,21] =44 > =4+ =4+ = :
[ 8 1++3 2 2

For which positive integers a is (a++1/5)/3 expressed as an eventually periodic continued
fraction? A periodic continued fraction?

SOLUTION: Since this is a quadratic irrational for all integers a, it has an eventually
periodic continued fraction for all integers a. This will have a periodic continued fraction
for @ =1 or 2. See the last page for the justification.

Find two continued fraction expansions for ? Are there others? Why or why not?

SOLUTION: Run the Euclidean algorithm on (13,5) and get

13=2-5+3

5=1-3+2

3=1-2+1
2=2.1.

Thus one continued fraction expansion of 13/5 is 2, 1,1, 2], and another is [2,1,1,1,1],
since 1/2 = 1/(1 + 1/1). These are the only two expansions, since rational numbers

always have exactly two expansions, as proven on the homework.

Show that ggﬁ is a convergent of v/3 = 1.7320508075. ...

This isn’t a great practice problem, because its best done with a calculator. However,

it helps us to recall an important result. If you compute |v/3 — gg‘g |, this is

1
0.000000034066 - - - < m = 0.000000059005,

and so this must be a convergent by a theorem shown in class.

Which of the following can be written as a sum of two squares? A sum of three squares?
Four squares?

(a) 39470

(b) 55555

(c) 34578



19.

20.

(d) 12!

(e) A number of the form p? + 2, where p is a prime.

SOLUTION: For the first three of these, one first writes down the prime factorizations:
they are 2-5-3947, 5-41-271, 2-32.17-113. All of these contain primes in the prime
factorization which are 3 mod 4 but not taken to an even power, so none are sums of
two squares. Also, 3 is a prime divisor of 12!, but it divides 12! exactly up to the fifth
power, which is not even, and hence 12! is also not a sum of two squares. Finally, for the
last example, if p is even, p? + 2 = 6 which is not a sum of two squares, and p? +2 = 3
(mod 4) if p is odd, so this is never a sum of two squares.

Now we check for sums of three squares. The only numbers not expressible as sums of
three squares are of the form 4™ (8n + 7). None of the first three examples are divisible
by a power of 4, so we just check them mod 8. The first example is even mod 8, the
second example is 3 mod 8, so it can be written as a sum of three squares. The third
example is again even mod 8, and so it also can be written as a sum of three squares.
The fourth example is 4° - 3° - 52 - 7- 11, where 3°-5%-7-11 is 7 mod 8, so it cannot be

written as a sum of three squares. The last example can always be written as p?+124-12.

All of these can be written as a sum of four squares, since all integers can be.

Suppose = € Z>° can be written as a sum of two squares. What is the necessary and

sufficient condition on y € Z>° for 2y to be expressible as a sum of two squares?

SOLUTION: The necessary and sufficient condition is that y is a sum of two squares.
It is sufficient because the product of two integers that are sums of two squares is also
a sum of two squares. To see that it is necessary, suppose y cannot be written as a
sum of two squares, but « can. Flrst of all, this means that there is a prime that is 3
mod 4 and such that the highest power of p dividing y is an odd power. Second of all,
whenever p is such a prime, the highest power of p dividing = is even (maybe 0). So
the highest power of p dividing xy is odd, and so xy cannot be written as a sum of two

squares.

Show that the area of any right triangle with all integer sides is divisible by 6.

SOLUTION: Given the parametrization of primitive Pythagorean triples (z,v, z), we
have that

x:mQ—nz,yZan,z:m+n2

for some integers m,n which are relatively prime, and such that exactly one of them is
even. Since one of them is even, y is divisible by 4. Suppose m is even, n is odd, and
neither is divisible by 3. Then both m? and n? have to be 1 mod 3, and so z is divisible
by 3, and the area, xy/2, is divisible by 12/2 = 6. If one of m,n is divisible by 3, then
y is divisible by 12 and so the area is divisible by 6.



21. Which primes p can be the hypotenuse (i.e. largest integer) in a primitive Pythagorean
triple? Justify your answer.

SOLUTION: In a primitive Pythagorean triple, the hypotenuse is always a sum of two
squares, m? +n2. Hence any prime that is 1 (mod 4) can be the hypotenuse of a PPT,
and no others (2 is not a hypotenuse for a PPT). Note that if the hypotenuse is prime,
then the triple must be primitive unless one of the legs is 0. This would mean either
m or n is 0 (not possible since p is not a square) or that m = n, which would mean
p = 2m? which is true for no prime except 2.
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