
Practice Final Solutions

1. True or false:

(a) If a is a sum of three squares, and b is a sum of three squares, then so is ab.

False: Consider a = 14, b = 2.

(b) No number of the form 4m(8n+ 7) can be written as a sum of two squares.

True: Since it cannot be written as a sum of three squares, it cannot be written as

a sum of two squares.

(c) A number can be both a quadratic residue modulo an odd prime p, and a primitive

root modulo p.

False: If a is a quadratic residue mod p then by Euler’s criterion a(p�1)/2 = 1 and

so the order of a is not p� 1.

(d) A perfect number must have at least four divisors.

True: If n > 1 is perfect then �(n) = 2n. If it has just two divisors then �(n) =

n + 1 < 2n. Hence it must have a third divisor d and thus also a fourth divisor

n/d (which may be d and then you can argue why there must then be yet another

divisor).

(e) An infinite simple continued fraction never converges to a rational number.

True: proved in class.

2. Let p be an odd prime. Find a formula for the Legendre symbol
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SOLUTION: One has ✓
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Let us find a formula for when this is equal to 1. The two cases are 1 · 1 = 1 and

(�1) · (�1) = 1. The first is the case if p ⌘ 1 mod 4 and p ⌘ ±1 mod 8. This means

that one needs p ⌘ 1 mod 8. The second is the case if p ⌘ 3 mod 4 and p ⌘ 3 or 5

mod 8. This means that p ⌘ 3 mod 8. Hence
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if and only if p ⌘ 1 or 3 mod 8.

3. Let p ⌘ 1 mod 4 be a prime and a a quadratic residue mod p. Decide with justification

if then automatically p� a is quadratic residue mod p.

SOLUTION: Since p� a ⌘ �a mod p it su�ces to decide if �a is a quadratic residue.

But ✓
�a

p

◆
=

✓
�1

p

◆✓
a

p

◆
= (�1)(p�1)/2 · 1 = 1

since a is a quadratic residue and p ⌘ 1 mod 4.

4. (a) Calculate �(7!).

SOLUTION: Note that

7! = 1 · 2 · 3 · 22 · 5 · 2 · 3 · 7 = 24 · 32 · 5 · 7

Hence

�(7!) = �(24)�(32)�(5)�(7) = 233 · 2 · 4 · 6 = 2732

(b) Suppose p and q are twin primes, i.e. q = p+ 2. Show that

�(q) = �(p) + 2

SOLUTION: Since p and q are primes one has

�(q) = q � 1 = p+ 2� 1 = (p� 1) + 2 = �(p) + 2

(c) Suppose

n = 22
k

Find ⌧(n) and �(n).

SOLUTION:

⌧(n) = 2k + 1

�(n) = 22
k+1 � 1

5. Find the 8th convergent of
p
2

As we saw in class,
p
2 = [1, 2]. We find p7/q7 (if you found p8/q8, that’s ok).

p0 = 1, p1 = 2+1 = 3, p2 = 6+1 = 7, p3 = 14+3 = 17, p4 = 34+7 = 41, p5 = 82+17 =

99, p6 = 198 + 41 = 239, p7 = 478 + 99 = 577.

q0 = 1, q1 = 2 = 2, q2 = 4 + 1 = 5, q3 = 10 + 2 = 12, q4 = 24 + 5 = 29, q5 = 58 + 12 =

70, q6 = 140 + 29 = 169, q7 = 338 + 70 = 408.

Hence the eighth convergent, C7 is 577/408.
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6. Suppose p is prime and n � 2 and ap
2 ⌘ 1 mod n. Show that ordna = p2 if and only

if ap 6⌘ 1 mod n.

SOLUTION: Since ap
2 ⌘ 1 mod n it follows that the order of a divides p2. It is hence

one of 1, p, p2 since p is a prime. It is then clear that the order is p2 precisely when

ap 6⌘ 1 mod n.

7. Let n � 1. Find

gcd(n, 2n2 + 1)

SOLUTION: Note that

(2n2 + 1)� 2n · n = 1

It follows that the gcd is 1.

8. Find a number � between 200 and 250 such that for every n|�(�) there exists an integer

A such that ord�(A) = n.

SOLUTION: 233 is a prime number, so there is a primitive root r mod 233. So, if

n|�(233) = 232, we have that the order of r232/n is precisely n mod 233, since it is

ord233(r)/(ord233(r), 232/n) = 232/(232/n) = n.

9. (a) State the Mobius inversion formula.

(b) Show that for all n � 1 one has

X

d|n

⌧(d)µ(n/d) = 1

SOLUTION: Let

f = ⌧ ⇤ µ

By Mobius inversion one has

⌧ = f ⇤ 1

But one also has

⌧ = 1 ⇤ 1

Hence

(f ⇤ 1) ⇤ µ = (1 ⇤ 1) ⇤ µ

and hence

f ⇤ � = 1 ⇤ �

and hence

f = 1

and this implies the desired result.
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10. (a) Find all primitive roots modulo 23.

First, note that 5 is a primitive root mod 23, since its order mod 23 must divide

�(23) = 22, and so it must be 2, 11, or 22. We have 52 ⌘ 2 and 511 = (52)5 · 5 ⌘
32 · 5 ⌘ 45 6⌘ 1 (mod 23), and so ord23(5) = 22. Then we have that the set of

primitive roots is 5, 53, 55, 57, 59, 513, 515, 517, 519, 521, since all of these powers have

gcd 1 with ord23(5) = 22.

(b) How many primitive roots are there modulo 171?

SOLUTION: 171 is 9 ·19, and by the primitive root theorem there are no primitive

roots modulo a number of this form (since it is not a power of a prime, or twice

the power of a prime).

(c) How many primitive roots are there modulo 173?

SOLUTION: 173 is prime, so there are �(�(173)) = �(172) = �(4 ·43) = 2 ·42 = 84

primitive roots (mod 1)73.

11. How many primitive roots are there modulo 26100?

SOLUTION: None: by the Primitive Root Theorem, only modulo numbers of the form

1, 2, 4, pm, and 2 · pm where p is an odd prime and m � 1 is an integer can one have a

primitive root.

12. Find the order of 12 modulo 35.

SOLUTION: We have that this order must divide �(35) = 24, and cannot be 24 since

there are no primitive roots modulo 35. Hence we check that

122 ⌘ 4 (mod 35), 123 ⌘ 13 (mod 35), 124 ⌘ 16 (mod 35), 126 ⌘ 29 (mod 35).

The only remaining possible order is 12 is 12, so this is the order.

ord35(12) = 12

13. Write down the continued fraction expansion for
p
29. Find its first five convergents.

SOLUTION: b
p
29c = 5, so the first term of the expansion is 5. The next term is

�
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29� 5

⌫
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4
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The next term is

$
1/(

p
29 + 3

5
� 1)

%
=

�
5p

29� 2

⌫
=

$
5
p
29 + 10

25

%
=

$p
29 + 2

5

%
= 1.

The next term is

$
1/(

p
29 + 2

5
� 1)

%
=

�
5p

29� 3

⌫
=

$
5
p
29 + 15

20

%
=

$p
29 + 3

4

%
= 2.

The next term is

$
1/(

p
29 + 3

4
� 2)

%
=

�
4p

29� 5

⌫
=

$
4
p
29 + 20

4

%
=

jp
29 + 5

k
= 10.

The next term is �
1p

29� 5

⌫
= 2

from before. Clearly, from now on the terms will repeat the period 2, 1, 1, 2, 10, so the

continued fraction expansion is

p
29 = [5, 2, 1, 1, 2, 10].

The first five convergents are

5, [5, 2], [5, 2, 1], [5, 2, 1, 1], [5, 2, 1, 1, 2],

which are 5, 11/2, 16/3, 27/5, 70/13.

14. Which quadratic irrational does the continued fraction [4, 2, 1] correspond to?

SOLUTION: First we note that if � = [2, 1], then

� = 2 +
1

1 + 1
�

,

so

1 =
2

�
+

1

� + 1

, so

�2 + � = 2� + 2 + � = 3� + 2

, and so �2 � 2� � 2 = 0, meaning

� =
2 +

p
4 + 8

2
or � =

2�
p
4 + 8

2

5



It cannot be the latter, as it is positive, so � = 1 +
p
3. Now, we have

[4, 2, 1] = 4 +
1

�
= 4 +

1

1 +
p
3
= 4 +

p
3� 1

2
=

p
3 + 7

2
.

15. For which positive integers a is (a+
p
5)/3 expressed as an eventually periodic continued

fraction? A periodic continued fraction?

SOLUTION: Since this is a quadratic irrational for all integers a, it has an eventually

periodic continued fraction for all integers a. In order for the continued fraction to be

periodic, we must furthermore have that (a+
p
5)/3 > 1, meaning that a � 1. Finally,

we must have that �1 < (a�
p
5)/3 < 0, and so a  2. Thus a may be 1 or 2 for this

to be a periodic continued fraction.

16. Find two continued fraction expansions for 13
5 . Are there others? Why or why not?

SOLUTION: Run the Euclidean algorithm on (13, 5) and get

13 = 2 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1.

Thus one continued fraction expansion of 13/5 is [2, 1, 1, 2], and another is [2, 1, 1, 1, 1],

since 1/2 = 1/(1 + 1/1). These are the only two expansions, since rational numbers

always have exactly two expansions, as proven on the homework.

17. Show that 5042
2911 is a convergent of

p
3 = 1.7320508075 . . . .

This isn’t a great practice problem, because its best done with a calculator. However,

it helps us to recall an important result. If you compute |
p
3� 5042

2911 |, this is

0.000000034066 · · · < 1

2(2911)2
= 0.000000059005,

and so this must be a convergent by a theorem shown in class.

18. Which of the following can be written as a sum of two squares? A sum of three squares?

Four squares?

(a) 39470

(b) 55555

(c) 34578

6

This will have a periodic continued fraction
for a = 1 or 2. See the last page for the justification.



(d) 12!

(e) A number of the form p2 + 2, where p is a prime.

SOLUTION: For the first three of these, one first writes down the prime factorizations:

they are 2 · 5 · 3947, 5 · 41 · 271, 2 · 32 · 17 · 113. All of these contain primes in the prime

factorization which are 3 mod 4 but not taken to an even power, so none are sums of

two squares. Also, 3 is a prime divisor of 12!, but it divides 12! exactly up to the fifth

power, which is not even, and hence 12! is also not a sum of two squares. Finally, for the

last example, if p is even, p2 + 2 = 6 which is not a sum of two squares, and p2 + 2 ⌘ 3

(mod 4) if p is odd, so this is never a sum of two squares.

Now we check for sums of three squares. The only numbers not expressible as sums of

three squares are of the form 4m(8n+ 7). None of the first three examples are divisible

by a power of 4, so we just check them mod 8. The first example is even mod 8, the

second example is 3 mod 8, so it can be written as a sum of three squares. The third

example is again even mod 8, and so it also can be written as a sum of three squares.

The fourth example is 45 · 35 · 52 · 7 · 11, where 35 · 52 · 7 · 11 is 7 mod 8, so it cannot be

written as a sum of three squares. The last example can always be written as p2+12+12.

All of these can be written as a sum of four squares, since all integers can be.

19. Suppose x 2 Z>0 can be written as a sum of two squares. What is the necessary and

su�cient condition on y 2 Z>0 for xy to be expressible as a sum of two squares?

SOLUTION: The necessary and su�cient condition is that y is a sum of two squares.

It is su�cient because the product of two integers that are sums of two squares is also

a sum of two squares. To see that it is necessary, suppose y cannot be written as a

sum of two squares, but x can. FIrst of all, this means that there is a prime that is 3

mod 4 and such that the highest power of p dividing y is an odd power. Second of all,

whenever p is such a prime, the highest power of p dividing x is even (maybe 0). So

the highest power of p dividing xy is odd, and so xy cannot be written as a sum of two

squares.

20. Show that the area of any right triangle with all integer sides is divisible by 6.

SOLUTION: Given the parametrization of primitive Pythagorean triples (x, y, z), we

have that

x = m2 � n2, y = 2mn, z = m+n2

for some integers m,n which are relatively prime, and such that exactly one of them is

even. Since one of them is even, y is divisible by 4. Suppose m is even, n is odd, and

neither is divisible by 3. Then both m2 and n2 have to be 1 mod 3, and so x is divisible

by 3, and the area, xy/2, is divisible by 12/2 = 6. If one of m,n is divisible by 3, then

y is divisible by 12 and so the area is divisible by 6.
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21. Which primes p can be the hypotenuse (i.e. largest integer) in a primitive Pythagorean

triple? Justify your answer.

SOLUTION: In a primitive Pythagorean triple, the hypotenuse is always a sum of two

squares, m2 + n2. Hence any prime that is 1 (mod 4) can be the hypotenuse of a PPT,

and no others (2 is not a hypotenuse for a PPT). Note that if the hypotenuse is prime,

then the triple must be primitive unless one of the legs is 0. This would mean either

m or n is 0 (not possible since p is not a square) or that m = n, which would mean

p = 2m2 which is true for no prime except 2.
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