1) Let G be a group. A commutator in G is an element of the form $aba^{-1}b^{-1}$ with $a,b \in G$. Let G^c be the subgroup generated by the commutators, called the commutator subgroup. Show that G^c is normal in G. Challenge: Show that any homomorphism ϕ of G into an abelian group factors through G/G^c, meaning that there exists a map f such that $\phi = f \circ \pi$ where $\pi : G/G^c$ is the canonical morphism.

2) Let H,K be subgroups of a finite group G. Assume $K \subseteq N_H$. Show that $\#(HK) = \#(H)\#(K)/\#(H \cap K)$.

3) Let G be a group and let H be a subgroup of finite index. Prove that there is only a finite number of right cosets of H, and that the number of right cosets is equal to the number of left cosets.

4) a) Let H,N be normal subgroups of a finite group G. Assume that the orders of H,N are relatively prime. Prove that $xy = yx$ for all $x \in H$ and $y \in N$, and that $H \times N \cong HN$.

b) Let H_1,\ldots,H_r be normal subgroups of G such that the order of H_i is relatively prime to the order of H_j for $i \neq j$. Prove that $H_1 \times \ldots \times H_r \cong H_1 \cdots H_r$.

5) Let p be a prime and let G be of order p^n where $n > 0$ with center $Z(G) \neq 1$. Show that G has a chain of subgroups

$$G = G_0 > G_1 > G_2 > \cdots > G_n = 1$$

such that G_i is normal in G and $[G : G_i] = p^i$ for all i. What are the composition factors of G?

Hint: Use the fact that $Z(G) \neq 1$ to produce an element $x \in Z(G)$ of order p. Prove by induction, considering the quotient group $G/\langle x \rangle$.

6) The dihedral group D_8 containing 8 elements has seven different composition series. Find all of them.

7) a) Show that an abelian group has a composition series if and only if it is finite.

b) Let F be a field and let $GL_n(F)$ denote the group of $n \times n$ invertible matrices with entries in F (the group operation is matrix multiplication). Show that $GL_n(F)$ has a composition series if and only if F is finite.