Math 250A Homework 7, due 12/6/2019

In the first few problems, we will walk through the proof of the fundamental theorem of algebra. First, a definition:

Let K/F be a finite extension. The **normal closure** of K/F is the splitting field over F of

\[\{ \text{minimal polynomial of } \alpha \text{ over } F \mid \alpha \in K \} \]

1. Let K/F be a finite extension and let N be the normal closure of K/F.
 a) Show that N is a normal extension of F containing K and whenever M is a normal extension of F with $K \subseteq M \subseteq N$ then $M = N$.
 b) Show that if $K = F(\alpha_1, \ldots, \alpha_r)$ then N is the splitting field of the set of minimal polynomials of α_i's over F.
 c) Show that N/F is a finite extension.
 d) Show that if K/F is separable then N/F is Galois.
 e) Pick a favorite finite extension of some field F that is not normal and find its normal closure.

2. a) Show that if K/\mathbb{R} is a finite extension with odd degree, then $K = \mathbb{R}$.
 b) Show that if K/\mathbb{C} is a finite extension such that $[K : \mathbb{C}] \leq 2$ then $K = \mathbb{C}$.

3) Let K/\mathbb{C} be a finite extension. Suppose N is the normal closure of K/\mathbb{R}. Suppose $N \neq \mathbb{C}$.
 a) Given the above, show $2|\text{Gal}(N/\mathbb{R})|$ and that there is a nontrivial extension of odd degree L/\mathbb{R} contained in N.
 b) Show that both $\text{Gal}(N/\mathbb{R})$ and $\text{Gal}(N/\mathbb{C})$ are nontrivial 2-groups.
 c) Show that $\text{Gal}(N/\mathbb{C})$ has an index 2 subgroup H and determine the degree of $\mathcal{F}(H)/\mathbb{C}$. Conclude that \mathbb{C} is algebraically closed.

4. Determine the Galois group of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ over \mathbb{Q}. Find the intermediate fields and corresponding subgroups.