
STRONG APPROXIMATION IN THE APOLLONIAN GROUP

ELENA FUCHS

ABSTRACT. The Apollonian group is a finitely generated, infinite index subgroup of the orthogonal

group OQ(Z) fixing the Descartes quadratic form Q. For nonzero v ∈ Z
4 satisfying Q(v) = 0, the orbits

Pv = Av correspond to Apollonian circle packings in which every circle has integer curvature. In this

paper, we specify the reduction of primitive orbits Pv mod any integer d > 1. We show that this reduction

has a multiplicative structure, and that mod primes p≥ 5 it is the full cone of integer solutions to Q(v)≡ 0

for v �≡ 0. This analysis is an essential ingredient in applications of the affine linear sieve as developed

by Bourgain, Gamburd, and Sarnak.

1. INTRODUCTION

An Apollonian circle packing (ACP) is constructed by repeatedly inscribing circles into the trian-
gular interstices in a Descartes configuration of mutually tangent circles or lines. Figure 1 depicts the
construction of two types of ACP’s, bounded and unbounded: both start with four mutually tangent
circles (in the unbounded case, two of the circles are parallel lines which can be considered to be tan-
gent at infinity), and, continued indefinitely, yield packings of infinitely many circles. The unbounded
packing constructed in the second picture of Figure 1 is in fact the only kind of unbounded packing
considered in this paper.

ACP’s date back to Apollonius of Perga, who was interested in them in the context of compass and
straight edge constructions of mutually tangent circles and lines. His theorem below ensures that the
construction of ACP’s described above is well defined, since it implies that there is precisely one circle
one can inscribe in each triangular interstice in Figure 1.

Theorem 1.1 (Apollonius, circa 200 BC). To any three mutually tangent circles or lines there are
precisely two other circles or lines which are tangent to all three.

The study of ACP’s has seen many facets of mathematics since. In this paper, we focus on number-
theoretic aspects of integral ACP’s which were noticed first by Frederick Soddy in 1936, who discov-
ered that if any four mutually tangent circles in a bounded ACP have integer curvature1, all of the circles
in the packing will have integer curvature as well. For example, the packing in Figure 2 is generated
by starting with circles of curvatures 1,2,2, and 3, and so consists of circles of integer curvature only.
This packing immediately gives rise to infinitely many other integer ACP’s simply by scaling all of the

Key words and phrases. Apollonian circle packings, affine sieve, congruence obstructions, local to global.
1By curvature we mean reciprocal of the radius
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!           Generation 1                     Generation 2    Generation 3

! !            !              Generation 1                                                                                               Generation 2

FIGURE 1. Constructing an Apollonian circle packing: bounded and unbounded

curvatures in the packing by an integer. However, it is more interesting to consider integer packings
which do not arise from such a scaling process – i.e. packings in which the curvatures do not all share
a factor > 1. Such packings are called primitive and there are in fact infinitely many bounded primitive
integral ACP’s. However, the only unbounded primitive integral packing is generated by starting with
circles of curvatures 0,0,1, and 1 as in Figure 3 (see [12] for a discussion).

Soddy deduced the integrality property of ACP’s from the following theorem of Descartes (more
recently re-proven by Coxeter in [4]) which he generalized to higher dimensions in a poem in [21].

Theorem 1.2 (Descartes, 1643). If a,b,c, and d denote the curvatures of four pairwise externally
tangent circles with distinct tangency points, then

(1.1) Q(a,b,c,d) = 2(a2 +b2 + c2 +d2)− (a+b+ c+d)2 = 0.

Note that while Descartes’ theorem originally applies to externally tangent circles only, it holds for
a quadruple of tangent circles where one is internally tangent to the other three as in Figure 1 if one
takes the external circle to have negative curvature (see [11] for an explanation of this).

A solution (a,b,c,d) to the equation (1.1) is called a Descartes quadruple, and the form Q is known
as the Descartes quadratic form. It is at the core of what is known with regards to the number theory
pertinent to integral ACP’s. In 1943, Hirst derived from Theorem 1.2 that the curvatures in an ACP
correspond to coordinates of vectors in orbits of a subgroup A ⊂ OQ(Z) in the cone Q(v) = 0, where
OQ(Z) denotes the orthogonal group preserving Q (see [13]). Combined with Soddy’s observation,
Hirst’s discovery implies that the study of curvatures in integral ACP’s is in fact a study of integral
orbits of this group, which is appropriately called the Apollonian group.



STRONG APPROXIMATION IN THE APOLLONIAN GROUP 3

2

2

3 15

38

71

114

167

374

371

222
455

554

659

219 447

546

654

110

287
762

546

867

218

647

362

683

323
927

858

642

107

279 738

846

531

210

623

662
347

318

911

842

635

38
71

222

455

554

659

114
167

374

371

219
447

654

546

110
287
546

762

867

218
647

362

683

323
927 642

858

107
279

846

738

531

318

911

842

635

210
623

662 347

35 63

198

407

590

491

198
407

590

491

99 143

326

326

102
263

498

798

699

302

863

602

803

203
599

338

638

102263

798

498

699

302863

602

803

203 599

638

338

6
23

50
87
134

278

275

150
383

302

443

147
375

294

438

62119
362

194

371

170447

330

507

179471

522

354

59

111
338

350

179

162

423

486

315

174

455

506347

14 47
122

231

330

363 98 167

290

299

131

255

378

354

26
87

182

218

251

42
143

62

131

75 231

150

186

35
111314

290

227

90 279

234

171

66
215

194

107

11
39

98

183

294

267110
215 314

299

83

143

242
254

18
63
134

182 155

54
167

110

131

27
95

38
86

30
95

266

194
251

74
231

138

195

59 191

170

98

6

23
62

119194

362

371

170
447

330

507

179
471

354

522

50

87278

134

275

150

383

302
443

147

375
438

294

59
111

350
338

179

174
455

506
347 162

423

486

31514
47

98
167

290

299

122

231
330

363

131
255

354

378

26 87

218

182

251

42 143

62

131

75
231

186

150

35

111
290

314

227

66

215

194

107

90
279

234

171

11

39110
215 314

299

98
183

294

267

83

143

254
242

30

95

194

266

251

74

231

138

195

59
191

98

170

18

63
182

134

155

54

167

110

131

27

95

86

38

315

38

71

114

222

219

110

287

218

323

107

279

210
318

38
71

222

114

219

110
287

218

323

107
279

318

210

3563

198

198

99

102
263

302

203

102263

302

203

6
23

50
87

150

147
62 119

170

179

59

111

162

174

1447
122

98

131

26
87

42

75

35
111 90

66

11
39

98

110

83

18
63

54

27

30
95

74

59

6

23
62

119

170

179

50

87

150

147

59
111

174

162 14
47

98

122

131

2687

42

75

35

111

66

90

11

39 110

98

83

30

95

74

59

18

63

54

27

FIGURE 2. Apollonian Circle Packing (−1,2,2,3)

FIGURE 3. Apollonian Circle Packing (0,0,1,1)

There are several fundamental questions to consider in the case of integral ACP’s which were first
formulated and addressed by the five authors Graham, Lagarias, Mallows, Wilks, and Yan in [12]. They
outline several important problems regarding integral ACP’s, many of which have now been solved in
[1], [8], [9], and [15].

One problem Graham et.al. consider is that of determining congruence obstructions for curvatures
in integral ACP’s. Note that this question is most interesting in the case of primitive integral ACP’s:
otherwise there are obvious congruence obstructions modulo the gcd of all the curvatures.

Using the fact that A has several unipotent subgroups, they are able to show:

Theorem 1.3 (Graham, Lagarias, Mallows, Wilkes, Yan, 2003). Let P be a primitive integral Apollo-
nian circle packing. For any integer m with gcd(m,30) = 1, every residue class mod m occurs as the
value of a curvature of some circle in the packing P.
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Upon collecting data for several ACP’s, they also conjecture that there should be some congruence
conditions mod 12 or 24 which completely determine all large integers appearing as curvatures in a
primitive ACP. In this paper, we give a complete description of the reduction of the Apollonian group
mod integers d > 1, which in turn yields a description of the collection of curvatures in any primitive
ACP mod d. As a consequence of this description, we are able to fine-tune Theorem 1.3 by replacing
30 with 6 in Corollary 4.5, which we show cannot be improved further. In addition, our analysis of the
orbit mod powers of primes clarifies why the only congruence obstructions for integral ACP’s appear to
be modulo 24 – this was previously seen only through numerical experiments (for a detailed discussion
of this, see [9] as well as Conjecture 1.5).

Our method is to consider the preimage Γ of A in the spin double cover of SOQ. We determine Γ
explicitly in Section 2, and rely on Dickson’s classification of subgroups of SL2 over finite fields (see
[14]) combined with Goursat’s Lemma (see Theorem 2.6) to specify the mod d structure of Γ for square
free d. We extend this to powers of primes and non-square-free d in Section 3, and then use this to
determine the precise mod d structure of any orbit P of A in Section 4. Our main result is stated in the
following theorem.

Theorem 1.4. Let P be an orbit of A acting on a Descartes quadruple vP ∈ Z
4 of curvatures in a

primitive packing P and let Pd be the reduction of this orbit mod an integer d > 1. Let C = {v �=
0 |Q(v) = 0} denote the cone without the origin, and denote by Cpr the cone mod pr as defined in (4.2).
Write d = d1d2 with (d2,6) = 1 and d1 = 2n3m where n,m ≥ 0.

(i) If d1 �= 1, the natural projection Pd −→ Pd1 ×Pd2 is surjective.
(ii) The natural projection Pd2 −→ ∏pr||d2 Ppr is surjective and Ppr =Cpr .

(iii) If m,n ≥ 1, the natural projection Pd1 −→ P2n ×P3m is surjective.
(iv) If n ≥ 4, let π : C2n −→C8 be the natural projection. Then P2n = π−1(P8).
(v) If m ≥ 2, let φ : C3m −→C3 be the natural projection. Then P3m = φ−1(P3).

Theorem 1.4 is a crucial ingredient in applications of the recently developed affine sieve of Bourgain,
Gamburd, and Sarnak (see [2]) in the context of integer ACP’s. For example, it is used in [9] to give
a precise asymptotic (conditional on randomness of the Moebius function) for the number of circles
of prime curvature less than X . Another application of the affine sieve is proving the finiteness of the
saturation number for certain integer-valued polynomials on orbits of various groups. In the case of
the Apollonian group A, Bourgain et.al. prove in particular that, given a polynomial f in four variables
which is integer valued and primitive2 on a given integer orbit P of A, there is a positive integer r0

such that for any r ≥ r0 the points x ∈P for which f (x) has at most r prime factors in Zariski dense in
the Zariski closure of P . Theorem 1.4 would be necessary in using the affine sieve to determine this
r0 explicitly. However, one would need in addition a nontrivial lower bound on the gap between the

2We say that the polynomial is primitive on the orbit if for every q ≥ 2 we have at least one point x in the orbit for which
( f (x),q) = 1.
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first two eigenvalues of the Laplacian of A\H3 which is still unknown. For this reason, it is difficult to
prove good lower bounds for r0 in the Apollonian case, as in many other problems of this type.

Even with these difficulties, because the Apollonian group is thin in the sense that it is of infinite
index in the integer points of the orthogonal group fixing Q, the affine sieve is currently the most
effective tool in tackling diophantine problems such as counting circles of prime or almost prime3

curvature – in particular, classical methods such as the theory of automorphic forms do not apply here.
One can think of Theorem 1.4 as an analog of the Chinese remainder theorem which is a key ingredient
in applying the affine sieve to orbits of the Apollonian group. In fact, Theorem 1.4 is a stronger result
than needed for the sieve, since it specifies the structure of the orbit mod integers which are not square
free (the sieve only needs information about the square free case). Essentially, it tells us that once
we determine the structure of an orbit of A mod 3 and 8, we can deduce its structure mod d for any
integer d > 1 from the well understood local structure of the cone C above. Since there are only two
possible orbits of A mod 3 and less than 300 orbits of A mod 8, Theorem 1.4 gives an effective way of
determining the structure of any primitive ACP mod d, and is the key observation behind the local to
global principle for ACP’s as conjectured in [9]:

Conjecture 1.5 (F, Sanden, 2010). Let P be an integral ACP and let P24 be the set of residue classes
mod 24 of curvatures in P. Then there exists XP ∈ Z such that any integer x > XP whose residue mod
24 lies in P24 is in fact a curvature of a circle in P.

Proving such a rich local to global principle in the case of an orbit of a thin group is very difficult at
this time. One might convince oneself that Conjecture 1.5 is true by considering an analogous problem
that all large integers satisfying certain local conditions should be represented by a general ternary
quadratic form – namely, we fix one of the curvatures in Descartes’ form and solve the problem for
the resulting ternary form. While the general case of this problem is resolved in [3] and [6], the results
there are not effective and further work would be needed to obtain a precise result such as the one
implied in Conjecture 1.5.

Acknowledgements: We thank Alireza Salehi-Golsefidy and Peter Sarnak for insightful comments
and conversations, Alex Kontorovich for the pictures of ACP’s in Figures 2 and 3, and the referee for
helpful comments which led to various improvements of this paper.

1.1. The Apollonian group. Recall from Theorem 1.2 that if a,b,c, and d are curvatures of four
mutually tangent circles with distinct tangency points,

Q(a,b,c,d) = 2(a2 +b2 + c2 +d2)− (a+b+ c+d)2 = 0

and that in the context of ACP’s the outside circle in a bounded packing (which is internally tangent
to the other circles) must have negative curvature to satisfy the equation. Note that fixing three of the

3Almost primes are integers with few prime factors
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curvatures (say b,c,d) above yields a quadratic equation which has two solutions a = a+,a− such that

a++a− = 2(b+ c+d).

In fact, the circles Ca+ and Ca− of curvatures a+ and a−, respectively, are precisely the only two circles
tangent to all three of the mutually tangent circles of curvature b,c, and d as stated in Theorem 1.1. In
fact, one can solve for all of the curvatures in a given packing P by continuously fixing three known
curvatures of mutually tangent circles and solving (1.1) for the fourth. In this way, one can deduce (see
[11]) that if v = (a,b,c,d)T is a vector of curvatures of mutually tangent circles in a packing P, all of
the curvatures of circles in P are given by the coordinates of vectors in the orbit Av, where A is a group
generated by

(1.2) S1 =





-1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1




, S2 =





1 0 0 0
2 -1 2 2
0 0 1 0
0 0 0 1




,

S3 =





1 0 0 0
0 1 0 0
2 2 -1 2
0 0 0 1




, S4 =





1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 -1





Since the orbits of A acting on Descartes quadruples are in one-to-one correspondence with Apollonian
circle packings, A is known as the Apollonian group. Note that S2

i = I for 1 ≤ i ≤ 4, and there are in
fact no other relations among the generators of A (see [11] for a discussion of the relations among Si as
well as the correspondence of ACP’s to orbits of A).

Throughout this paper, the Apollonian group will be our main tool in analyzing ACP’s, and we list
some of its properties in the following lemma:

Lemma 1.6. Let A be the Apollonian group and let Q be the Descartes quadratic form. Then

(i) A is an infinite-index subgroup of the orthogonal group OQ(Z) fixing Q,
(ii) A is Zariski dense in OQ(C).

Before proving Lemma 1.6, it is useful to consider the geometric representation of the generators of
A. Note that Q has signature (3,1), and so A can be regarded as a subgroup of OR(3,1), the isometry
group of hyperbolic space H

3. Its action on H
3, as well as its action on a given quadruple of mutually

tangent circles in a packing, can be realized by considering the upper half-space model of

H
3 = {(x,y,z) ∈ R

3 | z > 0}

and embedding a Descartes quadruple of circles (C1,C2,C3,C4) (for example, the four largest circles
in the packing, or those in generation 1) in the complex plane bounding H

3. For any triple of mu-
tually tangent circles (C1,C2,C3) there is a unique dual circle or line D123 which passes through the
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tangency points of the three. The generators S1,S2,S3,S4 of A in (4.9) are then precisely reflections
in D234,D134,D124,D123, respectively. Four such dual circles are drawn in dotted lines for the circle
packing in Figure 4. The shaded circle on the inside is the image of the outside circle under reflec-
tion through the smallest of the dual circles. The action of A on H

3 is then realized as reflections
through the hemispheres lying above the dual circles (which are also embedded in C) of the packing,
and a fundamental domain for this action is the union of the exteriors of the hemispheres lying above
D234,D134,D124,D123, the dual circles corresponding to the largest four mutually tangent circles in the
packing (see Section 2.2 of [15] for a detailed discussion of the action of A on H

3).

FIGURE 4. Dual circles in an Apollonian circle packing

This fundamental domain clearly has infinite volume, and so A is an infinite-index subgroup of the
orthogonal group OQ(Z) as stated in part (i) of Lemma 1.6. In this sense, the Apollonian group is a
thin group, and this makes integral ACP’s virtually unapproachable via classical methods such as the
theory of automorphic forms. However, the richness of the group implied by part (ii) of the lemma is
precisely the necessary condition for the analysis in [2] and [22] to apply in this case. We prove part
(ii) below.

Proof. The Zariski closure G of the Apollonian group A is an algebraic group defined over R, where
G(R) is a Lie subgroup of SL2(C). Therefore G could be either the full orthogonal group or one of the
following:

• A finite group: since A itself is not finite (for example, the unipotent element S1S2 has infinite
order), its closure cannot be finite.

• The group SOQ : since the generators of A all have determinant −1, this cannot be the closure
of A.

• A torus or parabolic subgroup: it is known (see [18], for example) that the Hausdorff dimension
of the limit set of A is δ = 1.3056 . . . . If G were a torus or parabolic, we would have δ = 0,
giving a contradiction.
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• The orthogonal group fixing the ternary quadratic form Q� of signature (2,1) over R obtained
by fixing one of the variables in (1.1). If this were the case, then we would have δ = 1, again
giving a contradiction to δ = 1.3056 . . . .

Since the Zariski closure of A is none of the above groups, it must be the full orthogonal group, and so
A is Zariski dense in OQ(C). �

It is precisely the fact that A is Zariski dense in OQ(C) that makes its orbits manageable via the affine
sieve described in [2] even though it is a thin group. We rely heavily on this fact in what follows.

2. CONGRUENCE OBSTRUCTIONS: THE SQUARE FREE CASE

In this section we determine the reduction of any integer orbit Av of the Apollonian group mod square
free integers d > 1 in order to establish the analog of the Chinese remainder theorem over the integers
in the context of the group itself. A theorem of Weisfeiler (see Theorem 2.1) implies that a strong
approximation principle should exist for the Apollonian group given Lemma 1.6 and we fine-tune this
theorem in our case to specify the precise congruence obstructions in this section.

Note that is convenient to work with the preimage of A in the spin double cover of SOQ rather
than the Apollonian group itself. The main reason for this is that A is a subgroup of the orthogonal
group OR(3,1) where strong approximation does not hold, and it is difficult to say anything about the
projection of A into OQ(Z/pZ) by working in the orthogonal group alone. However, the preimage Γ of
A under the spin homomorphism in (2.1) is a Zariski dense subgroup of SL2(C) where general results
regarding strong approximation are known. Specifically, Weisfeiler proves the following in [22]:

Theorem 2.1 (Weisfeiler, 1984). Let O be the ring of integers of a number field k, let V be the set of non-
archimedean non-equivalent valuations of k, and let kv denote the completion of k at a valuation v ∈V .
Let G be an absolutely almost simple, simply connected algebraic group over k, and let Γ ⊂ G(O) be
a Zariski dense subgroup of G so that the subfield of k generated by 1 and the traces of Ad Γ is k itself.
Then there exists a finite subset S ⊂V such that the closure of Γ in G(∏v�∈S kv) is open.

In the context of the Apollonian group, the field k in Theorem 2.1 is Q(
√

-1), the ring of integers
O = Z(

√
-1), and Γ is a Zariski dense subgroup of G = SL2(k�) where k� = C is the algebraic closure

of k. For this case Weisfeiler’s theorem implies that there is a finite set of primes P in O , so that Γ
projects onto SL2(Z(

√
-1)/p) for p �∈ P. However, Theorem 2.1 does not specify what P is, and its

proof does not easily imply what this set should be. It also does not give the multiplicative structure
present in Theorem 1.4. In what follows we determine P for our case and apply it in the context of
orbits of A.

2.1. The preimage Γ of A in SL2(C). Since strong approximation does not hold in OQ(Z), we con-
sider the mod p reduction of the preimage Γ of A∩SOQ(Z) in SL2(C) under the spin homomorphism
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ρ . As strong approximation does hold in SL2, it is the natural setting in which to ask this question –
we then map back to A via the spin homomorphism in order to complete the analysis of the orbits.

We recall from [7] that there is a 2-to-1 homomorphism ρ defined over Q from SL2(C) into the
special orthogonal group SO fixing the Lorentzian quadratic form Q̃(x1,x2,x3,x4) = x2

1 − x2
2 − x2

3 − x2
4:

(2.1) SL2
ρ−→ SOQ̃,

The homomorphism ρ is defined explicitly in [7] for M in SL2(C):

(2.2) For M =

�
a0 +a1

√
-1 b0 +b1

√
-1

c0 + c1
√

-1 d0 +d1
√

-1

�
,

we have4 that ρ(M) is




a2
0+b2

0+c2
0+d2

0+a2
1+b2

1+c2
1+d2

1
2

-a2
0+b2

0-c2
0+d2

0 -a2
1+b2

1-c2
1+d2

1
2 -a0b0-d0c0-a1b1-c1d1 -a0b1+d0c1+a1b0-d1c0

-a2
0-b2

0+c2
0+d2

0 -a2
1-b2

1+c2
1+d2

1
2

a2
0-b2

0-c2
0+d2

0+a2
1-b2

1-c2
1+d2

1
2 a0b0-d0c0+a1b1-c1d1 a0b1+d0c1-a1b0-d1c0

-a0c0-d0b0-a1c1-b1d1 a0c0-d0b0+a1c1-b1d1 a0d0+c0b0+b1c1+a1d1 a0d1-d0a1-c1b0+b1c0

a0c1-d0b1-a1c0+b0d1 -a0c1-d0b1+a1c0+b0d1 -a0d1+a1d0-b0c1+b1c0 a0d0-b0c0+a1d1-b1c1




.

In order to determine the preimage of A∩SOQ, we relate the Descartes form to Q̃ as follows.

Lemma 2.2. Let Q be the Descartes quadratic form as before, and let

Q̃(x1,x2,x3,x4) = x2
1 − x2

2 − x2
3 − x2

4.

There is an isomorphism given by conjugation between the groups OQ(C) and OQ̃(C) which maps
OQ(Z[

1
2 ]) onto OQ̃(Z[

1
2 ]). Denote by A� ⊂ OQ̃(Z[

1
2 ]) the image of the Apollonian group A ⊂ OQ(Z)

under this isomorphism. Then A� is in fact contained in OQ̃(Z).

Proof. Let Q� be the form Q�(x1,x2,x3,x4) = −4x2
1 +4x2

2 +4x2
3 +4x2

4. It is equivalent to the Descartes
form Q, since Q� = MT QM, where

(2.3) M =





1 0 -1 1
1 0 -1 -1
0 0 1 0
2 2 -1 0




.

The group OQ�(Z[1
2 ]) fixing Q� is isomorphic to the group OQ̃(Z[

1
2 ]), where

(2.4) Q̃(x1,x2,x3,x4) = x2
1 − x2

2 − x2
3 − x2

4.

Since every element in A is congruent to the identity mod 2, we have that A ⊂ OQ(Z) is mapped to a
group A� ⊂ OQ̃(Z) as desired. �

4There is a small typo in the formula printed in [7]. It is corrected here.
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The Apollonian group A is thus isomorphic to a subgroup of OQ̃(Z) which we denote by A�. We
denote the isomorphism by s:

(2.5) A� s−→A

and relate A� to SL2(Z(i)) via the homomorphism ρ in 2.1. Specifically, we get

ρ(SL2(Z(i))) = A� ∩SOQ̃(Z)

where the intersection A� ∩SOQ̃(Z) consists of elements of A� with positive determinant. It is known
(see [7]) that ρ is in fact a surjection from SL2(Z(i)) onto SO+

Q̃(Z), a subgroup of index 2 in SOQ̃(Z)

consisting precisely of matrices of SOQ̃ with a positive entry in the upper left corner. It is easy to
check that every element of A� ∩SOQ̃(Z) is in SO+

Q̃ , so we think of ρ as a homomorphism from Γ onto
A� ∩SOQ̃(Z). Similarly, we have an onto homomorphism from Γ to A∩SOQ(Z) via the isomorphism
s:

Γ
s◦ρ

−−−−→A∩SOQ(Z),

so by considering Γ we simultaneously consider the Apollonian group A as well. The explicit formula
for ρ in 2.1 combined with the fact that A∩ SOQ(Z) is generated by S1S2,S2S3, and S2S4 and their
inverses, where Si are the generators of A defined in (4.9) allows us to determine exactly the generators
and relations of Γ. We describe this in the following lemma.

Lemma 2.3. Let ρ and A� be as above. The preimage Γ of A� under ρ is a free group generated by
±γ1,±γ2,±γ3 and their inverses, where γi are as below.

(2.6) γ1 =

�
2 -i
-i 0

�
, γ2 =

�
-2-2i -4-3i

i 2i

�
, γ3 =

�
1 -4i
0 1

�
.

This follows from applying the homomorphism ρ together with the map s to the generators. Note
that this group is a free subgroup of SL2 – since the elements S1S2,S2S3, and S2S4 have no relations
in A, the same holds for the elements γi ∈ Γ. In the next section we use Lemma 2.3 to determine
the reduction of Γ mod ideals (d) where d is square free. We note, however, that to analyze A mod
even integers it is not enough to consider the reduction of Γ mod ideals (d) where d is even, since the
isomorphism in (2.5) is defined over Z(1/2). We deal with this separately in Section 4.

2.2. The reduction of Γ mod square free (d). Recall from Lemma 1.6 that A is Zariski dense in OQ,
we have A∩SOQ is Zariski dense in SOQ, and so the group Γ is also Zariski dense in SL2. We can also
check that the subfield of k =Q(

√
-1) generated by 1 and the traces of the group Γ is in fact the whole

field k. For example, the trace of

(2.7) γ1γ2γ3 =

�
-3-4i -22+6i
2i-2 12i+5

�
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is 2+ 8i, and the field generated by this trace and 1 is indeed all of k. Thus by Theorem 2.1 we have
that outside a finite set of prime ideals P⊂Z(

√
-1) the projection of Γ into SL2/p is surjective for p �∈P.

Our goal is to specify this set P and thus determine what the reduction of Γ is mod arbitrary square free
ideals (d). Given the generators of Γ as well as Theorem 2.1, this is a question of elementary group
theory. We use a classification due to L.E. Dickson (Theorem 8.27 in [14]) of subgroups of PSL2 over
finite fields:

Theorem 2.4 (Dickson, 1901). Let q be a power of a prime p ≥ 5. Then the following are the only
possible proper subgroups of PSL2(Fq).

(1) Elementary abelian p-groups;
(2) Cyclic groups of order z where z|q±1

2 ;
(3) Dihedral groups of order q±1 and their subgroups;
(4) Semidirect products of elementary abelian groups of order pr and cyclic groups of order t

where t|pr −1 and t|q−1;
(5) A4, S4, or A5;
(6) PSL2(Fpr) where pr|q.

For q prime, the proper subgroups of PSL2(Fq) given by Theorem 2.4 are metabelian – their com-
mutator subgroups are abelian – except for the groups of small order in (5) (see [5] for a proof). This
is also true for proper subgroups of PSL2(Fp2) which properly contain PSL2(Fp) for p prime. We use
this classification to prove the following proposition regarding the reduction of Γ mod square free d.

Proposition 2.5. Let Γ and O be as before, let p denote a prime ideal in O , and let (d) �= O denote an
ideal generated by d ∈ O . Let P= (6) and write d = d1c, where (c)⊇P and (d1) = ∏pi is a product
of prime ideals such that pi �⊃P for any i. Let Γj denote the image of Γ in SL2(O/j) where j is an ideal
in O . Then

1) The projection Γd −→ Γc ×Γd1 is surjective.
2) The projection Γd1 −→ ∏pi⊃(d1) Γpi is surjective and Γpi = SL2(O/pi).

Proof. We first consider the reduction of Γ mod prime ideals p ∈ O to show that Γp is in fact all of SL2

for p �⊃P, and then show that Γ maps as a product group as stated in the proposition. We split this up
into three cases:

(1) p2 = (2);
(2) pp = (p) where p ≡ 1 (mod 4); here p splits in O , and -1 is a square mod p, so the reduction

of Γ mod (p) is mapped to SL2(Fp)×SL2(Fp);
(3) p= (p) where p ≡ 3 (mod 4); here p does not split in O , and -1 is not a square mod p, so the

reduction of Γ mod (p) is mapped to SL2(Fp2).

Case 1:
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Reducing Γ mod (2) yields a group of order 2, which is clearly not all of SL2(O/(2)). Another unpleasant
feature of 2 in this context is that it is the only prime which ramifies in Q(i), since (2) = (1+ i)2. We
handle the other two cases separately, and note that we will not need to worry about ramification in
Q(i) there.

Case 2:

Let (p) = pp where p is the conjugate of the prime ideal p in O . We want to show that Γ reduces
onto each factor of SL2(O/p)× SL2(O/p) by first noting that both of these factors are isomorphic to
SL2(Fp) (we immediately note that the image of Γ in each factor is not trivial – for example, none of
the generators of Γ reduce to the identity I mod p �⊃ (2)). We prove this for Γp, the reduction of Γ mod
p. The proof in the case of reduction mod p is then the same argument applied to the conjugate of Γ.

Note that Γ ⊃ Z(SL2) contains the center of SL2 and consider Γ� = Γ/Z ⊆ PSL2(C). If the reduction
Γ�
p of Γ� mod p is a proper subgroup of PSL2(Fp), it is either metabelian or is one of the groups A4,

S4, or A5. We follow [10] to show that this would violate a girth bound for Γ�
p for large enough primes

p = pp.

Let S = {γ1,γ−1
1 ,γ2,γ−1

2 ,γ3,γ−1
3 }p be the set of generators of Γ�

p. For example, the generators of
Γ�
(2+i) are

�
2 -2
-2 0

�
,

�
-1 0
2 -1

�
,

�
1 2
0 1

�
.

Consider the Cayley graph C(Γp,S), where the vertices correspond to elements of Γp, and two vertices
v,w are connected by an edge iff v = γw for some γ ∈ S. Define the girth c(Γp) of C(Γp,S) to be the
length of the shortest cycle in C(Γp,S). From [17] we have that

(2.8) c(Γp)≥ 2logα(p/2)−1

where
α := max

i
(||γi||).

Here we define the norm of a matrix γ as follows:

||γ|| := sup
x�=0

||γx||
||x||

and recall that
||γ||2 = ||γ∗γ||

where γ∗ is the conjugate transpose of γ , and the norm of γ∗γ is its largest eigenvalue. Using this we
compute that in our case

α =

�
19+6

√
10 = 6.1623 . . .

Thus for pp= p large enough, Γ�
p cannot be A4,S4, or A5 since these groups contain elements of small

order which violate the girth bound in (2.8) – for example, these groups contain (12)(34) of order 2.
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So if Γ�
p is a proper subgroup of PSL2(Fp), it must be metabelian – i.e., for any A,B,C,D ∈ Γp we have

(2.9) [[A,B], [C,D]] := (ABA−1B−1)(CDC−1D−1)(BAB−1A−1)(DCD−1C−1) = I

However, this yields a cycle of length 16 which also violates the girth bound for primes p > 2.57 ·107,
and so Γ�

p = PSL2(Fp) for large enough primes p.

We are left with a finite number of cases which we handle using a program in Matlab. We check that
taking A = γ1,B = γ2,C = γ3, and D = γ1γ2γ3 where γi are as in (2.6) we have

(2.10) [[A,B], [C,D]] �= I

in PSL2(Fp) for 2 < p < 2.57 · 107, and thus Γ�
p is not metabelian in these cases. Similarly we check

that for p > 3 we have
��Γ�

p

��> 60, and so Γp �= A4,A5, or S4. Thus Γ�
p = PSL2(Fp) for all primes in this

case. Since no proper subgroup of SL2 maps onto PSL2 (see [20] for a proof), we have that Γ maps
onto SL2(O/p) and SL2(O/p) as desired.

Case 3:

In this case p = (p) where p ≡ 3 (mod 4) and we want to show that the reduction Γp = Γp of Γ
mod p is onto SL2(Fp2). Note Γp �⊂ SL2(Fp) – for example if γ1/p is the generator γ1 in Γp, we have
γ1/p �∈ SL2(Fp) for any prime p ≡ 3 (mod 4).

Again, consider Γ� = Γ/Z as in Case 2. Since Γ�
p properly contains PSL2(Fp), it is a proper subgroup

of PSL2(Fp2) iff it is one of the groups in parts (1) - (5) of Theorem 2.4 and is thus either metabelian
or one of the groups A4,A5, or S4.

The girth bounds calculated in Case 2 again imply that Γ�
p cannot be metabelian for

p > 2.57 ·107

Similarly, Γ�
p �= A4,A5,or S5 for p in this range, and so Γ�

p = PSL2(Fp2) for large enough p. As in Case
2, we check that if A = γ1,B = γ2,C = γ3, and D = γ1γ2γ3,

[[A,B], [C,D]] �= I

in Γp for p ≥ 3, and that |Γp|> 120 for p > 3. We also check that for p > 3 we have |Γp|> 120 and so
|Γ�

p|> 60. Thus Γ maps onto SL2(Fp2) for p > 3.

If p = 3, however, Γ�
p = A5 and so Γp is not the full SL2(F9).

It remains to show that Γ maps as a product group onto the second factor in Γc ×SL2(O/(d1)). For
this we need the following.

Theorem 2.6 (Goursat’s Lemma). Let G, G� be groups, and let H be a subgroup of G×G� such that the
two projections π1 : H −→ G and π2 : H −→ G� are surjective. Let N be the kernel of π1, and let N� be
the kernel of π2. Then the image of H in G/N ×G�/N� is the graph of an isomorphism G/N ∼= G�/N�.
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We have shown above that Γ maps onto SL2(Fq2) where q > 3 is a prime congruent to 3 mod 4, and
onto SL2(Fp)×SL2(Fp) where p is a prime congruent to 1 mod 4. To verify the product structure of
Γ/(d1) in Proposition 2.5, we prove the following two lemmas.

Lemma 2.7. Let Γ, d, c, and d1 be as in Proposition 2.5, let p denote a prime such that p ≡ 1(4), and
let q > 3 denote a prime such that q ≡ 3(4). Write d1 = ∏p|d1 p∏q|d1 q, and let

Hq = SL2(Fq2), Gq = SL2(Fp)×SL2(Fp).

Then the projection
Γ(d) −→ Γ(c)×Γ(d1)

is surjective onto each factor, and the diagonal projection

(2.11) Γ(d1) −→ ∏
q|d1

Hq ×∏
p|d1

Gp

is surjective onto each factor.

The centers Z(Hq) and Z(Gp) are finite, and the factor groups Hq/Z(Hq) and Gp/Z(Gp) are of the
form PSL2(Fp) which is simple for p > 4, so its composition factors consist of itself and the trivial
group. Therefore Hq and Gp have no composition factors in common for large enough primes p and q,
so Theorem 2.6 immediately implies Lemma 2.7. However, since every prime ideal (p) in the product
in 2.11 splits, we have that p = pp and we must still show that every Gp maps as a product onto its two
factors as in the next lemma.

Lemma 2.8. Let O and Gp be as before, where (p) = pp and p is a prime ideal in O . Then the diagonal
projection

(2.12) Gp −→ SL2(O/p)×SL2(O/p)

is surjective onto each factor.

Proof. In this case, Theorem 2.6 is not immediately applicable as it was in the proof of Lemma 2.7
since it is not the case that the groups in 2.12 have no composition factors in common. Suppose Gp

does not map as a product group onto SL2(O/p)×SL2(O/p). Then by Theorem 2.6 the projection of Gp

onto each factor is an isomorphism. In this case, we can write

Gp = {(x, f (x)) | x ∈ SL2(O/p)},

where f is an isomorphism from PSL2(O/p) to SL2(O/p). So identifying each of the factors of Gp

with the group H = SL2(Fp), every element of Gp is of the form (x,φ(x)), where x ∈ H, and φ is an
automorphism of H. Since all automorphisms of H are inner, φ preserves the trace for every x ∈ H:

Tr(φ(x)) = Tr(x) for all x ∈ H.
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However, we find an element in Gp whose trace is not in Q, and so the element’s trace in the first factor
is not the same as its trace in the second factor for any p:

(2.13)

�
-3−4i -22+6i
2i−2 12i+5

�
,

so we have a contradiction, and thus Gp maps as a product onto SL2(O/p)×SL2(O/p) as desired. �

Proposition 2.5 follows from Lemma 2.7, Lemma 2.8, and our case analysis above. �

Proposition 2.5 gives us a concrete description the reduction mod square free odd integers d of the
Apollonian group itself via the spin-homomorphism ρ . It is desirable, however, to understand the
structure of A and its orbit under reduction mod any d. To this end we specify the reduction of Γ mod
powers of prime ideals pr in the next section.

3. CONGRUENCE OBSTRUCTIONS: THE NON SQUARE FREE CASE

In Section 2.2 we proved that Γ has a multiplicative structure under reduction mod square free ideals
(d) outside a finite set of primes. In this section, we extend this multiplicativity to reduction mod any
(d) by considering the image of Γ mod powers of primes p. An essential tool in this consideration is a
generalization of the following theorem of J.P. Serre (see [20] for a proof).

Theorem 3.1 (Serre, 1968). Let p be a prime greater than 3. If X is a closed subgroup of SL2(Zp)

whose image in SL2(Fp) is SL2(Fp), we have X = SL2(Zp).

We extend this theorem to apply in the situation of Γ ⊂ SL2(C) below.

Lemma 3.2. Let O be the ring of integers in Q(i) as before. Let q �= (1+ i) or (3) be a prime ideal in
O and let Oq denote the completion of O at q. Let G be a closed subgroup of SL2(Oq). If the projection
of G into SL2(Oq/q) is surjective, then G = SL2(Oq).

The proof of this follows the same argument as the proof of Theorem 3.1 in [20] – we outline a
modification of it in the special case of reduction mod powers of (2) below. Since the projection of
Γ into SL2(Oq/q) is surjective for all but finitely many primes q by Proposition 2.5 we may use the
result in Lemma 3.2 to determine the reduction of Γ mod powers of q. We first handle the reduction
mod powers of prime ideals q contained in the ideals (2) and (3) in the following lemma and obtain the
complete picture in Theorem 3.5.

Lemma 3.3. Let Γ and O be as before. Let Kn(2) denote the kernel of the projection of SL2(O/(2n))

onto SL2(O/(2n−1)), and let Kn(3) denote the kernel of the projection of SL2(O/(3n)) onto SL2(O/(3n−1)).
Denoting the reduction of Γ mod (d) by Γd, we have

(i) Γ2 = D1, the dihedral group containing 2 elements.
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(ii) Γ4 is an abelian group of 8 elements.
(iii) Let τn denote the projection of Γ2n onto Γ2n−1 . The kernel of this projection is Kn(2) for n ≥ 4.
(iv) Γ3/Z(Γ3) = A5.
(v) Let σn denote the projection of Γ3n onto Γ3n−1 . The kernel of this projection is Kn(3) for n ≥ 2.

Proof. The images of Γ mod (2) and (4) are seen trivially from the generators of Γ, while the image
under reduction mod (3) can be deduced from Theorem 2.4.

The number of elements in the kernels of τ3 and τ4 can be computed using a simple program in
Matlab, and we obtain

(3.1) |{γ ∈ Γ16 |τ4(γ) = I}|= 520 = |K4(2)|,

|{γ ∈ Γ9 |σ2(γ) = I}|= 738 = |K2(3)|.

Thus the kernel of τ4, respectively σ2, is the full kernel K4(2), respectively K2(3). We proceed as in
[20] to prove part (iii) of the Lemma for n ≥ 4. The proof of part (v) regarding the kernel of σn for
n ≥ 2 is identical.

Let πn be the canonical homomorphism from SL2(O/(2n)) onto SL2(O/(2n−1)), and let φn be the pro-
jection from SL2(O/(2n)) onto Γ2n . The the following diagram commutes for n ≥ 4:

(3.2) Γ2n−1 Γ2n
τn

��

SL2(O/(2n−1))

φn

��

SL2(O/(2n))

φn

��

πn
��

We want to show that ker(τn) = ker(πn) for n ≥ 4. We prove this by induction on n.

From (3.1), this is true in the base case, n = 4. We suppose it is true for n, and show that it must also
be true for n+1. Let X denote the inverse limit of the groups Γ2i for i ≥ 4:

X := lim←− Γ2i where i ≥ 4

and denote by
SL2(O2) := lim←− SL2(O/(2i))

the inverse limit of the groups SL2(O/(2i)). We would like to show that for any γ ∈ SL2(O2) congruent
to the identity I mod 2n, there is an element x ∈ X such that

x ≡ γ (mod 2n+1).

As in [20], we write
γ = I +2nµ.

Since det(γ) = 1, we must have that Tr(µ)≡ 0 (mod 2). Thus µ can be written mod 2 as a sum of some
matrices µi such that µ2

i = 0, and so µ2 ≡ 0 (mod 2).
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By the induction hypothesis, we have that there is an element β ∈ X such that

β = I +2n−1µ +2nδ ,

where δ has entries in Z2(i). Let x = β 2. That is, we have

x = I +2nµ +2n+1δ +22n−2µ2 +22n−1µδ +22n−1δ µ +22nδ 2.

Since n ≥ 5 and µ2 ≡ 0 mod 2, we have produced an element x ∈ X such that

x ≡ I +2nµ (mod 2n+1)

as desired. �

It remains to determine the image of Γ under reduction mod (c), where c = 2n3m. It turns out that
powers of (2) do not interact with powers of (3) at all in this context – namely, Γc is simply the product
of Γ2n and Γ3n .

Lemma 3.4. Let Γ and c be as above. Then

Γc = Γ2n ×Γ3m .

Proof. It is easy to check that the groups Γ2n and Γ3m have no composition factors in common for any
n and m. The order of Γ2n is a power of 2, and the same is true of its composition factors. The orders of
the composition factors of Γ3n , however, are all divisible by a power of 3. Thus our claim follows from
Theorem 2.6. �

Theorem 3.5. Let d = cd�, where c = 2n3m, and gcd(d�,c) = 1. Let

d� = ∏
1≤i≤r

pai
i ∏

1≤ j≤s
qb j

j

be the prime factorization of d�, where pi ≡ 1 mod 4 for all 1≤ i≤ r, and q j ≡ 3 mod 4 for all 1≤ j ≤ s.
Then Γ maps as a product group onto

(3.3) Γc × ∏
1≤i≤r

(SL2(Z/pai
i )×SL2(Z/pai

i ))× ∏
1≤ j≤s

SL2(OZ/q
b j
j ),

where Γc is the image of Γ under reduction mod c, as described in Lemma 3.4.

This theorem follows from Proposition 2.5, Lemma 3.3, and Lemma 3.4, as well as the discussion
in [20]. It describes completely the structure of A

�
SOQ(Z) mod any integer d via the homomorphism

ρ together with s. In the next section, we use Theorem 3.5 to describe the orbit of A mod square free
integers d.
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4. CONGRUENCE OBSTRUCTIONS FOR THE ORBIT

Since we are ultimately interested in the local structure of the orbit of A, we extend Theorem 3.5
to the setting of the orbit P = P(P) = Av where v = vP is a Descartes quadruple of curvatures in a
packing P. Throughout this section, we consider the cone

(4.1) C = {v = (v1,v2,v3,v4) |v �= 0,Q(v) = 0}

where Q is the Descartes quadratic form. Note that the Apollonian group A acts on C by mapping any
quadruple of mutually tangent circles represented by a point of C to another quadruple of mutually
tangent circles in the same packing. In other words, for α ∈ A we have

(a,b,c,d) α−→(a�,b�,c�,d�)

where (a,b,c,d) and (a�,b�,c�,d�) are Descartes quadruples in a packing P. We would like to elaborate
on how this action behaves under reduction mod integers d > 1. Given the multiplicative property of
the group Γ in Section 3, this amounts to specifying how orbits of A mod powers of primes sit inside
Cpr , defined recursively as follows:

• For p > 2,

Cp = {v ∈ Z/pZ | v �≡ 0 (p),Q(v)≡ 0 (p)},(4.2)

Cpr = {v ∈ Z/pr
Z | v ∈Cpr−1 (pr−1),Q(v)≡ 0 (pr)}

for r > 1.
• For p = 2,

C2 = {v ∈ Z/2Z | v �≡ 0 (2),Q(v)≡ 0 (2)},(4.3)

C2r = {v ∈ Z/2r
Z | v ∈C2r−1 (2r−1),Q(v)≡ 0 (2r),∃w ≡ v (2r) s.t. Q(w)≡ 0 (2r+1)}

for r > 1.

Note that we need to define C2r separately because it is not true in this case that every solution to
Q(v) ≡ 0 (2r) lifts to some solution of the equation mod 2r+1 – only half of the solutions mod 2r lift
to solutions mod higher powers, and every element of C2r as defined above has 8 elements lying above
it in C2r+1 . Furthermore, since the isomorphism in (2.5) is over Z[1/2], we cannot apply results about
Γ to reduction of the orbit mod powers of 2 or mod even integers. We thus consider the reduction of
A mod odd integers first, and complete the picture with an analysis of reduction mod powers of 2 in
Lemmas 4.3 and 4.4.

Recall that A acts on C by mapping any quadruple of mutually tangent circles represented by a point
of C to another quadruple of mutually tangent circles in the same packing. Similarly, the group Γ acts
on the cone C via the spin homomorphism ρ and the change of variables map s in (2.5). Namely, for
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any γ ∈ Γ, we have the action

(4.4) (a,b,c,d)
s(ρ(γ))
−−−−→(a�,b�,c�,d�)

of γ on a quadruple (a,b,c,d) in the packing P. Since s(ρ(γ))∈A∩SOQ(Z), this action does not depict
the whole action of the Apollonian group, but rather only the action of elements of even word length in
the four generators of A. However, we can easily relate it to the action of all of A by multiplying on the
left by the generator S1.

Lemma 4.1. Let Ã = A∩SOQ(Z), and let S1 ∈ A be as in (4.9). Then

(1) A = Ã∪S1 Ã.

In general, we have

(2) OQ(Z) = SOQ(Z)∪S1 SOQ(Z).

Proof. To prove (1), consider α ∈A, and let w(α) denote the shortest word length of α in the generators
Si of A. Since Ã = A∩ SOQ(Z) and det(S1) = −1, if w(α) is even then α ∈ Ã and we are done.
Otherwise, w(S1α) is even and so S1α ∈ Ã. Since S2

1 = I, we have α ∈ S1Ã.

Furthermore, note that S1SOQ(Z) is a coset not containing I, and so SOQ(Z)∪S1 SOQ(Z) is simply
a left coset partition of OQ(Z) since [OQ : SOQ] = 2. This proves (2).

�

Since we can view the action of the Apollonian group on the cone as the action of Γ in this way, we
apply Theorem 3.5 to obtain the desired structure of the orbit of A mod odd integers d in the following
lemma.

Lemma 4.2. Let C and Cpr be as above, let P be an orbit of A acting on a Descartes quadruple of
curvatures v = vP of a packing P and let Pd be the reduction of this orbit mod an odd integer d > 1.
Write d = d1d2 with (d2,3) = 1 and d1 = 3m where m ≥ 0 is an integer. Then

(i) If m ≥ 1, the natural projection Pd −→ Pd1 ×Pd2 is surjective.
(ii) If m ≥ 1, let π : Cd1 −→C3 be the natural projection. Then Pd1 = π−1(P3).

(iii) The natural projection Pd2 −→ ∏pr||d2 Ppr is surjective and Ppr =Cpr .

Proof: We derive (i) directly from Lemma 4.4 and the product group structure of Γ in Theorem 3.5.
This structure translates to the orbit setting via the action in (4.4) of Γd on the cone. For simplicity,
we refer to this action as ρ(γ) as opposed to s(ρ(γ)) above. Using the notation of (3.3) and assuming
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d1 > 1, for v = vP we have

ρ(Γd)(v) = ρ

�
Γd1 × ∏

1≤i≤r
SL2(Z/pai

i )×SL2(Z/pai
i )× ∏

1≤ j≤s
SL2(O/q

b j
j )

�
(v) =(4.5)

ρ(Γd1)(v)× ∏
1≤i≤r

ρ(SL2(Z/pai
i ))(v)× ∏

1≤ j≤s
ρ(SL2(O/q

b j
j ))(v) =

ρ(Γd1)(v)× ∏
pr|d2

SOQ(Z/(pr
Z))(v)

Combining this with the multiplication of S1 by ρ(Γd)(v) in Lemma 4.1 we get

Pd = S1 ·ρ(Γd)(v)∪ρ(Γd)(v) =
�

S1 ·ρ(Γd1)(v)∪ρ(Γd1)(v)
�
× ∏

pr|d2

Cpr =

Pd1 × ∏
pr|d2

Cpr

as desired.

We prove (ii) in a similar way, using the characterization of Γc in Lemma 3.4. To realize the structure
of ρ(Γ3m)(v), note that the following diagram, where τm and τ �

m are the natural projections obtained by
reduction mod 3m, is commutative:

(4.6) Ã3m Ã3m+1

τ �m
��

Γ3m

ρ
��

Γ3m+1

ρ
��

τm
��

We recall from Lemma 3.4 that ker(τm) = Km(3) for m ≥ 2, where Km(3) is the kernel of the projection

SL2(O/3m+1)
πn−→SL2(O/3m)

and therefore
ker(τ �

m) = ρ(ker(τ(m))) = ρ(Km(3)).

Let π �
m be the projection from SOQ(Z/3m

Z) onto SOQ(Z/3m−1
Z), and let K�

m(3) be the kernel of π �
m.

Since the diagram

(4.7) SOQ(Z/3m
Z) SOQ(Z/3m−1

Z)
π �

m
��

SL2(O/3m)

ρ
��

SL2(O/3m−1)

ρ
��

πm
��
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also commutes, we have that ρ(Km(3)) = K�
m(3) for m ≥ 2. Finally, we note that the diagram

(4.8) C3m C3m+1��

P3m

��

P3m+1

��

��

commutes for m ≥ 2. Combined with our analysis of the kernel of τ �
m above, we have that every

v ∈C3m+1 lying above a vector v ∈ P3m is also in P3m+1 . Thus P3m = π−1(P3) as desired. �
It remains to extend Lemma 4.2 to all integers d. We first prove an analog of part (ii) of Lemma 4.2

for powers of 2.

Lemma 4.3. Let P be a primitive integer orbit of the Apollonian group, and let P2n denote the
reduction of P mod 2n. Let C2n be as in (4.3) and let πn be the natural projection

πn : C2n −→C2n−1 .

With this notation, we have
P2n = π−1

n (P2n−1)

for n ≥ 4. In particular, if π : C2n −→C8 is the natural projection where n ≥ 4, then P2n = π−1(P8).

Proof. To prove this, we produce elements of A which effectively lift points in P2n−1 to all possible
points in C2n . Let S1,S2,S3, and S4 be the generators of the Apollonian group as before, and let X0 =

S2S1S3, Y0 = S1S2S4, Z0 = S1S3. For integers n ≥ 4, let X(n) = X2n−3

0 ,Y (n) = Y 2n−3

0 , and Z(n) = Z2n−3

0 .
We have

(4.9) X(n)≡





1 2n−1 2n−1 0
2n−1 1 2n−1 0
2n−1 2n−1 1 0
0 0 0 1




(mod 2n), Y (n)≡





1 2n−1 0 2n−1

2n−1 1 0 2n−1

0 0 1 0
2n−1 2n−1 0 1




(mod 2n),

Z(n)≡





2n−2 +1 2n−2 -2n−2 2n−2

0 1 0 0
2n−2 -2n−2 1-2n−2 -2n−2

0 0 0 1




(mod 2n).

Let Hn be the abelian group of order 16 generated by X(n),Y (n), and Z(n) mod 2n. Note that any prim-
itive orbit P of A mod 2 consists of one vector, where two coordinates are 1’s, and two coordinates are
0’s (this follows from the unique nontrivial solution to the Descartes equation mod 2), and that we can
arrange the vector to be (1,0,0,1) and re-order coordinates of all the vectors in the orbit accordingly.
With this in mind, let n ≥ 4, and let r ∈ P be the vector

r = (a+2n−1k1,b+2n−1k2,c+2n−1k3,d +2n−1k4)
T
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which is (a,b,c,d)T mod 2n−1. Here 0 ≤ a,b,c,d < 2n−1 are integers such that a and d are odd and
b and c are even. Since Hn is a subgroup of A, we have that the orbit Hnr mod 2n sits inside P2n . In
particular, given that

• v ≡ (1,0,0,1)T (mod 2),
• v1 + v2 + v3 + v4 ≡ 0 (mod 2),
• v1 + v2 + v3 + v4 ≡ 0 (mod 4)

for every v = (v1,v2,v3,v4)T ∈ P , we have

I · r ≡ r

Y (n) · r ≡ r + (2n−1,0,0,2n−1)T

Z(n) · r ≡ r + (2n−1,0,0,0)T

X(n)Z(n) · r ≡ r + (2n−1,2n−1,2n−1,0)T

Y (n)Z(n) · r ≡ r + (0,0,0,2n−1)T

X(n)Y (n)Z(n) · r ≡ r + (0,2n−1,2n−1,2n−1)T

X(n) · r ≡ r + (0,2n−1,2n−1,0)T

X(n)Y (n) · r ≡ r + (2n−1,2n−1,2n−1,2n−1)T

mod 2n. This is the full list of points in C2n lying above r, as desired. �

Finally, we show a multiplicative structure for orbits of the Apollonian group mod even integers in
the following lemma:

Lemma 4.4. Let δ = 2n be any positive power of 2 and let P be as before. Let c be an odd integer,
and let d = δc. Then the projection

Pd −→ Pδ ×Pc

is surjective.

Proof. Let c = 3mc�, where gcd(c�,3) = 1 and m ≥ 0. For Ã = A∩SOQ, let Ãd denote the reduction of
Ã mod d. From the proof of Lemma 4.2, we have that Ãc maps as a product group onto

(4.10) Ã3m × ∏
pr||c�

SOQ(Z/pr
Z)

if m ≥ 1, or as a product group onto the second factor in (4.10). Assume m ≥ 1, and note that the
projection Ãd to

(4.11) Ãδ × Ã3m × ∏
pr||c�

SOQ(Z/pr
Z)
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is onto each factor by the proof of Lemma 4.2. By Goursat’s Theorem 2.6, note that the groups in (4.10)
have no composition factors in common. Furthermore, the order of Ãδ is a power of 2, and so all of its
composition factors also have order a power of 2. However, this is not true of any of the composition
factors of Ã3m or SOQ(Z/pr

Z), so by Goursat’s lemma we have that Ãd does indeed map as a product
group onto the expression in (4.11). As in Lemma 4.2, we consider the orbit

Ãdv = (Ãδ × Ã3m × ∏
pr|c�

SOQ(Z/(pr
Z))(v)(4.12)

and combine this with the multiplication of S1 as described in Lemma 4.1 to get

Pd = (S1 · Ãd)(v)∪ Ãdv = Aδ v×P3m × ∏
pr|c�

Cpr =

Pδ ×Pc

as desired. The proof in the case of m = 0 is identical (the factor of P3m is simply ommited). �

Theorem 1.4 follows directly from Lemmas 4.2, 4.3, and 4.4. It implies the following improvement
of Graham et.al.’s Theorem 1.3.

Corollary 4.5. Let P be a primitive integral Apollonian circle packing, and let d > 1 be a square free
integer such that gcd(d,6) = 1. The curvatures of circles in P cover all possible congruence classes
modulo d.

Proof. We wish to show that for any residue class k modulo d, k is a coordinate of some vector v ∈ P .
Suppose k �= 0. Let Cd = ∏p||d Cp. Note that Q(0,0,k,k) = 0 for any k �= 0 where Q is the Descartes
form, and so (0,0,k,k) ∈Cd for all d ∈ N. Since Pd =Cd for d relatively prime to 6 by Theorem 1.4,
we have that (0,0,k,k) ∈ Pd as well, and so we have what we want. If k = 0, then we easily produce
a vector with coordinate 0 in Pd – again, (0,0,a,a) ∈ Pd for any a �= 0. �

Note that the corollary above implies that the bad primes (in the sense of Weisfeiler’s theorem) for
the Apollonian group are 2 and 3. Removing either of these from the set of bad primes is impossible –
the corollary does not hold if 6 is replaced by either 2 or 3.

This corollary, combined with Theorem 1.4, completes the local description of curvatures in any
given primitive ACP. The next step is to prove a local to global principle as in Conjecture 1.5, and to
try understand for which thin groups one might expect such a principle to hold. In addition, it would
be interesting to explain how the set of bad primes depends on the group itself. Here, we extract the
bad primes via a rather technical process, and being able to avoid this process would be useful in
applications of the affine sieve and beyond.
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