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ABSTRACT. We give a criterion which ensures that a group generated by Cartan involutions in the
automorph group of a rational quadratic form of signature (n—1,1) is “thin”, namely it is of infinite
index in the latter. It is based on a graph defined on the integral Cartan root vectors, as well as
Vinberg’s theory of hyperbolic reflection groups. The criterion is shown to be robust for showing
that many hyperbolic hypergeometric groups for ,, F;,_1 are thin.

1. INTRODUCTION

Let a, € Q™ and consider the , F,,_1 hypergeometric differential equation

(1.1) Du =0

where

(1.2) D=0+6-1D)O+pP2—1)-(0+8,—1)—204+a1) - (0+ )

and 0 = z%.

Assuming, as we do, that 0 < o; < 1,0 < 8; <1, and the a’s and 3’s are distinct, the n-functions
(1.3) AP E, (4 ay— By T4+ an— B, 1+ 81— By Vo 1+ B — Bi| 2)

where V denotes omit 1+ 5; — f3;, are linearly independent solutions to (1.1). Here ,F,,_; is the
hypergeometric function
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and (n)y =n(n—+1)---(n+k—1).

Equation (1.1) is regular away from {0, 1,00} and its monodromy group H(c, 3)" is generated
by the local monodromies A, B,C (C' = A™!'B) gotten by analytic continuation of a basis of so-
lutions along loops about 0,00, and 1 respectively, see [B-H] for a detailed description. The local
monodromies of equations that come from geometry are quasi-unipotent which is one reason for
our restricting o and § to be rational. We restrict further to such H(c, 3)’s which after a suit-
able conjugation are contained in GL,(Z). According to [B-H], this happens if the characteristic
polynomials of A and B, whose roots are e?™® and e?™% respectively, are products of cyclotomic

IWe assume throughout that H(q, 8) is primitive — see Section 2.1.
1
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polynomials. In particular for each n > 2 there are only finitely many such choices for the pair
a, in Q™. [B-H] also determine the Zariski closure G = G(«, ) of H(«a, 3) explicitly in terms of
a, . Furthermore the integrality conditions that we are imposing imply that H(«, 3) is self dual
so that G(a, p) is either finite, Sp(n) (n even) or O(n). The signature of the quadratic form in the
orthogonal case is determined by the relative locations of the roots «, 8 (see Section 2.1).

Our interest is whether H(a, /) is of finite or infinite index in G(Z) = G(«, B)[Z]. In the first
case we say that H(a, ) is arithmetic and in the second case that it is thin. This distinction is
important in various associated number theoretic problems (see [S1]) and this paper is concerned
with understanding which case happens and which is typical. In a given example, if H(«, () is
arithmetic one can usually verify that it is so by producing generators of a finite index subgroup of
G(Z), on the other hand if H(«, /) is thin then there is no general procedure to show that it is so.
Our main result is a robust certificate for showing that certain H(a, #)’s are thin.

Until recently, other than the cases where H(«, 5) (or equivalently G(«, [3)) is finite, there were
few cases for which H(a, ) itself was known. For n = 2 it is well known that all the H(«, 5)’s
are arithmetic and we show that the same is true for n = 3. For n = 4 Brav and Thomas [B-T]
showed very recently that the Dwork family [D] « = (0,0,0,0),8 = (%, %, %, %) as well as six other
hypergeometrics with G = Sp(4) which correspond to families of Calabi-Yau three-folds, are thin.
In fact they show that the generators A and C' of the above H(«, )’s play generalized ping-pong on
certain subsets of P, from which they deduce that H(«, 3) is a free product and hence by standard
cohomological arguments that H(c, 3) is thin. On the other hand, Venkataramana shows in [V]
that for n even and

B 1+ 1 1+ n 5= Ol—i—l 1+n—1
T\ T arr e T axr) P\ Uty T )

H(«, B) is arithmetic (in Sp(n,Z)). In particular, there are infinitely many arithmetic H(«, 8)’s. In
[S-V] many more examples with G = Sp(n) and for which H(«, () is arithmetic are given. Another
example for which H can be shown to be thin is & = (0,0,0,%), 8 = (3, 1, %, %), see [F]. In this
case G(R) is orthogonal and has signature (2,2) and G(Z) splits as a product of SLy’s.

All of our results are concerned with the case that G(«, 3) is orthogonal and is of signature
(n—1,1) over R. We call these hyperbolic hypergeometric monodromy groups. There is a unique (up
to a scalar multiple) integral quadratic form f for which G(Z) = O(Z), or what is the same thing
an integral quadratic lattice L with O(L) := G(Z). In Section 2.4 we determine a commensurable
quadratic sublattice explicitly which facilitates many further calculations. In this hyperbolic setting
G(R) = O4(R) acts naturally as isometries of hyperbolic n — 1-space H"™! and we will use this
geometry as a critical ingredient to provide a certificate for H(«, 3) being thin. Our first result is
the determination of the «, #’s for which G(«, ) is hyperbolic, see Theorem 2.6. Firstly, these only
occur if n is odd and for n > 9 they are completely described by seven infinite parametric families.
For 3 < n < 9 there are sporadic examples which are listed in Tables 2 and 3 of Section 5. Our
determination of the seven families is based on a reduction to [B-H]’s list of families of G(«, 5)’s
which are finite (i.e. those G(«, 5)’s for which G = O(n) and have signature (n,0)).

For n = 3, if H(«, ) is not finite then it is hyperbolic and as we noted all 6 of these hyperbolic
groups are arithmetic. This is verified separately for each case, there being no difficulty in deciding
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whether a finitely generated subgroup of SLy(R) is thin or not (the latter is a double cover of
SO(2,1)), see the Appendix®>. For n > 5 the hyperbolic monodromies behave differently. Our
certificate of thinness applies in these cases and it is quite robust as exemplified by

Theorem 1. The two families of hyperbolic monodromies H(c, 3) with n > 5 and odd

: _ 1 —1 +3 _ (1 1 2 —1
(1)04_<0T _;,_17”‘72(7:1—4@7%7.“7#)7ﬁ_(§75?ﬁ7'..7nT)
s 1 1 3 2n—3 1 2 —3
(ll)Oé:(§ 2Mm—27 Ip— 27"'722_2)7ﬁ:<07070am7m7“'a%)

are thin.

In particular infinitely many of the H(«, )’s are thin and as far as we know these give the first
examples in the general monodromy group setting of thin monodromy groups for which G is high
dimensional and simple.

Remark. The normalized ,F,_1’s corresponding to (i) and (ii) above (see [Vill] for the normaliza-
tion) are

—  (2k!1)*(nk 2 — 2)k)!(2k

Z()(n)zk andz n —2)k)!(2k)! Sk
pare ((n+ 1)k)!(k!3 (kD)3((n — D)E)((n — 2)k)!

respectively. The second has integral coeﬁczents whzle the first does not, hence this arithmetic

feature of F' is not reflected in the arithmeticity of the corresponding H (See the end of Section 2.3

for more about the integrality of the coefficients).

Our certificate for thinness applies to a number of the families and many of the sporadic examples.
The full lists that we can handle thus far are recorded in Theorems 4.7 and 4.11 of Section 4 as well
as Table 2 of Section 5. There remain some families for which the method does not apply (at least
not directly). In any case we are led to

Conjecture 2. All but finitely many hyperbolic hypergeometric H(c, 8)’s are thin.?

We turn to a brief description of our methods. In general if there is an epimorphism ¢ : G(Z) — K
with ¢ (H(c, 8)) of infinite index in K, then clearly H(c,3) must be of infinite index in G(Z).*
In principle, H'(G(Z)) could be infinite which would imply that H(c, () is thin since the latter is
essentially generated by involutions, however we know very little about these cohomology groups
for the full Of(Z). Instead we use variations of the quotient ¢ : Of(Z) — Of(Z)/Rs =: Ky where
Ry is the Vinberg reflective subgroup of O;(Z). Namely, Ry is the group generated by the elements
of O4(Z) which induce reflections of hyperbolic space H" ™! (that is the induced action on one of
the two sheeted hyperboloids in n-space, see Section 3). Vinberg [Vil] and Nikulin [N1] have shown
that except for rare cases K is infinite, see Section 3 for a review of their results which we use.

2For n > 5 there is no general algorithm known to decide this.

3Tt is quite possible that these H (v, 8)’s are all thin for n > 5.

4That useful such ¢’s exist in this hyperbolic setting is demonstrated below. If G(a, B) is of real rank two or
bigger, there are no useful ¢)’s by Margulis’s normal subgroup theorem [M].
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To apply this we need to understand the image of H(a, ) in K. The key observation is that the
element C' in H(a, ), which is a linear reflection of n-space, induces a Cartan involution of H" !,
that is it is an isometry of H" ! which is an inversion in a point p € H" . The reflection subgroup
H,(a, B) of H(a, ) is the group generated by the Cartan involutions B¥CB~*, k € Z and H/H, is
cyclic. Thus essentially up to commensurability the question of whether H(«, ) is thin is a special
case of deciding whether a subgroup A of Of(Z) generated by Cartan involutions is thin or not.
We approach this by examining the image of such a A in K; (when the latter is infinite). At this
point the study is about Of(Z), K, and a general such A (and n needn’t be odd).

We define a graph X, the “distance graph,” associated with root vectors of f which is central
to the analysis. We assume that f is even (that is f(z) € 2Z for x € L) and for k = 2 or —2
let Vi(L) = {v € L| f(v) = k} be the corresponding root vectors (in the case that f(z,v) € 2Z
for all ;v € L which comes up in some cases we also allow k to be £4). The root vectors define

linear reflections lying in Of(Z) given by r, :  +— x — %v. By our choice of the signature of

[, for v € V_o(L) the map 7, induces a Cartan involution on H"™! while for v € V(L) it induces
a hyperbolic reflection on H"!. Assume that the Cartan involutions generating A come from root
vectors in V_o(L). X has for its vertices the set V_5(L) and we join v to w if f(v,w) = —3, this
corresponds to v and w having the smallest distance allowed by discreteness, as points in H"!.
The graph X is a disjoint union of its connected components ¥, and these satisfy (see Section 4.1
for a detailed statement)

Proposition 3. (i) The components 3, consist of finitely many isomorphism types.
[(ii) Each type is either a singleton or an infinite homogeneous graph corresponding to a transitive
isometric action of a Cozeter group with finite stabilizer.
(iii) If X4 is a connected component of Xy, then the group generated by the corresponding Cartan
roots, R_o(X,) = (ry | v € £,) is up to index 2 contained in the reflection group Rs(L) =
{ro[veVa(l)}.

With this the certificate for showing that A is thin is clear: according to Vinberg and Nikulin,
O(L)/Ry(L) is infinite except in rare cases (and Nikulin has a classification of thee), hence if (iii) is
satisfied for the generators of A then A must be thin. The calculations connected with the minimal
distance graph can be carried out effectively in general and even explicitly for some of our families.
The process in the general case invokes an algorithm for computing the fundamental polyhedral
cell for a discrete group of motions of hyperbolic space which is generated by a finite number of
reflections. Such an algorithm is provided in Section 4.2°.

The above leads to the cases discussed in Sections 4 and 5 for which H(«, ) is shown to be
thin. To end we note that it is possible that a much stronger version of Vinberg’s theorem in
the following form is valid: For all but finituely many rational quadratic forms f (at least if n is
large enough) the full “Weyl subgroup” W(f) generated by all reflections in O(L) (that is, both
those inducing hyperbolic reflections and Cartan involutions on H" ') is infinite index in Of(L) (see
Nikulin [N2]). If this is true then Conjecture 2 would follow easily from our discussion. In Section 3

5Tt differs from Vinberg’s algorithm [Vil], which assumes that one has an apriori list of all the hyperbolic reflections
in the group.
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we give an example in dimension 4 with Ry(L) being thin and R_(L) arithmetic, so there is no
general commensurability between these groups. Finally, we note that when our analysis of the
thinness of H succeeds, it comes with a description of H as a subgroup (up to commensurability) of
a geometrically finite subgroup of Rs(L) and this opens the door to determine the group structure
of H itself. We leave this for the future.

2. HYPERBOLIC HYPERGEOMETRIC MONODROMY GROUPS: PRELIMINARIES

2.1. Setup of the problem. We begin by reviewing [B-H] which forms the basis of our analysis.
The setup and notation is as in the Introduction. The starting point for studying H(«, /3) is the
following theorem of Levelt.

Theorem 2.1 ([Le]). For 1 < i < n let a; and f5; be as above. Define the complex numbers
Ay, AL By, ..., By, to be the coefficients of the polynomials

P(z):= H(z—ewo‘j) =2"FA " 4 A, and Q(z H i) = 2"+ B 2" 4 - 4B,

j=1 7j=1

Then H(«, ) is the group generated by

00 0 -A, 0 0 0 -Bn
10 0 -An_q 10 0 -Bn_,
A=1] 01 0 , B=|o01 0
00 0 -As 0 0 0 -By
00 1 -A 00 1 -B

Note that H(c, ) can be conjugated into GL,(Z) if and only if the polynomials P(z) and Q(z)
above factor as cyclotomic polynomials, and so the roots of P(z) and Q(z) are reciprocal, meaning
they are left invariant under the map z — 27!, Since we are interested in integral monodromy
groups, we will assume this throughout the article. Also, given a group H(«, 3) as above, one
obtains another hypergeometric group H(o/, ") by taking 0 < o/, < 1 to be a +d and § + d
modulo 1, respectively. The group H (o', 3’) is called a scalar shift of H(«, ), and as pointed out in
Remark 5.6 in [B-H|, we have that H(«, 5) = H(d/, f'), up to a finite center. Thus when classifying
all possible pairs («, ) such that H(«, ) is integral and fixes a quadratic form of signature (n—1, 1)
in Section 2.3 we will do so up to scalar shift. Note that for any given n there are only finitely
many such groups H(a, f3).

We also assume that H is irreducible, meaning that it fixes no proper subspace of C", and
primitive, meaning that there is no direct sum decomposition C* =V, & Vo @ --- ® V) with k > 1
and dim(V;) > 1 for all 1 < ¢ < k such that H simply permutes the spaces V;. Finally, we define
the reflection subgroup H, of H to be the group generated by the reflections {A*BA=* |k € Z}. By
Theorem 5.3 of [B-H| we have that the primitivity of H implies the irreducibility of H,. With the
notation above, Beukers-Heckman show in [B-H| that H = H(«, ) falls into one of three categories.
Given a hypergeometric monodromy group H(«, [3), let

(2.1) Cap = An/By
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where A, and B, are as in Theorem 2.1. Note that in the cases we consider ¢, 3 = +1. Then
H(a, ) belongs to one of the following categories.

(0) A finite group (Beukers-Heckman list such cases completely in [B-H], and we summarize
these cases in Theorem 2.2 below)

(1) If n is even, H is infinite, and ¢, 3 = 1 then H C Sp,(Z) and Zcl(H) = Sp,,(C)

(2) If nis odd and H is infinite; or if n is even, H is infinite, and ¢, 3 = —1, then H C Oy, ,(Z)
for some rational, unique up to scalar multiple quadratic form f = f, g in n variables and
ZCI(H) = Of((C)

As noted in the introduction, in this article we study hypergeometric groups H which fall into
category (2) and such that H fixes a quadratic form of signature (n—1,1). We should mention that
Beukers-Heckman show that the signature of f, s in category (2) is given by (p,q) where p+¢g =n
and

(2.2) p—ql = > (—1)"™
j=1
where m; = [{k | Br < «;}| and the o; and S; are ordered as described in the introduction:

0§ij<].,0§6j<1.

Although we concern ourselves with the case where H is infinite, irreducible, and primitive, we
state below Beukers-Heckman’s classification of all possible finite groups H(«, 5). In Section 2.3
we will need this classification to classify all of the primitive, irreducible hypergeometric groups
H(a, f) which we consider — i.e. integral orthogonal of signature (n — 1,1). The precise statement
of the theorem is taken from [M-S].

Theorem 2.2 ([B-H|,[M-S]). Let o« = (g, ..., ) € Q" and B = (P1,...,5Bn) € Q" and let H(a, f)
be as before. Define a; := e*™% and b; = €*% and let a := {ay,...,a,} and b := {by,...,b,}. Let
P(z),Q(z) corresponding to H(c, B) be as in Theorem 2.1. If H(«, [3) is finite then the corresponding
polynomials P(z),Q(z) are as in one of the cases below.
(1) The case where H, is primitive: in this case the corresponding polynomials P(z) and Q(z)
belong to one of two infinite families or to one of 26 sporadic examples. One such infinite family
corresponds to X X
2t —1 (27 —1)(z"7 = 1)

S 21
wheren >1,1<j < (n+1)/2, ged(j,n+1) = 1. The other infinite family is obtained by replacing
z with —z above.
(2) The case where H, acts reducibly on C": in this case Theorem 5.3 of [B-H] implies that H, is
primitive, and we have that there is some primitive (th root of unity ¢ with £ > 1 such that (a = b.
Then (a, B) gives the pair P(z%), Q(z%) where P and Q are as in case (1) or correspond to one of
the sporadic examples mentioned there.
(8) The case where H is imprimitive and H, is irreducible: in this case the corresponding polynomials
P(2) and Q(z) belong to one of two infinite families. One such family is

P(z)=2"+1, Q(2)=( —1)(z"7 +1)

P(z) =
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where n > 3, 1 < j <n, and gcd(j,2n) = 1. The other such family is obtained by replacing z with
—z above.

2.2. Almost interlacing cyclotomic sequences. In this section we classify all almost interlacing
cyclotomic sequences (see Definition 2.4). This classification will be used in the next section to
classify all hyperbolic hypergeometric monodromies in dimension n > 9.

Definition 2.3. Two sequences 0 < a1 < ... < a, < 1 and 0 < ;1 < ... < B, < 1 are called
interlacing cyclotomic sequences if the following three conditions hold:

1. o; # B for every 1 <i,7 <n.

2. [Ticjcn(t = €*™%9) and [, <, (t — €™%) are products of cyclotomic polynomials.

B <fi<a<---<a,<pBpborf<a <fPy <Py <ay,.

Define r; := |{j | #; < a;}| and s; := |{j | o < B;}|. Condition 3 in the above definition is
equivalent to the following condition:

L (DT = [ (=)

Definition 2.4. Two sequences 0 < a1 < ... < a, < 1 and 0 < 1 < ... < B, < 1 are called
almost interlacing cyclotomic sequences if the following three conditions hold:

1. o; # B for every 1 <i,7 < n.

2 [Ticjcn(t =€) and [, (t — e¥™85) are products of cyclotomic polynomials.

3 [ 2 (=) = [ X (=)

Note that, by the expression for the signature in (2.2), it is precisely when « and [ are almost
interlacing that H(«, ) is hyperbolic (signature (n — 1,1)). Beukers and Hekman classify all
interlacing cyclotomic sequences in [B-H]. We use their classification in order to classify all almost
interlacing cyclotomic sequences. We start with the following lemma:

= n.

=n—2.

Lemma 2.5. Let (ozi)ngn and (B;)1<i<n be almost interlacing cyclotomic sequences with n > 7.
Then n is odd and Qnp1 = 5 and B =0 or 6n+1 == and ag = 0. Moreover, if the first possibility
happens then one of the followmg 4 options holds
(1) The sequences (¢;)1<i<n and (d;)1<;<n are interlacing cyclotomic sequences where:
(a=p
Gg=0a;_1 1<i1<m
=0 m<i1<n
d; = BiJrl 1<i<m
dm = 0
\ dz = D m<i1<n

(2) The sequences (¢;)1<i<n—1 and (d;)1<i<n—1 are interlacing cyclotomic sequences where:
a =
Ci = Qi1 l<i<m
=01 m<1<n—1
di=Biy1 1<i<n-—1



8 FUCHS, MEIRI, AND SARNAK

(3) The sequences (¢;)1<i<n—1 and (d;)1<i<n—1 are interlacing cyclotomic sequences where:

Ci = Q4 1<i<m
=01 m<i1<n-—1
di:ﬁi_l,_Q 1<i<m
dm = o,

dizﬁﬂ_l m<i<n-—1

(4) The sequences (¢;)1<i<n—2 and (d;)1<i<n—2 are interlacing cyclotomic sequences where:

C = o 1<i<m
=00 m<1<n—2

Proof. The proof is divided into easy steps:

(a) The sequences (o )1<i<n and (5;)1<i<n are cyclotomic so for every t € (0, 1),

{ilaj =t} =[{jla; =1t}
and

{i 18 =t} =il B =11t}
(b) For every 1 < i < n — 1 denote ¢; := (—1){ilfi@cir)l and §; := (—1)Hles€WBifir)} The
equality | > (=1)"*"| = n — 2 implies that exactly one of the following possibilities holds:
() {i | e = 1) = {1
(i) {i|e =1} ={1,2}
(it) {i [ =1} = {n — 1}
(iv) {i|le=1}={n—-2,n—-1}
(v) {i|e =1} ={k—1,k} for some 3 <k <n—2.
(c¢) The symmetry of step (a) shows that options (iii) and (iv) are not possible and that:
o If option (i) happens then oy = 0.
o If option (ii) happens then oy = ap = 0.
o If option (iii) happens then n is odd, k = and oy = 1.
(d) Denote m := "T“ Changing the roles of the o;’s and the 3;’s we see that n is odd and that
either ay, = % and 1 =0 or a,,, =0 and p; = %
(e) From now on we will assume that a,,, = 3 so {i | ¢ =1} = {2+, 2} and 5 = 0.

2
(f) Since there are exactly n 8;’s the assumptions of step (e) imply:

n+1
2

_ 0 e=m—1ori=m
{7 | 85 € (i, 1)} = { 1 otherwise

Furthermore, the symmetry of step (a) implies that if 55 = 0 then also 3 = 0 while if 82 # 0
then 8, =1 — [y > .

(g) The symmetry of step (a) implies that either a,, 1 < amy, < Gmy1 OF Qo1 = Ay = Ay
Thus, there are only 4 options:
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0261<62<C¥1<ﬁ3<0€2<"'<ﬁm<0ém_1<

1
Oém:§<06m+1<Bm+1<am+2<"'<ﬁn—1<an<ﬁn

O0=01<Be<o<fs<ay<-<fp<qp1=

1
am:§ZQm+1<6m+1<am+2<"'<ﬁn—1<an<ﬁn

O=p=0F=0<a<Bi<a < <Pt <apm <

1
am:§<am+1<Bm+2<am+2<"'<ﬁn<an

O=p=0F=0<a<fi<a < <Bnt1 <oy =
am:§ZQm+1<Bm+2<am+2<"'<ﬁn<an
O

2.3. Infinite families of hyperbolic monodromy groups. In this section we combine Lemma 2.5
with the classification of finite hypergeometric monodromy groups in Theorem 2.2 to produce seven
infinite families of primitive integer hypergeometric groups which fix a quadratic form of signature
(n — 1,1). Each family is either a two or three parameter family. As will be clear in the proof of
the following theorem, the n-dimensional two parameter families listed below are derived from the
roots of

(2.3) Pn(z)=2"+1 and Qn(2)= (2 — 1" +1),

where m is taken to be n — 2,n — 1, or n, while the n-dimensional three parameter families are
derived from the roots of

zf(kJrl) -1 ZZj -1 Zf(k+1fj) -1
(24) PmJC(Z) = ﬁ and Qm’k(Z) = ( )ie 1 )
where /k = m and m is taken to be n — 2,n — 1, or n. These families describe all primitive
hypergeometric hyperbolic monodromy groups in dimension n > 9 up to scalar shift. In addition
to groups in these families, there are several sporadic groups in dimensions n < 9 which are listed
in Table 2 of Section 5.1 along with all primitive hyperbolic H(«, ) in dimension n < 9.

Theorem 2.6. Let n > 1 be odd and let Py, Qum, P, Qmi be as defined in (2.3) and (2.4). Let
a={a,...,on} and B = {P1,...,Bn} where a;, B; € Q for 1 < i < n and let H(a, ) be as in
Theorem 2.1. If (a, B) belongs to one of the following families or is a scalar shift of a pair in one
of these families, then H(a, ) C O(n—1,1). If n > 9, this list of families completely describes (up
to scalar shift) the groups H(a, B) C Of(Z) where f is a quadratic form in n variables of signature
(n—1,1).
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1) ./\/ll(],n)
a=(0,L,32

,%7%7...

p=(1..

n—1 n+4l

2n—3
Y 9 ) 2 0ttt

Zn—l)
2n 7 2n ’

j—1 1 1 3

VU 020 2p=250 2n—257 """ 2n—25

where 0 < j < n is an odd integer.

2n—2j—3 2n—2j5—1
2n—2j

o= ( 1 3 1 2n—>5 2n—3)

T \2n—272n—27"""727° ") 2p—2) 2n—2/"

— 1 Jj—1 1 3 n—j—3 n—j+1
5_<070507]‘7"'7 j ) 2n—2j—27 2n—2j—27 " "

3) M3(j7n>
a _( 1 3 111 2n—7 2n—5)
T \2n—472n—47"""72227 27" 2n—4 2n—4))
_ 1 j—1 1 3
/B_ <O70707ja"'7 j ) 2n—2j—47 2n—2j—47 """

' In—2j—27 2n—2j—27 """
where 0 < j < n is an integer and j/(n,j) is odd.

2n—2j—5 2n—2j—3
) 2n—2j—27 In—25—2

where 0 < 7 <n — 2 is an odd integer.

4) Nl(]7k7n)
o = (b07al> e aan—l)

B - (a07b17 cee 7bn—1)

where (j,k 4+ 1) = 1, ag = 1/2, by = 0, €™, .

ermibo . e2™n=1 gre the roots of Qui(2).

5) NQ(j’k7n>
a=(0,a9,...,a,_2),

B = (%7 %a %7b27 ) bn—Z)-

where (j,k + 1) =1,by=0, by = 1/2) e2m’a07”

ermibo . e?™n=2 gre the roots of Qn_1x(2).
6) N3(j, k,n):

o= (%, ag, - -, ap—2),

B =(0,0,0,b, ...,0,_s).

where (j,k+1) =1, by = 0, by = 1/2, ™0

ermibo €22 gre the roots of Qn_1x(2).

7) Nu(j, k,n):

o= (%7%7a0a"'7a’n—3)7
5 - (0,0,bo,bl, ce ,bnfg).

where (j,k +1) = 1, 0 < j < 153 ¢2miao

ermibo . e2™n=3 gre the roots of Qn_ox(2).

2Ty —3
., €

2n—2j—7 2n—2j—5
) In—2j—47 In—2j—4

27Ty —
., e2man—1 qre the roots of Pnx(2), and

., e?™an=2 qre the roots of P,_1x(2), and

2Tt —
e ™an-2 agre the roots Of Pnfl,k('z); and

are the roots of P,_or(2) and
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Proof. From the previous section, we have that every family of pairs («, 3) for which H(a, 8) C
O(n — 1,1) can be derived from a family of pairs (o/, 8") for which H(«/, ') is finite, but not
necessarily primitive or irreducible. There are several cases to consider.
Case 1: || = || = n.

Without loss of generality, assume «), = 1/2 for some k and /] = 0. By Lemma 2.5, letting

oy = o for j # k,

Oék—o,
B; = B for j # 1,
ﬁ1:1/2

we have that H(a, ) C O(n —1,1).

Suppose H(da/, 5') is finite, imprimitive, and irreducible. From Theorem 2.2 there are two infinite
families of (a/, '), the second of which gives pairs that are scalar shifts by 1/2 of the pairs coming
from the first family. Since we are only interested in determining pairs up to scalar shift, we consider
just one of these families, which has corresponding cyclotomic polynomials P,(z) and (),(z) from
(2.3) where j is odd. Up to scalar shift, this yields the family M:

a = (O 1 3 n—=1 n+l 2n—3 2n—1)
- ’2n7 207777 2n 7 2n 77770 2n 0 2n /0
_ 1 j—1 1 1 3 2n—2j—-3 2n—2j-—1
- JjrTTT g 020 2n=257 2n—25"" """ 2n—2j 7 2n—2j

where j is odd. Note that, unlike (¢/, 3'), the pair (a, ) is no longer imprimitive, and still irre-
ducible.

Suppose H(ca/, ) is finite and reducible or primitive and irreducible. Then for every ¢|n, The-
orem 2.2 gives two infinite families of (o, 3’), of which we consider just the first, as the other can
be obtained via scalar shift of the first. The corresponding cyclotomic polynomials in this case are
P, k() and @, x(2) from (2.4), where j, k,¢ € N, with (j,k+ 1) =1 and ¢k = n. Let ap = 1/2 and
denote the roots of P, (z) by e*™@ ... e*™n-1 Let by = 0 and denote the roots of @, x(z) by
e?mibo . e2mibn-1 Up to scalar shift, this yields the family A:

(2.5) a = (by,a1,...,0n-1),
g = (ag,by,...,by1)

Note that the pair («, 8) is primitive and irreducible.

Case 2: || =|f'|=n—1.

As before, we consider the imprimitive irreducible, and the primitive irreducible or reducible
cases.

Suppose H (o, ') is finite, imprimitive, and irreducible. From Theorem 2.2, we have that up to
scalar shift the only family of (¢/, ') in this case corresponds to the roots of P, 1(z) and @Q,,_1(z)
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in (2.3):
O.// o ( 1 3 2n—>5 2n—3)
- 2n—27 2n—27 """ 2n—27 2n—2/
ﬁ/ - 0 1 7j—1 1 3 2n—2j—5 2n—2j—3
- YT g 0 2n—25—27 2n—25—27 """ 2n—2j—27 2n—2j—2

where j/(n,j) is odd. According to Lemma 2.5, there are two ways to obtain from (¢/, ') a pair
(e, B) for which H(a, ) is signature (n — 1, 1) is obtained as above, giving the two families

a = ( 1 3 1 2n—5 2n—3)
— \2p—202p—22"""> 22" 2p=27 2p—2/

5 = (0,001 j—1 1 3 n—j—3 n—j+l 2n—2j—5 2n—2j—3
- 7 G T D020 2p—2j—27 " T 2n—2j—20 2n—2j—27 """ 2n—2j—2° 2n—2j—2

where (7,2n) = 1 and

_ 1 3 2n—>5 2n73)

Q= (0’ 2n—27 2n—27"""7 2n—2’ 2n—2/"

B _ 1111 j—1 1 3 n—j—3 n—j+1 2n—2j—5 2n—2j5-—3
- 272927 4700 5 2pn—25—27 2n—25—27 """ 2n—25—27 2n—25—27 """ 2n—25—27 2n—25—2

where j/(n,j) is odd. However, since these two families are shifts of each other by 1/2, we record
them under one family M.

Suppose H(c/, ') is finite and reducible or primitive irreducible. From Theorem 2.2, we have
that for every ¢|n — 1 that there is only one family up to scalar shift of (¢/, §’) for which H (<, f) is
reducible. Namely, let j, k,¢ € N, with (j, k4 1) =1 and ¢k = n — 1. Denote the roots of P,_1 ;(z)
in (2.4) by e*™0 . e?™an-2 Let by = 0, by = 1/2, and denote the roots of @Q,_1x(z) in (2.4) by
e?mibo  e?mibn-2 Then the family

O/ = (a’(]?""anf?)’

B/ — (bo, e ,bn_g)

is the only family up to scalar shift in this case such that H(a/, ') is reducible. According to
Lemma 2.5, there are two ways to obtain a pair (a, ) for which H(a, ) is signature (n — 1,1).
One way is to remove the term by = 0 and add two 1/2’s to ', and add the term 0 to o/, yielding
the family Ns:

(2.6) a = (0,a9,...,a,_2),
B = (%7%7b17"'>bn—2)-

Another way is to add the term 1/2 to o/, take away the term b; = 1/2 from /’, and insert two
0’s into 3, yielding the family Nj:

(2.7)

o
|

(%,ao,...,an,Q),
5 - (0,0,0,bg,...,bn_Q).
Case 3: || = |f'|=n—2.
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Suppose H(c/, ') is finite, imprimitive, and irreducible. From Theorem 2.2, we have that up
to scalar shift the only family of (o/, ") in this case is obtained from the roots of the cyclotomic
polynomials P, 5(z) and Q,—2(z) in (2.3):

O/ o ( 1 3 2n—7 2n—5)
- 2n—47 2n—4° """ 2n—4’ 2n—4/ "

ﬁ/ _ 0 1 j—1 1 3 2n—25—7 2n—2j-—5
- TG § ) 2n—25—47 2n—25—47 " " " 2n—25—47 2n—2j—4

where j is odd. The corresponding («, ) for which H(«, /3) is signature (n — 1,1) is obtained by
adding two 1/2’s to o/, and adding two 0’s to (', yielding the family Ms:

a = ( 1 3 111 2n—5 2n—3)
= \2p—402p—4>"""2222720" " 2p—27 2p—2)>

5 = (0,001 j—1 1 3 2n—2j—7 2n—2j—5
- 7 G T D040 2p—2j—47 " ') In—2j—4 2n—2j—4

where j is odd.

Suppose H(c/, ') is finite and reducible or primitive irreducible. From Theorem 2.2, we have
that for every ¢|n — 2 that there is only one family up to scalar shift of (¢, 5’) for which H(o/, f') is
reducible. Namely, let j, k,¢ € N, with (j, k4 1) =1 and ¢k = n — 2. Denote the roots of P,_5 (%)
in (2.4) by e*™a ... e?™an-3 Denote the roots of Q, 2x(2) in (2.4) by €™ ... ¢*™n=3 Then
the family

of = (&07 s >an73)>

B = (bo,...,by3)

is the only family up to scalar shift in this case such that H(a/, ') is reducible.
The corresponding (a, 3) for which H(«, 3) is signature (n— 1, 1) is obtained by adding two 1/2’s
to o/, and adding two 0’s to (', yielding the family Nj:

(2.8) a = (
p=

1
y 95 A0y - - - 7an—3)7
10,00, b1, -+ b))

O NI

This exhausts all of the possibilities and thus we have the statement in the theorem as de-
sired. Since from the previous section we have that any primitive hypergeometric hyperbolic
monodromy group is obtained by permuting the coordinates of some interlacing pair (¢/, '), and
since there are no sporadic such interlacing pairs in dimensions n > 7 , we have that the fami-
lies My, My, M3, N1, N5, N3, and N, completely describe the primitive hyperbolic hypergeometric
H(a, 8)’s in dimension n > 9. O

Remark 2.7. We end this subsection with a remark about the integrality of the coefficients of , F,,_1
for hyperbolic hypergeometrics. Writing R(t) = P(t)/Q(t), where P and Q are as in Theorem 2.1,
as

(t —1)(t*2 —1)--- (% — 1)

(tr — 1)(tb2 — 1) - - - (tbe — 1)
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with a;, by positive integers and a; # by. The coefficients of the corresponding hypergeometric

function are

(may)!(maz)!- - - (mag)!
(mby)!--- (mbg)!

(*) Um =

If these are to be integers then d .= L — K must be at least 1. Note that d is the multiplicity of the
k’s for which B, = 0. Then

oo
S ™ =0 Fua(, o 00 B B |C2)
m=0

where C' = % (see [Vill], [B]).

pP1pb2...

It is easy tlo 2chech using Landau’s criterion [L] and our characterization of hyperbolic hypergeo-
metric monodromies, that for the latter u,, € Z iff d = 3. From the description of the families of
hyperbolic hypergeometric monodromies in Theorem 2.6 we see that Ms(j,n), Ms(j,n), N3(j,k,n),
and N4(j, k,n) are the infinite families with integral coefficients while the sporadic ones can be read
off from Tables 2 and 3, namely the entries with By = Py = B3 = 0. This can be used to give the list
of integral factorials (%) which correspond to hyperbolic hypergeometric monodromies. This is the
analogue of [Vill] and [B] who classify the integral u,,’s in (x ) which correspond to finite monodromy
groups (which in turn correspond to d = 1).

2.4. The quadratic form. In this section we calculate the quadratic forms preserved by the
primitive hyperbolic hypergeometric monodromy groups described in the previous section. This
will be a necessary ingredient in our minimal distance graph method described in Section 4. Recall
that the monodromy group H = H(«, (3) is generated by two matrices

00 ---0 -1 00 -0 1
10 -+ 0 —ap 10 -+ 0 —=byy
00 -1 —a 00 -+ 1 —=bh

where the characteristic polynomials of A and B, P(z) := 2" + ajz" ' + -+ + a,_17 + 1 and
Q(x) == 2" +byz" '+ -+ b, 12 — 1 respectively, are products of cyclotomic polynomials. Denote

10 --- 0 —(an_1 + bn—l) Ap—1 + bp_1

o1 ---0 —(an_z + bn_g) Qp—o + by o
(2.9) C=A"'B=1| : : - : : and v := :

00 1 —(ay + by) ai + by

00 0 —1 2
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The eigenvalues of C' are 1 and —1 and their geometric multiplicities are n — 1 and 1 respectively.
The first n —1 elements ey, ..., e,_1 of the standard basis are eigenvectors for the eigenvalue 1 while
v is an eigenvector for the eigenvalue —1.

Lemma 2.8. Let f € Myxn(Z). Then At fA = fif and only if A7 fey = fe; for every2 <i<n
where A = (A?)™1

Proof. The only if part follows from comparing the first n—1 columns of both sides of Af = fA. For
the if part it is suffices to check that also the last columns of Af and fA are equal. The equalities
of the first n — 1 columns imply that A’fe; = fA’e;, for every 1 < i < n — 1. The characteristic
polynomial P(z) of A is also the characteristic polynomial of A since it is a a product of cyclotomic
polynomials. Thus,

fAe, = fA", = —f(@m A" + -+ a,_1 A+ A)e; =
—(ayzln_l 4+t ap A+ A)fel — A'fe; = AfA" ey = Afe,
O

Lemma 2.9. Assume that [ € M,,»,(Z) satisfies A'fA = f. Then B'fB = f if and only if fey is
Euclidean-orthogonal to B*>~v for every 2 < i < n. In particular, if A'fA = f and B'fB = f then
fei is Euclidean-orthogonal to v for every 1 <i<n —1.

Proof. Lemma 2.8 and its analog with respect to B implies that B'fB = f if and only if Ai=lfe, =
Bi=1fe, for every 2 < i < n. As the first row of A — B is —v' while the other rows are zeros, fe;
must be orthogonal to v (under the usual Euclidean scalar product). For every ¢ > 3

Ai-1_pi-1_ (Az‘q _ BFQ) _ (B _ ;1) Bi-2

so by induction on i we see that f satisfies the required condition if and only if (B — A)B"*Q f=0
which is equivalent to f being Euclidean-orthogonal to B?~iv for every 3 < i < n. Finally, if
A'fA=f, B'fB = f then also C'fC' = C. Thus, for 1 <i <n — 1 we have v'fe; = (Cv)' fCe; =
—vtfe; so vl fe; = 0. O

Proposition 2.10. Let A, B, C, P(X), Q(X) and v be as above. Assume that the group H :=
(A, B) is primitive. Then:
(1) The vectors v, Bv, ... B" ‘v are linearly independent and H = (A, B) preserves the lattice
L spanned by them.
(2) There exists a unique (up to a scalar product) non-zero integral quadratic form (-,-) such
that A and B belong to its orthogonal group.
(3) If the quadratic form is normalized to have (v,v) = —2 then (v,u) equals to minus the

n'-coordinate of u for every u € 7.

(4) If the coefficients of Q(x) satisfy B; = (—1)" then the matriz representing f w.r.tv, Bv,... B" 1y

15 given by
2 if Ji—jl=0
fi,j = —1—a1 Zf ’Z—j|:1
—ay —ap—1 if ]i—j\:kg_i{O,l}
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Proof. We start by proving the existence part of (2). By Lemma 2.9 there exists a non-zero f €
M, xn(Z) such that A'fA = A and B'fB = f. Assume first that f is anti-symmetric so v*fv = 0.
Lemma 2.9 implies that v'fe; = 0 for every 1 < i < n — 1. Since v,eq,...,e,_1 span Q", the
set {w € Q" | w'fu = 0for all u € Q"} is a non-trivial proper subspace of Q™. This subspace
is preserved by H, a contradiction to the irreducibility of H. Thus, f is not anti-symmetric and
the quadratic form (u1,us) := u1'(f + f")us has the desired properties. Lemma 2.9 implies that
v(f+f)=(0 - 0 ¢ ) for some ¢ # 0 so (3) holds.

Since H is primitive, every non-trivial normal subgroup of it is irreducible. Thus in order to prove
(1) it is enough to show that the normal subgroup H, := (B~'C'B' | i € Z) preserves the Z-lattice

spanned by v, B, ..., B" 'v. Property (3) implies that Cu = u — 2%@ for every u € Z". Since B
preserves the quadratic form, B~'C' Biu = u—Q%B_"U for every u € Z". Thus, H, preserves

the Z-lattice spanned by v, Bv, ..., B" 'v and the proof of (1) is complete. The uniqueness part of
(2) now follows from (1) together with Lemma 2.9.

For 1 <7 <n—1 the (n—1)-th and the (n — i+ 1)-th coordinates of bottom row of B’ are equal
to 1 and all the other coordinates of this row are zero. Thus, the last coordinate of B'v is a; + 1 if
i=1and a; +a;1 if 2 <i<n—1. From (3) we get (v, B'v) = f1; for every 1 <i < n. Property
(4) follows from the fact the f; ; depends only on |7 — j| since B preserves the quadratic form. [

We now record the invariant quadratic form for two cases that we consider in Section 4.2.

Corollary 2.11. Let (-,-) be the normalized quadratic form preserved by Ni(1,n,n). If1 <i,j <n
then
~2 i fi-jl=0
(Bv,Bv) =< =3 if li—jl=1
—4 if |i—j|>2

Corollary 2.12. Let (-,-) be the normalized quadratic form preserved by N1(3,n,n). If1 <i,j <n

then
—2 if i—3j]=0
—4 if i —jl=1
(B'v,Biv) = -8 if li—jl=2orli—jl=n—-1
—11 if li—jl=3orl|i—jl=n-2

—12 otherwise

3. CARTAN INVOLUTIONS

3.1. Hyperbolic reflection groups. As noted in the Introduction we make crucial use of Vin-
berg’s [Vil], [Vi2] as well as Nikulin’s [N1] results concerning the size of groups generated by
hyperbolic reflections. Before reviewing this arithmetic theory we begin with quadratic forms and
hyperbolic space over the reals. A non-degenerate real quadratic form f(xy,...,z,) with corre-
sponding symmetric bilinear form (, ) is determined by its signature. Our interest is in the case
that f has signature (—1,1,...,1), which after a real linear change of variable can be brought to
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the form
(3.1) flxr, .. 2,) = —25 + 25+ + a2
The null cone C of fis {x | (x,z) = 0} as depicted in Figure 1.

(x,x)<0 (x,x)=0
(xx)>0
(x,x)<0 (xx)=0
FIGURE 1

R™\C' consists of 3 components, the outside, (x,z) > 0, which consists of one component, and
the inside, (z,x) < 0, which consists of 2 components: z; > 0 and z; < 0. The quadrics (z,z) = k
where k < 0 are two sheeted hyperboloids and either sheet, say the one with 1 > 0 and k£ = —2,
can be chosen as a model of hyperbolic n — 1 dimensional space (we assume that n > 3), H"!.
This is done by restricting the line element ds® = —dz} + dz3 + - -+ + dz? to H"™'. The quadrics
(z,z) = k with k£ > 0 are one sheeted hyperboloids. If g € Of(R), the real orthogonal group of f,
then g preserves the quadrics, however it may switch the sheets of the two sheeted hyperboloid. If
it preserves each of these, then g acts on H" ! isometrically, while if g switches the sheets then —g
acts isometrically on H" 1. In either case we obtain an induced isometry. Of particular interest to
us are linear reflections of R™ given by v’s with (v,v) # 0 (i.e. not on the null cone). For such a v
denote by 7, the linear transformation

2v,y)

(v, 0)

It is easy to see that r, € Oy, that it is an involution, and that it preserves the components
of the complement of the light cone if (v,v) > 0, and switches them if (v,v) < 0. In the first
case, the induced isometry of H" ! is a hyperbolic reflection. The fixed point set of r, in R" is
vt = {y | (v,y) = 0} and this intersects H* ! in an n — 2-dimensional hyperbolic hyperplane
and the induced isometry is a (hyperbolic) reflection about this hyperplane. In the second case,
(v,v) < 0, the induced isometry —r, fixes the line £, = {\v | A € R} and this line meets H"™!
in a point p,. The induced isometry of H"~! in this case inverts geodesics in p, and is a Cartan
involution. These two involutive isometrics of H"! are quite different. In the case of a discrete
group of motions generated by hyperbolic reflections, there is a canonical fundamental domain,
namely the connected components of the complement of the hyperplanes corresponding to all the

(3.2) ro(y) =y —
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reflections. This is the starting point to Vinberg’s theory of reflective groups. For groups generated
by Cartan involutions there is no apparent geometric approach.

We turn to the arithmetic theory. Let L C Q" be a quadratic lattice, that is a rank n Z-module
equipped with a nondegenerate integral symmetric bilinear form ( , ), whose associated quadratic
form f(z) = (x,x) is rational. The dual lattice L* of L is given by

L"={xeQ"|(z,y) € Zforalye L}

It contains L as a finite sublattice and the invariant factors of L are defined to be the invariants
of the torsion module L*/L. The product of these invariants is equal to +d(L), where d(L) is the
discriminant of L (that is det(F) where F is an integral matrix realization of f). We assume
that L ® R is hyperbolic and of signature (—1,1,...,1). The Z analogue of the null cone is
C(L) = {x € L| (z,z) = 0} and that of the quadrics is V(L) := {x € L | (xz,z) = k} for
k € Z, k # 0. We assume throughout that f is isotropic over @Q which means that C(L) # @
(and is in fact infinite). The group of integral automorphs of L is denoted by O(L) or Of(Z). A
primitive vector v in V(L) is called a k-root if 2—,: € L*. In this case the linear reflection r, of
Q" given by (3.2) is integral and lies in O(L). For k = +1 or £2, %’ is always in L* and we will
have occasions where k = 4 yields root vectors as well. As discussed above, the root vectors with
k > 0 induce hyperbolic reflections on H?’l (which we choose to be one of the components of
Voo(R) ={r € LR | (x,x) = —2}) while for £ < 0 they induce Cartan involutions.

The Vinberg reflective group R(L) is the subgroup of O(L) generated by all hyperbolic reflections
coming from root vectors with k£ > 0. It is plainly a normal subgroup of O(L) and the main result
in [Vi2] asserts that if n > 30 then |O(L)/R(L)| = co. Vinberg’s proof is based on studying the
fundamental domain in H"™! of R(L) and relating it to the cusps of O(L)\H"! which correspond
to null vectors w € C(L). In particular it uses the assumption that f is isotropic.

Nikulin’s results [N1] are concerned with the case that L is even, that is (z,z) € 2Z for all
x € L, and the subgroup Rs(L) generated by all the 2-root vectors in L (note he chooses f to
have signature (1, —1,—1,...,—1) so that his —2-root vectors are our 2-root vectors). Ry(L) is a
subgroup of R(L) and it is also normal in O(L). For these he gives a complete classification of all
L’s for which O(L)/Ry(L) is finite. There are only finitely many such and for n > 5 the list is
quite short. L is called two elementary if L*/L is (Z/27)" for some a. If L is not two elementary
and n > 5 and odd (the last condition on n is what is of interest to us for our applications) then
|O(L)/Ry(L)| = 0o unless L is isomorphic to U @ K and K is one of

Az, Ay & Ag, Ay @ AS, A & A, Ay ® Az, Ay & Ay,
As, D5, A7, A3 @ Dy, A2 @ D5, D7, Ay © Eg, A3 © Ex
or L is isomorphic to
U(4) ® A3 (—2"Y @ Dy for k = 2,3,4, or (—2,3) @ A2.
Here the positive definite (2-reflective) lattices A,, D,,, E, are the standard ones (see [C-S]) while

U:H HandU(zL):{g ﬂ
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As a consequence unless L is two elementary or its invariant factors are among the list below,

[O(L)/Ra(L)| = oo.

Dimension | Factors
5 2.3,4,2-3%.4%2.23.4.4,4-8,4-16
7 2:-3-3,2-2-4,3-4,2-5,3-2,4
9 8,4-4,3-4,4,3-3
11 none
13 4
>15 none
TABLE 1

3.2. Pseudo-reflections and Cartan involutions. The almost interlacing condition on the
(e, B)’s ensures that H(«, 3) lies in an orthogonal group of a quadratic form f of signature (p, q),

ie. (1, 1,%7. L1 -1, —1?. .., —1) with |p — ¢| =n — 2. The form f is unique up to a scalar multiple
and we normalize f so that f(v,v) = —2 where v is the vector given in (2.9). In order to determine
what type of involution these critical pseudo-reflections r, induce on hyperbolic space we need to
determine the number p — ¢, when f is so normalized. This can be done by keeping track of the
signs in the calculations in Proposition 4.4 and Theorem 4.5 in [B-H|. With u = v in equation (4.5)
in [B-H] (note there is a misprint there: it should be D(z) rather than D(u)), n =1, and ¢ = —1

we have

(3.3) D(z) = (hy — Dz = f(z,u)u

Hence from (4.7) of [B-H| we have that for their orthogonal basis u; of R”, j =1,2,...,n,

P14+ o+ Bn — a1 —az — ay

(34) f(uj,u;) = iexp [m (

: e

where we have assumed for simplicity that the a;’s and §;’s are distinct.

To determine the signs there are two cases:

(1) oy = 0:

We write (v, g, ... ) as (0,81, ... by b, ... t_1) with 2m + 1 = n.

0 t

Here t; =1—1t_; for j = 1,...,m (which corresponds to self duality of a, ).
Writing 5’s similarly as (i, . ..

t2 tm 1/2 t-ln t-m-l t-]

,Bn) = (51,52, -+, 8m, 5, 5-m, .., 5-1) with s; =1 —s

sin (o, — ;)

—J

for 7 =1,...,m, 2m + 1 = n, we find that for the a’s and (§’s to almost interlace the

configuration must be
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| ) S|1 ) S|2 ) ) slm ?-ml §-1| |
I T T T T T T T T T T T ]
0 t t, t3 tm | t-m t 1
1/2:Bm+1
The factor iexp| | in (3.4) is therefore i exp[27mi/4] = —1 and hence f(uj,u;) < 0. Between

every pair aj,a;4; but the first one, there are one or three f’s and hence f(ug,uz) >
0, f(us,uz) > 0,..., f(tun,u,) > 0. That is f has signature (1,1,...,1,—1).

(2) 51 =0:
Again we can write a = (aq,...,q,) = (t1,...,tm, %,t_m, cootg)and B = (By,...,0,) =
(0,851,852, s SmyS—msS—m—1y--+,5-1), With t_,,, =1 —t,,, and s_,,, =1 — s,,.

To almost interlace we must have the configuration
b tn | tn t
———— ———+ ——
gi=0 s S2 83 Sm | S-m s 1
1/2= O

Hence the factor iexp[ ] in (3.4 is this time i exp[—2mi/4] = 1. Hence f(ui,u1) > 0, as are
f(ug,ug), ..., f(tm,uy). Since there are no f’s in (t,,1/2) and (1/2,t_,,), we have that
f(tm, um) < 0 and f(tpmi1, Ums1) > 0 as are the rest of the f(uj,u;) for m+1 < j < n.
Hence the signature of f is again (1,1,...,—1).

Thus in all cases (that is the two above as well as those where some of the a’s coincide in
which case one deduces the signs by a limiting argument) we have that if f is normalized so that
f(v,v) = =2 then f has signature (1,1,...,1,—1). In particular v always lies inside the null cone
and r, induces a Cartan involution. This is in sharp contrast to the involutions in O;(Z) that arise
in the theory of K3-surfaces in [N1] and [Vil] which in our normalization have f(v,v) = 2 and
hence induce hyperbolic reflections.

3.3. An example of a non-thin Cartan subgroup. The goal of this short section is to give
an example of a hyperbolic lattice O(L) whose reflection group Ry(L) is thin while the Cartan
subgroup R_5(L) is of finite index.

Define a quadratic form

3.5 fxy, 29, 23, 24) = 222 + 522 + 1022 — 23
1 2 3 4

and let O(L) be the orthogonal group of f over Z. The following facts can be found in pages
474-477 of [E-G-M].

Fact 1 Ry(L) is thin.

Fact 2 Ry(L) is generated by 4 reflections 01,09, 03,04 and o9, 03 belong to the center of Ro(L).
Thus, Rs(L) is isomorphic to a quotient of Cy x Cy X Dy, where D, is the infinite dihedral
group. In particular any element of Ry(L) which has infinite order generates a finite index
subgroup.
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Fact 3 O(L) is isomorphic to the semidirect product Ry(L)x Dy,. Under this isomorphism D, is
generated by the following two involutions:

10 0 0 20 -5 2
o2 21 o1 oo
9=10 -1 -3 1| 1 -10 6 2

0 -5 -10 4 40 =20 7

We start by showing that R_5(L) is not contained in Ry(L). A direct computation shows that
Q* is decomposed as VT &V~ where VT :={v e Q* | v =0} and V™ :={v € Q* | hv = —v}. In
additionu:= (1 1 1 4 )t € VT satisfies f(u) = 1 so the reflection 7, in integral. Let w be an
element of V1 orthogonal to u. Since f|y+ is not positive definite, (w,w) < 0. Notice that:

(3.6) Yo e V™. hry,(v) = —v,
(3.7) hry(u) = —u,
(3.8) hr,(w) = w.
Thus, the Cartan involution r,, = hr, is integral and does not belong to Ra(L).
Denote rq 1= ry, ro := rf’uh and A := (ry,r5). The Cartan involutions r; and 7, have distinct

images in O(L)/Ry(L) ~ Du. Thus, ARy(L)/Ry(L) is of finite index in O(L)/Ry(L). In other
words Ry(L)A is of finite index in O(L).
By the second isomorphism theorem,

(3.9) A/(AN Ry(L)) =~ ARy(L)/Ro(L).

Every proper quotient of D, is finite so A N Ry(L) is trivial. In particular, the group generated by

A and Ry(L) is in fact a semidirect product. Assume for the moment that oy not commute with

r1. Then r3 := oyr01 € Ro(L)A is a Cartan involution different form 7y so 7173 has infinite order.

Moreover, since Ry(L) is normal in O(L), rir3 € Ro(L) so by Fact 2 the group generated by ri73

has finite index in Ro(L). Altogether we get that (ry,rs, r3) has finite index in Ro(L)A and in O(L).
Finally, o; and r; do not commute since

6 -10 -25 10 1000
4 -9 2 8 o100
" 5 10 26 10> Tl o010
20 -40 -100 39 0001

4. THE MINIMAL DISTANCE GRAPH AND THIN FAMILIES

4.1. The distance graph. In this section we derive a sufficient condition for a subgroup A of
O(L) which is generated by Cartan involutions, to have finite image in O(L)/Ry(L) with k = 2 or
4. Here L is an integral quadratic lattice of signature (—1,1,...,1) and our notation is the same
as in Section 3. We say L is even if (z,2) = f(x) is even for all z € L but f(z,y) is odd for some
x,y € L. If the latter fails, that is f(z,y)/2 is integral for all x,y € L and f(z,z)/2 is odd for some
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x € L (which will always be the case for us) then f/2 is odd and if there is no room for confusion
we say that f itself is odd. If f is even we will make use of the hyperbolic reflection group Rs(L),
while if f is odd we will use R4(L). The following diophantine lemma is crucial for what follows.

Lemma 4.1. If u,w € Z" satisfy (u,u) = (w,w) = —2 and (u,w) = —3 then

(1) If f is even and u and w are in V_o(L) with (u,w) = —3 then
(1) (v —w,u —w) = (u—2w,u —2w) = 2.
(2) TuTw = Tu—wTu—2w-
(3) ry—w(u) =w.

(i) If f is odd (i.e. (, )/2 is integral and odd) and u and w are in V_o(L) with (u,w) = —4
then
(1) (v —w,u —w) = (u—3w,u—3w) =4.
(2) TyTw = Tu—wTu—3w-

(3) ry—w(u) =w.

Proof. Part (1) of both (i) and (ii) is immediate. As for parts (2) and (3) of (i), note that since
Tus Tws Tu—w, and 7,,_a,, all fix the orthogonal complement (u,w)t of the span of u and w, it suffices
to check (2) on the two dimensional space (u,w). That is to check the identity on u and w. Now a
direct calculation shows that

ro(u) = —u, ry(w)=w—3u
ro(u) =u— 3w, r,(w)=—-w
Tu—w(U) = w, Ty_w(w)=1u
and
Tu—ow(u) = =3u + 8w, 7Ty_9u(w) = —u+ 3w

Hence with respect to the basis u, w of (u,w) we have

-1 -3 10 o1 -3 4
Ty = O 1 y Tw = _3 -1 y Ty—w = 1 0 y Ty—2w = 8 3

and parts (2) and (3) of (i) follow. Similarly for part (2) and (3) of (ii). This time in the basis u, w
of (u, w) we have that

(14 10 o1 (4
Ty = 0 1 y Tw = 4 -1 y Tu—w = 1 0 y Tu—3w = 15 4

and hence (2) and (3) of (ii) hold. O

Remark 4.2. The factorization of r,ry as a product of two integral hyperbolic reflections in part
(2) of both (i) and (ii) in the previous lemma has its source in the binary integral quadratic forms
fi = =222 — 62y — 2y? and fo = —22° — S8xy — 2y? being reciprocal in that fi and fy are integrally
equivalent to — f1 and — fy, respectively. As shown in [S2] this property is quite rare and one can
check directly (or by the classification in [S2]) that x* + kxy + y* where k > 3 is reciprocal if and
only if k = 3 or 4 and these two cases correspond to f1 and fy above.
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Lemma 4.1 leads us to the definition of the minimal distance graph associated with f.

Definition 4.3. The minimal distance graph Xy of f is the graph with vertex set V_o(L) (i.e. the
set of Cartan involutions coming from length —2 roots) and edge sets

E¢ = {{u,w} | (u,w) = =3} if f is even

and
Er = {{u,w} | (u,w) = —4} if f is odd.

The name minimal distance graph comes from the fact that if v and w are in V_5(L) then as
_(uvw)
2

Hence if (u,w) = —3 when f is even or —4 when f is odd, then clearly the integrality of (, ) on L
implies that (u,w) has the minimal admissible distance as members of V_o(L).

points of hyperbolic space H* ' 2 V_4(L) ® R the distance from u to w is equal to cosh ™ (

Proposition 4.4. Let S be a connected component of Xy, then the image of (r, | u € S) in
O(L)/Ry(L) (respectively O(L)/R4(L)) is of order at most two.

Proof. Let wy, ..., w, be a path in X;. We have

T T = (TwnTws ) (TwsTwg) "+ (P2 T )
which according to Lemma 4.1 in the case that f is even (and a similar conclusion when f is odd)
gives
TwnTwm = (Twy—wsTwr—2ws ) (Fwp—ws Tws—2w3) = * (T 1~ Tt -1 —20m )-
Now the elements in each parenthesis above lie in Ry(L), and hence ry,r,,, € Ro(L) from which
the proposition follows directly. O

Our certificate for a subgroup A of O(L) generated by Cartan roots v in V_5(L) to be infinite
index in O(L) is now clear. If the generators of A all lie in the same connected component of X
then the image of A in O(L)/Rx(L) where k = 2 or 4 is finite. Hence if |O(L)/Rx(L)| = oo then A
is thin.

We turn to the structure of the minimal distance graph X; which can be determined both
theoretically and algorithmically. In particular we show that the question whether v and z belong
to the same connected component of the minimal distance graph can be decided effectively.

First note that O(L) acts on X isometrically (that is every v € O(L) maps Xy to X as a graph
isomorphism) and with finitely many orbits. These actions permutes the connected components of
X and thus there are only finitely many types of components. To examine the the components we
identify a subgroup of O(L) which stabilizes and acts transitively on a given component 3.

Proposition 4.5. Let X be a connected component of X; and let u be a vertex of X. Assume that
u 18 not the only vertex in Y and denote by uq, ..., up its immediate neighbors. Let

(4.1) Gy = (rw, |wj=u—u;,j=1,2,...,k).

Then G, preserves % and acts transitively.



24 FUCHS, MEIRI, AND SARNAK

Proof. Lemma 4.1 shows that r,,, € O(L) and since 7, switches u and u; it follows that 7,,(X) = X
and hence G,(X) = X. To see that it acts transitively we proceed by induction on the distance
of points in ¥ from wu (in the graph metric). The u;’s with dx(u,u;) = 1 are joined to u. By the
choice of the r,,’s these points are in G, (u). For v* € ¥ and dx(u,u”) = m > 1 pick u € X for
which dx(u,u) =m — 1 and dx(u,u*) = 1. By induction there is a g € G, such that g(u) = u and
hence g(u*) = u; for some j. Thus, u* = g~'r,, (u) and u* € G, (u). O

We continue our examination of 3 and G, with a general discussion of finding algorithmically a
fundamental domain for any discrete group of motions generated by a finite number of reflections
t1,...,tx (below we will apply this to G,,). Now, given any discrete group ® of hyperbolic motions
of H" which is generated by reflections it has a polyhedral fundamental domain as follows: Let R be
the set of all reflections in ®. For r € R let H, denote the corresponding hyperplane fixed by r (the
“wall” of r). The set of H,’s decompose H" into connected convex polyhedral cells each of which
is a fundamental domain for ®. These cells are defined canonically and up to their motions by &
are unique. We are interested in determining one of these cells algorithmically. Assuming that one
can determine all the H,’s which meet any compact set (there being finitely many by discreteness),
Vinberg [Vil] gives and effective algorithm to compute a cell of ®. In our case of ® being generated
by t1,...,t, we don’t know apriori which r’s are in R so we proceed with a somewhat different
algorithm.

For a suitably chosen point v € H" the algorithm computes the cell P, of ® which contains v as
an interior point. Here suitable means that v does not lie in any of the H/s for r € R. While such
v exist by discreteness of ®, choosing v might look problematic since we don’t have a list of the
members of R. However all that we need is an upper bound on R and this is something that usually
comes with the source of ® being discrete. So if & C O(L) then R is contained in the set of all
reflections in O(L) which locally is easy to determine. These provide us with effective upper bounds
for R and an ample supply of explicit points for v. Given ® C O(L) let R be the set of reflections
in O(L) and define Q := {H, | r € R}. For H € Q let d(v, H) be the distance in H" form v to H.
There is a unique wy in H which is the point in H closest to v;, so that d(v, H) = d(v, wy). The
set D = {d(v,H) | H € Q} is a discrete subset of (0,00) and has a smallest element. Note that
the size of the smallest element can be effectively computed from the form preserved by O(L). For
a finite multiset 7' C () (we allow repetitions in 7T") define the height h(T") = h,(T) to be

(4.2) WT) =) dw H) =Y d(v,wy).

It is clear from the properties of D that
[A(T) | T CQ A|T| < 50} N1 [0,4]

is finite for every x > 0 and can be effectively bounded from above in terms of x.

Let T'= {Hy,...,H;} € R be a multiset and let G(T") denote the group generated by ti, ...,
where ¢; is the reflection in H;. The algorithm inputs R := {Hj,..., H;} corresponding to the
generators 7y, ...,r; of ® and proceeds to replace T' with a multiset 7' C R by one of 3-steps, each

of which reduces the height of 7" and possibly |T'| while maintaining G(7") = G(T'). This process is
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repeated until no moves are possible and this happens after effectively bounded number of steps.
When this process stops it outputs the fundamental cell for ® containing v as an interior point.

Step 1 (Repetition): If any of the Hj’s in 7" are duplicated then remove one of them to T.

Clearly h(T) < h(T), |T| < |T| and G(T) = G(T).

Step 2 (Redundant faces): For every one of the hyperplanes Hy,..., H; in T let H; be the
closed half space of H" determined by H; and containing v. Let

(43) K = mlSjSlHji

which clearly contains v as an interior point. Assume that some H;, say Hi, is redundant (this
means K = Ny<j<xH; ). There are two cases to consider.

If wy, ¢ P then there must be some Hj, call it Hy, which separates wy, from v. But then
dist(v, to(Hy)) < dist(v, ta(wp,)) < dist(v, wp, ). Hence, if we replace Hy by to(H;) and ¢, by tatqts
we get T := {to(H,), Ha, ..., H;} with |T| = |T|, W(T) < h(T) and G(T) = G(T).

If wy, € K then there must be some Hj, call it Hy, such that Hy passes through wg. Let M be
the 2-dimensional plane containing v, wy, and wy,. Note that M is invariant under ¢; and ¢,. Since
Hy does not contain v, H, N M does not contain the geodesic connecting v to wy,. Thus, Hy N M
is not orthogonal to H; N M so dist(v, ta(Hy)) < dist(v, Hy). Hence, if we replace Hy by t2(H;) and
t1 by totqte we get T := {to(H,), Ho, ..., H;} with |T| = |T|, h(T) < h(T) and G(T) = G(T).

Step 3 (Dihedredal angels): Let T and K be as above. Suppose that two (n — 1)-dimensional
faces, say Hy and Hs, meet and the dihedral angle o between them is not a submultiple of 7. We can
furthermore assume that dist(v, Hy) < dist(v, Hy). Since ® is discrete and « is not a submultiple
of 7, a = §7r with (p,q) =1 and p > 2. Let M be the 2-dimensional plane containing v, wg, ,and
wp,. One checks that M is invariant under ¢; and ¢, and the intersection M N H N L is a point p.
Moreover, the dihedral angle between the geodesics hy := H; N M and hy := Hy N M is a. Thus,
we are reduced to the case of the hyperbolic plane with reflections in h; and h, which meet at an
angle a. We identify ¢; and ¢, with their restrictions to M (both act as the identity on the (n — 2)
dimensional plane passing through p and orthogonal to M). Now, g := tils is a rotation about p
by an angle of 2o = %ﬂ'. Thus, there exists an m such that g = ¢™ is a rotation about p with by
an angle of %’/T. There are two cases to consider.

If p is odd choose s such that h := g*(hy) N M intersects the interior of M Ny Nh; and the angle
between h and hy is éﬂ' (where h; := M N H; ). Then dist(v, h) < dist(v, h;). Hence, if we replace
H, by g°(H,) and t; by g°t15~° we get T := {g°(H,), Ho, ..., H;} with |T| = |T|, h(T) < h(T) and
G(T) = G(T) (the last assertion is true since that group generated by the reflections in h; and h
contains a rotation about p by angle %7? so it must be equal to the group generated by t; and t).

If p is even then ¢ must be odd. Choose s such that h = g*(hy) N M intersects the interior
of M N hy N hy, and the angle between h and hsy is 57?. Then dist(v, H) < dist(v, hy). Hence,

if we replace H; by g°(H,) and t; by §°t2g° we get T := {g°(Hs), Hy, ..., H;} with |T| = |T,
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h(T) < h(T) and G(T) = G(T).

After repeating the algorithm a finite number of times, we arrive at a reduced T'= {H,, ..., H;}
, namely one for which we cannot apply any of the above steps and we set P, := ﬁﬁlet;. The
polyhedron P, contains v and an interior point and since we can’t apply step 2, P, N H; is an
(n — 1)-dimensional face of P, for every 1 < j < [ (and any (n — 1)-dimensional face is of this
form). Moreover, all the dihedral angles between pairs of the (n — 1)-faces of P, are submultiplies
of m (including 0 as a submultiple when the faces aren’t adjacent and the corresponding H;’s don’t
intersect in H™). It follows from Vinberg [Vil] that P, is a fundamental polyhedron for the group
generated by reflections in the (n — 1)-dimensional faces of P, which is just the group ®. Moreover,
this group is a Coxeter group with generators tq,...,%; and the usual relations are derived from
the corresponding Coxter matrix. This completes the general discussion of finding a fundamental
domain for ®.

Returning to the group G, defined in Proposition 4.5 which is generated by the reflections
T1,...,Tk. Applying the general algorithm we find that G, = (t1,...,t;) with [ < k and ¢1,...,1
reflections in the faces of a fundamental reflective polyhedron P,. Using these canonical generators
of G, we can decide if a given z € Xy is in the same connected component as u, that is whether
z € Gy(u). With V_5 as a model for H" it is a matter of reducing z into P, and checking if this
reduction is the same as the one for u into P, (every orbit of G, has a unique representative on
P,, this is true also for orbits intersecting the boundary of P,). Now, if z € P, then there is some
t; such that z ¢ H,_, but then dist(v,;(2)) < dist(v, z). Of course ¢;(z) is the same G, orbit as
z. Repeat this reduction to ¢;(z) if it is not in P, and continuing this for a finite number of steps,
must place it in P, (by discreteness). If the point we arrive at is the same as the reduction of u into
P, then z € ¥ = G,(u), otherwise z ¢ ¥.

4.2. Thin Families. Using the minimal distance graph and the results reviewed in Section 3, we
apply our thinness certificate to various hyperbolic hypergeometric monodromy groups. Recall that
every H = H(w, 3) is generated by two matrices A, B € GL,,(Z) for some odd n € N. Moreover,
there is an integer quadratic form (uy,us) = uy’ fuy of signature (n — 1,1) preserved by H. The
matrix C':= A~!B has an eigenvalue —1 of algebraic multiplicity 1 with a corresponding eigenvector
v € Z". The elements v, Bv, ..., B" 'v are linearly independent and the Z-lattice L they span is
preserved by H. Proposition 2.10 implies we can normalize f to have (v,v) = —2 and still be
integral on L. The group H is of infinite index in the integral orthogonal group of the original form
if and only if its restriction to L is of infinite index in the integral orthogonal group of the normalized
form. Thus by restricting to L, we can assume from now that f is normalized so (v,v) = —2 and
—('is a Cartan involution. If B has finite order then the group (B‘CB~" |i € N) is a finite index
normal subgroup of H. Thus, H is thin if and only if

H, = (B (-C)B™"|i€Z)

is thin in Of(Z). The advantage in considering H, is clear, this group is generated by Cartan
involutions so we can apply Proposition 4.4. We begin by noting the following.
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Lemma 4.6. If v and Bv belong to same component of Xy then H is thin.

Proof. The group H, is generated by the set of Cartan involutions {rg:, | i € Z}. Since B preserves
f, if v and Bv belong to the same connected component then also B‘v and B“'v belong to the
same connected component for every i € N. Thus, {rpi, | ¢ € Z} is contained in one connected
component so H, is thin by Proposition 4.4. Hence, H is thin by the above paragraph. 0

We now prove the following.

Theorem 4.7. The following subfamilies of hyperbolic hypergeometric monodromy groups are thin
(n is always odd):

(1) Mi(1,n,n), n >3

_ 1 ~1 _n+t3 _(11 2 -
a_(Oan_ﬂv"'a2&+1)728¢+1)7"'7ni+1)7ﬁ_(ivz7ﬁ7"’7n7)
(2) Ml(Ln); n>3
=035 3 s o T e b 8= m w0 3 e
(3) Mi(1,1,n), n > 30
o= O BB, A= (2o
(4) Ma(n—2,n), n >3
=3 Ty ) 0= (0,0,0, 75,755, 05)
(5) Ma((n—1)/2,n), n > 30, n # 1 mod 4
=G mm me o mmmr am ) B= (00,0525 55 Ty gt )
(6) No(1,1,n), n > 30
_ 1 3 203 _(1 11 1 2 —3  _ntl —2
a=0 5555 ns)h =G Wy 3y et
(7) Na(n —1,1,n), n >3
= (05 e ), = (b b e g g 2)
(8) M(3,n,n), n>3 and (n+1,3) =1
_ 1 1 _n43 _ (112 1 -3
a=0, 77 gy ey o mi)h PG5 )

Note that in the cases above where we require n > 30 the form fixed by the group is odd, and
we appeal to Vinberg [Vil] to derive thinness. In the cases where we require n > 3, the fixed form
is even and we appeal to Nikulin [N1] to conclude the group is thin by checking using a computer
that none of the n < 30 cases are two elementary or belong to the lists at the end of Section 3.1.

Proof. (1):
Corollary 2.11 shows that (v, Bv) = —3 and we can apply Lemma 4.6.

(2):
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In this case, we have that the generators of H(«, ) are as in (2.1) with
A;=0 for2<i<n-—2
A; =1 otherwise
and
B, =-1
B;=(-1)"-2 fori<n,
Therefore the eigenvector of C'= A™!B with eigenvalue 1 is thus v = (3,2,2,2,...,2,-1,2)". Note
that the order of B is 2n.
The quadratic form f fixed by A and B in the basis {v,Bv,..., B""!'v} has ijth entry 3 if

i — j| = 1, and by Lemma 4.1 the basis vectors are thus in one connected component of X since
elfe;,1 =3 forall 1 <i<mn—1. To see this, note that the nth row of B™ is of the form

(bl by - bn)

where b; =0 fori <n—m-—1, b,_,, = 1, and b; = 2 for i > n —m. Therefore in particular the nth
entry of Bv is 3 as desired.

(3):
In this case the generators of H(«, 3) are as in (2.1) with
A;=2 forl<i<n-—1
A; =1 fori=n
and
B, =-1
B; = (=1)"-2 fori<n,
The eigenvector of C' = A™'B with eigenvalue 1 is thus v = (4,0,4,0,...,4,0,2)". The order of B
is 2n as in case (i).
In this case the quadratic form f fixed by A and B in the basis of Proposition 2.10 is odd. This
follows from the fact that every entry of v is even and thus the nth entry of B™v is even for every
0 < m < n— 1. Furthermore, f;; =4 if |i — j| = 1 since the nth entry of Bv is 4 so el fe; ;1 =4

for 1 <i < n —1. Combined with the fact that f is odd, Lemma 4.1 gives us that all of the basis
vectors are in the same connected component of Xy.

(4):
In this case we have that the generators of H(«, 3) are as in (2.1) with
A= (—1)" fori=2,n-2n
A= (=12 fori=1,n-1

A; =0 otherwise.
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and
B,=0 for2<i¢<n-—2
B; =1 otherwise
The eigenvector of C = A~' B with eigenvalue 1 is thus v = (3,-1,0,...,0,1,-1,2)!. Here we have
B is of order 2n — 2.
Note that if f denotes the form fixed by A and B in the basis of Proposition 2.10 we get that f;;

is 3 if | — j| = 1, and Lemma 4.1 implies that the basis vectors arein one connected component of
Xy since elfe; 1 =3 forall 1 <i<mn—1. To see this, note that the nth row of B™ is of the form

(bl by - bn)

where b; =0 fort <n—m—1and b =7 —n+m+ 1 for © > n — m. Therefore in particular the
nth entry of Bv is 3 as desired.

(5):
In this case we have that the generators of H(«, 3) are as in (2.1) with
A;=—1 fori=n
A= (=13 fori=n—1,1
Ai=(-1)"-4 for2<i<n-—2
and
B;=0 for2<:<n-2
B; =1 otherwise
The eigenvector of C' = A™!B with eigenvalue 1 is thus v = (4,-4,4-4,...,4,-2,2)" and B is of
order 2n — 2.
As in case (4), the quadratic form f fixed by A and B is odd. Again, this is because every entry
of v is even and thus the nth entry of B™v is even for 0 < m < n — 1. Moreover, we have that
fij = 4 for |i — j| = 1 since the nth entry of Bv is 4 so e fe;;; =4 for 1 <i <n — 1. Combined

with the fact that f is odd, Lemma 4.1 gives us that all of the basis vectors are in one connected
component of X;.

(6)I;Iere the generators of H(«, ) are as in (2.1) with
A, =1
A;=3 fori=1,n-1
A;=4 for2<i:<n-—2
and
Bi=(-1)" fori=1,n—1,n
B, =0 for2<:<n-—2
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The eigenvector of C' = A™'B with eigenvalue 1 is thus v = (4,4,4,...,4,2,2)! and B is of order
2n — 2.

Again, the quadratic form f fixed by A and B in the basis of Proposition 2.10 is even since every
entry of v is even. Moreover, we have that f;; = 4 for |i — j| = 1 since the nth entry of Bv is 4 so
elfe;r1 =4 for 1 <i <n—1. Combined with the fact that f is odd, Lemma 4.1 gives us that all
of the basis vectors are in one connected component of Xy.

(7):

Here we have that the generators of H(«, ) are as in (2.1) with

A, =1
A;=3 fori=1,n-1
A;=4 for2<i<n-—2

and

B, = -1
Bi=0 forl<i<n-1

The eigenvector of C' = A™'B with eigenvalue 1 is thus v = (3,4,4,4,...,4,3,2)" and B is of order
n.
Note that if f denotes the form fixed by A and B in the basis of Proposition 2.10 we get that f;;
is 3 if |[i — j| = 1, and so Lemma 4.1 implies that the basis vectors are in one connected component
of Xyw since elfe;r1 =3 forall 1 <i<n—1. To see this, we note that the nth entry of Bv is 3.

(8):

The basic idea is to use Lemma 4.6 again, however, to show that v and Bv belong to same
connected component is more complicated then in the previous cases (one has to consider paths of
longer length). Recall that for every n > 7 with ged(n+ 1,6) = 2 there exists a unique monodromy
group H in the family Ni(3,n,n). For 1 < i < n let v; := B 'v be the i-th basis element of a basis
for L. If u € L then [u] denotes the coordinates vector of u with respect to the base vy, -+ , v, and
[u]; is the i-coordinate of [u]. Corollary 2.12 states that the quadratic form is given by:

2 if i—jl=0
4 if i—jl =1

fij = (v,v5) =4 -8 if li—jl=2or|i—jl=n—-1
11 if |i—j|=3or|i—jl=n—2

—12 otherwise
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Lemma 4.8. Denotem:=n—3 ifn=1 (mod6) and m :=n—>5 ifn =3 (mod6). Defineu € L

by
1 4fi=1(mod6) andi <m
-2 ifi =2 (mod6) and i <m
[u]; == 2 ifi=3 (mod6) andi <m
-1 ifi=4 (mod6) and i <m
0 otherwise
Then, (u,u) = 2.

n

Proof. The proof in by induction on LEJ (the integral part of ). The induction base is n = 7 and
n = 9 and it is a direct computation. Assume n > 10 and that the induction hypothesis was proven
for integer smaller then [ := L%J Define a,b € L by

1 ifi=1(mod6)and i <m —6
—2 ifi=2 (mod6) and i <m —6
la; == 2 ifi=3(mod6) andi <m —6
—1 ifi=4 (mod6) and i <m —6
0 otherwise
and
1 ifi=m-3
-2 ifi=m-—-2
[b); == 2 ifi=m-—-1.
—1 ifi=m
0 otherwise

Note that if f is the form corresponding to the n — 6 dimensional group in the family j = 3 then
the upper left m — 6 x m — 6 of f is the same as the upper left m — 6 x m — 6 of F. Thus, by
the induction hypothesis we get that (a,a) = 2 and that (b,b) = (B~(=Yp, B=60=Dp) = 2. The
equality u = a + b implies

(u,u) = (a,a) + (bb)+2ba—4+zz uljfi; =2

i=m—3 j=1

since fp—6m-3 = fm—3m—6 = —11 while all the other f;; in the above range equal —12. [

Lemma 4.9. Assume that n = 1 (mod6) and let w and m be as in Lemma 4.8. Denote w :=
U+ vy—1. Then (w,w) = —2 while (w,v,—1) = (w,v,) = —3.

Proof. Note that f,_11 = =11, fo_1m—1 = —11 and f,_1,, = =8 while f,,_1;, = =12 for 2 < i <

m — 2. Thus,
m
U, Un— 1 E n 1,4 — a
i=1

(w,w) = (u,u) + (Vp_1,Vn-1) + 2(Vp_1,u) =2 —2—2= =2
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and
(wavn—l) = (Un—la Un—l) + (Un—hu) =-1-2=-3.
Also, fn1 = -8, fn2 = —11 and f,,,, = —11 while f,_,; = =12 for 3 <7 <m — 1. Thus,
(U,’Un) = Z[uz]fn,z =1
i=1
and
(w,v,) = (Vn, Vp—1) + (U1, u) = =44+ 1 = =3.
O

Lemma 4.10. Assumen =5 (mod6) and let uw and m be as in Lemma 4.8. Denote w := u+ v,_o.
Then (w, w) = —2 while (w,v,_2) = (w,v,—1) = —3.

Proof. Note that f,_2,, = —11 and while f,,_9; = —12 for 1 <7 <m — 1. Thus,

m

(u> Un72) = Z[u’i]fnfli = _17
i=1
(w,w) = (u,u) + (Vp_2,Vn_2) + 2(Vp_g,u) =2 —2—2= -2
and
(w,vp—2) = (Vp—2,Vn—2) + (Vp_2,u) = =1 — 2 = —=3.
Also, fn,—11 = —11 while f,_;; = —12 for 2 <1i <m. Thus,

(U,Unfl) = Z[Uz]fn—u =1

=1
and
(W, Un—l) = ('Un—la'Un—Q) + (Un—Za U) =—-4+1=-3.
0

Lemma 4.9 and 4.10 show that v,_» and v,,_; are in the same connected component of X;. Thus,
also v = B*>™,_» and Bv = B3 ™,_; are in the same connected component and we can apply
Lemma 4.6.

O

By using the same kind of arguments one can show that more families are thin. However since
the computations are very tedious, we will only state the result we were able to prove.

Theorem 4.11. The family N1(j,n,n) where n =1 (mod 2j) is thin if one of the following condi-
tions holds:

l.l=jorl=j5—-2.

2. lg”Tl and [ + 1 divides j — 1.

3. ZZ# and 25 — 1 — 1 diwvides j — 1.
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It is possible that one might be able to remove the congruence conditions above. For example,
the first case which is not covered by the theorem above is N;(7,17,17), in which there is a path of
length 4 in X that connects v and Bv (and hence the group is thin).

5. NUMERICAL RESULTS AND DATA

5.1. Hyperbolic groups H(«, ), dimension n < 9. In this section, we list all of the primitive
hyperbolic hypergeometric monodromy groups, including the sporadic ones which do not fall into
any of the families found in Section 2.3. We note that the sporadic groups are all in dimension n < 9
and are easily determined using the method from Section 2.2, given the sporadic finite hypergeo-
metric monodromy groups listed in [B-H] (or by listing for each n all the hyperbolic hypergeometric
(a, B)’s and recording which lie in one of our seven families). Our list is split into two tables:
Table 2, which lists all even monodromy groups in dimension n < 9 as well as which family (if any)
they fit into, and Table 3, which lists all odd monodromy groups in dimension n < 9 along with the
associated family. In Table 2, we also list the invariant factors of the associated quadratic lattice
and specify in which cases we are able to prove that the monodromy group is thin (thinness here is
always confirmed using the minimal distance graph method described above, with the longest path
encountered being of length 3). In Table 3 we specify when the subgroup H,. of H(«, ) is contained
in Ry — note that Nikulin’s results from [N1] do not apply to the odd case and hence we cannot
immediately deduce thinness in these lower dimensional odd cases (although with extra work this
can probably be done). The groups H(a, ) where [H(ca, 3) : H,| = oo (thus, those for which the
minimal distance graph method does not prove thinness) are marked with a  in the last column.

(a, B) (e, B) with shift by 1/2 Factors Family Thin
;:Eé é,’o%)) ;Eg 2’,?) 8 Ni(1,1,3) | No
Z:Eéfé’o%)) ;:E(%) i 3 24, 72 Ni(1,2,3) | No
Z_Eé,’é,’o%)) 2:8 }g ‘3 8,8 N3(1,1,3) | No
Z:E(%),’é,’o%)) ;;Eg i % 8,8 No(1,2,3) | No
Z:E(% }% %) :8 %%% 12, 12 Ni(1,1,3) | No
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%’%’%’ (0’%’%’%’%’%’;—3’%’%) 8 Sporadic | Yes
1 5 7 (1,18 117171 "5 11y p
37127 127 12262 122222727 127 67 12
9 1 11 13 (0,4, 3 1 9 11317 19
207 22 207 7207 207 207 20720’ 20’ 207 20 :
1737572 7) (1 137171155 7) 16 Sporadic Yes
RS ars 306 82'2:2'8° 68
1113 (0,4,3 1 9 11317 19
27207 207 »207 207 207 20°.20° 207 207 20 :
1% ) (L7375 T e ) | 8 Sporadic | Yes
707 14° 142 142222522 74> 142 14
1113 (0,1, 3 1 9 1L 13 17 19
27207 20° 202 207 207 20 207 207 20 20 ;
5% 8 (L5 T )| 8 Sporadic | Yes
97979 187 187 187 272 27 27 187 187 18
113 17 (0,1, 3 1 1113 17 19 23
2247 240 1247 247 24> 247 247 247 24 24 :
5% 1) N A o et I R R Sporadic | Yes
574’5 107247 102222727 107 47 10
113 17 (0,1, 3 1 1113 17 19 23
27247 240 24 247 240 24° 247 247 247 24 :
1% ©) (173751 T e iy |8 Sporadic | Yes
7T 142 142 14227 27 27 147 14° 14
113 17 (0,4, 5 T 1113 17 19 33
27247 240 7247 240 247 247 247 247 247 24 3
577 ) (L5 Ty | 8 Sporadic | Yes
9’9’9 187 187 182 27 27 27 187 187 18
1 101 13 17 (0,4, 5 T 111317 19 23
24 24727 247 247 7240 243 240 247 247 247 247 24 :
0 11235) (111111235) 2,2,2,2,48 | Sporadic 7
; 133105 6:4:3:2:2:2:3: 106
0.1 7 11 13 17 19 (L,2 4 7 1.8 1113 14
7307307 307 30?30 30° 157 157 157 157 27 157 157 157 15 3
1121113274 (000113759 120 Sporadic ?
3757%a§7§a§7§7§7§) =Y Y, aﬁaﬁ7ﬁ7ﬁ:ﬁ?ﬁ)
0.1 5 7 11 13 17 19 (2,5 7 111317 19 2
7247 247 247 247 247 247 240 247 247 247 247 27 247 247 247 24 3
112717113374 000 L 13 7 3 9 80 Sporadic Yes
E7Z:§a§7§a§>€a17ﬁ) :(7 ) ama17ﬁ7ﬁvz7ﬁ)
1 7 11 13 17 19 23 (1,2 4 7 1.8 1113 14
307307 307 30° 30 307 30° 157 157 157 157 27 157 157 157 15 3
P 0 157 ) (0.0,0, L L& 7 39580 Sporadic | Yes
47 5727272757475 —\H Y Y 1004210210242 10
1 3 7 9 11 13 17 (4,3 7 9 1111317 19
207 207 207 207_207 20’ 20’ 207 207 207 202 27 207 207 207 20 3
S g O o 1 4 (0,0.0,1, 13575 %) 48 Sporadic | 7
378729927927 87378 - ) ) 767 8)8787(78
1 7 11 13 17 19 23 (L,2 4 7 18 1113 14
307 307 307 307302 30 30° 157 157 157 157 27 157 157 157 15 :
g 10502 (0.0,0,1 173%5 ' 1 48 Sporadic | Yes
3787272278378 AN Y PI6Y R8I R 67 K
i 113 17 (0,4, 3 1 9 11317 19
207 207 207 20° 7207 207 207 207207 207 207 20 :
i 3 Z) (l 1570 A 105 Z) 5, 160 Sporadic ?
] » 40 ] 82 47R872727278°4° ]
7111 13 17 19 (0,1, 5 7 11317 19 2
247 27247 247 240 7247 247 240 247 247 247 247 24 3
i 573 Z) (l E T Z) 3,3, 3,96 Sporadic ?
87 87478 8747 8727272787478
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a_(oilﬁﬁﬁﬁﬁﬁ) a_(izillﬁﬁﬁﬂ)
~\~»307.307 307307307 30 30" 30 =\15° 157157 152 22 157 15’ 15’ 15 :
113111537 1135 3 7 32 Sporadic Yes
B:<§7Z7§7§7§7§7§717§) B:(070707§717§7§717§)
,(Qiluﬁﬁﬁﬁﬁ) ,(Llillﬁugﬂ)
=AYy 302 307 307 302 307 307 302 30/ | “T\15° 157 15 157 27 157 157 157 15/ | 94 Sporadic 2
1715 1 17177 2 11 0001157511) p !
ﬁz(ﬁaﬁ?ﬁ?i;ﬁ?iaﬁaﬁ?ﬁ 52(7 'Y 999 62122 122 62 12
a,(iililﬁﬁﬁ@)a,(oLiliQEH&)
=\207207 207207 27 20’ 207 207 20 =\~1207 207207207 20’ 207 207 20 ;
0001157311) (1151111§g 5, 80 Sporadic ?
8=(0,0,0, %, 1. 5,155 15 A=\13:4>13:22:2: T2 4 12
a_(iilﬁlﬁﬂﬁﬁ)a_(oLELHEHEE)
=\247 24724724727 247 247 247 24 =\Y» 245247247 247 247 247 247 24 ;
000 L 15 7 31 1715 1 11777311 2,2,2,2,16 | Sporadic ?
8=(0,0,0,75, 5, 15, 75, 5> 13) =55 119032 3 1 1 1
OF(()LLEEHEEQ) a_(Llilléﬁﬁﬁ)
=\~»307307307.307 30’ 307 30 30 =\15° 1521515727157 15’ 15’ 15 ;
1715 1 11773 11 00011573&) 16 Sporadic Yes
=5 11233 b0 8=00,0,0, % 5 15,13 1 1o
_<Lil£lgﬁﬁﬁ) _(OLQLEHEHQ)
71200207207 207 27 207 207 20° 20/ | “T\¥» 207 207 207 207 20’ 207 207 20/ | 94 Sporadic 2
,(OooLliléu) ,(Llillllzﬂ) :
=0, 190 60120 120 67 12 P=\12:3>12722212:121 3> 12
_(QLLHEHQE@) _(Llillﬁﬁﬁﬂ)
“=\¥> 307307 307 307 302 307 307 30/ | “T\157 157 157 157 27 15° 152 157 15/ | 54 Sporadic 2
123111456 Oooiiiiﬁﬁ) p :
51(?7?7?757572777777 5:(7 ) Y0 140 140 14 140 142 14
,(Lil&luﬁﬁﬁ) ,(OLQLQQEHQ)
71207 207 207 207 2 207 202 207 20/ | “T\¥» 207 207 207 207 200 207 20° 20/ | 5§ Sporadic 2
0.0.0. L 3 59 11713 123111456) p !
ﬁ:(, ) 7ﬁ7ﬂ7ﬁ7ﬂ7ﬂ7ﬂ) B:<7777?7§7§7§77777?
,(Lilulﬁﬁﬁﬁ) ,(OLQLEEIJEE)
“T\240 240 24 240 2 247 247 242 24/ | “T\YD 240 240 240 240 24 247 240 24/ | 5 Sporadic 2
_ngLiiiﬁﬁ) _(lzélllééﬁ) :
=(0,0, ) 14> 140 14> 142 14> 14 P\ o a2 9 T 0 T
a_(iililﬁﬁﬂﬁ)a_(QLiliEEHQ)
~\20° 20720720’ 22 207 20’ 207 20 =\ 207207207 207207 20’ 20° 20 ;
0.0.0.L B> 7 11713717 124111§z§) 24 Sporadic Yes
5:(a ) 7ﬁ7ﬁ7ﬁvﬁvﬁaﬁ) 52(576767§ﬂ§7§aq7qaq
a_(iilﬁlﬁﬂﬁﬁ)a_(oLQLHEHQE)
=\247 247247 24> 2247 242 24 24 =\Y» 94> 247247 247 242 247 247 24 :
0.0.0, L 5 1 1 "13°7 (1,241 157 ) 24 Sporadic | Yes
5=(0,0, » 182 18° 182 18’ 18’ 18 P=\919:91272:2197979
a_(OLLEEHQEQ) a_(inllﬁﬁﬁﬁ)
~\~»302 307 307 307 30730 30’_30 =\15° 1521571572715’ 15’ 15’ 15 :
BT A 1 G i S R A O O o 8 Sporadic | Yes
P=\18718 18222 27 2 187 187 18 P=\919>91272:2197979

Table 2: Even monodromy groups: dimensions 3, 5, 7, 9.
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(o, B) (o, B) with shift by 1/2 H, contained in R;?
1 3 7 9 1 21 3 4
a=(0, 10710710’10) a:(5,5,2,5,5) Yes
,<121§‘_1) ,(Olili)
p= H?5H?275%5 p= 107 107 107 10
1 3 5 7 1 315 7
o=(0, 5,5 5 %) o=(5: 83730 5) Yes
(11113) <00013)
B= 4727927974 =Y, U, Y 40 4
1 1115 1 2
0‘:<§7§7§7§76) a:(0,0,0,37§) Yes*
1 2 11115
ﬁ:<070707§7§> /B:(E7§7§7§76) N4( 7175)
(0,1,3 5 9 11 13 (1,28 145 6)
A=\Y 140 140 140 140 140 14 N\ T T Yes
g=(1,2, 37174 56 5-(0, L3 5 5 T 13y
T T T T T ) 14> 140 14> 14> 14> 14
,(Llill§ﬁ) ,(OLliléﬁ)
*T\120 40 127 22 127 40 12 =\ 120 40 120 120 40 12 Yes
_(()Qollzé) _(ll_l___
B_ ’776737376 ﬁ_673’272727376
1 3 111 7 9 1 2 3 4
a:(ﬁ7ﬁ7§7§7§7E7 10) a:(0707075757375) Yes*
1 2 3 4 1 3 111 7 9
ﬁ:<070707ﬁaﬁ)37§) ﬁ:(ﬁ7ﬁ7§7§7§7ﬁ7ﬁ) N4< 7177)
_(Qililﬁﬁéﬁ) _(lglél§22§)
@=\"> 1876 187 187 18718’ 6’ 18 “=19,9737927279737979 Yes
_(lglél_g__ 5(0Llil£§§1_7)
p= 979237972797 37979 > 18767 187 187 187 187 67 18
_<0iiilﬁﬁﬁﬁ) _(iiilliﬁﬁﬁ
*=\"» 16716 16 16716 16’ 16’ 16 @=\1616716"16’ 22 16’ 16’ 16’ 16 Yes
(4,131 11758 T (0,0,0,1, 18753 1
6=\8,2872:2737874°8 A=V, U, U, 2,288 17 8
3 5 1 11 9 11 13 1 2 3 45 6
O‘_<14714’147272’2714714714) 0=(0,0,0,7,%,%,7,%,7) Yes*
(0,0,0,1,2 8 4 5°5) (3 5110 0 s
p= YT T TITNT p= 14° 142 1422227 2 147 14° 14

Table 3: Odd monodromy groups: dimensions 5, 7, 9.7

5.2. Some numerics for hyperbolic hypergeometric monodromy groups. While our cer-
tificate for being thin succeeds in many cases as demonstrated in Sections 4 and 5, there are families
such as Ny(j,k,n) for which we found almost no paths between the basis vectors in the minimal
distance graph. If indeed the corresponding components of X are singletons for members of this

7 H. Park [P] has recently shown that all the Ry’s in Table 3 are thin except for the second entry, which is
arithmetic. Moreover, in that case H, is still contained in a thin reflection subgroup of R;. In particular, all the

H,’s in Table 3 are thin.
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family, then clearly a variation of the minimal distance graph is needed if this approach is to work.
A crude, and it appears mostly reliable, test for the size of H = H(a, 8) in O(L) is to simply count
the number of elements in H in a large ball. That is, let T be a large number and let

(5.1) Ny(T) :={v € H | trace(y'y) < T?}.
If H is arithmetic then it is known ([L-P]) that

Cn Tan

"~ Vol(H\O;(R))

(5.2) Ng(T) , as T — oo.

Thus to probe the size of H we generate elements in H using our defining generators and try to
determine Ny (T') for T quite large.

The difficulty is that we don’t know which elements of O(L) are in H and the above procedure
(by going to large generations of elements in H gotten from the generating set) only gives a lower
bound for Ng (7). In any case we can compute in this way a lower bound for log(Ng(T'))/log T
for T large. If this is essentially n — 2 then this suggests that H is arithmetic, while if this number
is less than n — 2 it suggests that H is thin (if H is geometrically finite then this quantity should
be an approximation to the Hausdorff dimension of the limit set of H (see for example [L-P]). We
have run this crude test for many of our hyperbolic hypergeometric monodromies and it gives the
correct answer in the cases where we have a rigorous treatment. For example, in Figures 2 and 3
we give a plot of log(Ny(T)) versus logT for the arithmetic examples o = (3,3, 2), 8 = (0,1, 2)
and o = (%, 3 %), B = (0, %, %) The similar plots for four examples with n = 5, and for which our
certificate failed are given in Figures 4, 5, 6, and 7 below. Based on these, it appears that these
H’s are all thin. Further such experimentation is consistent with Conjecture 2 in the Introduction

and even that for n > 5, every hyperbolic hypergeometric monodromy group is thin.
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APPENDIX

In this appendix, we consider the six 3-dimensional hyperbolic hypergeometric monodromy groups
and show that they are all arithmetic. Our method is to determine the preimage of the groups in
the spin double cover SLy(R) of SO(2,1) and work in the setting of SLy. Once we pull back to
SLs, we rely on one of the following strategies. If the quadratic form f that is fixed by hyperbolic
hypergeometric monodromy group H is isotropic over Q then one can find M € GL3(Q) such that
M? f M is some scalar multiple of Q5 below. Moreover, under such a change of variable, the preimage
of HN SOy in the spin double cover of SO can be made to sit inside SLy(Z), and in this setting
showing that the group is finite index is usually straightforward. Out of the six 3-dimensional
hyperbolic hypergeometric monodromy groups, four fix an isotropic form f, and in those cases we
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show that the preimage of the group in the spin double cover of SO contains a principle congruence
subgroup of SLy(Z).®

If the form f fixed by H is anisotropic, we again pull back to the spin double cover I' of SO;
in SLy(R) and, after generating several elements of I', construct a region in the upper half plane
which contains a fundamental domain for I" acting on H (this method works for the isotropic case
as well). Specifically, a Dirichlet fundamental domain for I" is given by

Foo = [z € H | d(z,p0) < d(z,9p0)} = [ | H(v,p0)

yel’ yel’

where py is any base point and H (v, po) is a closed half space. One can prove that F,, is compact
(and hence I is arithmetic) if the intersection N, H (7, po) is compact even when taken over a finite
number of elements v € I'. Note that this method uses the same idea as described in Section 5.2:
generating elements of I to say something about thinness, but in this case it can actually prove
whether the group is thin or not.

Throughout this section, we let

100 0 0 -1
Q=101 0 and Q=] 0 1 0
00 -1 100

For these two forms we have the following spin homomorphisms from SLs(R) into the SOg, and
SOq,, respectively (see [C]).

L@+ -2+ d?) ac—bd L(a®>—b*+c2—d?)
a b 0 2 2
(5.3) ( . d) — ab — cd be + ad ab + cd
H@?+ - —d?) ac+bd 3(a®+b*+F+d)
2 2
a b N a 2ac c
(5.4) d — ab ad+bc cd
¢ B 2d &P

Example 1: a = (3,3,3),6 = (0,0,0).
In this case H(«, 8) C Of(Z) with generators A, B where

O
1 0 -3 0
f=|l010|,4A=]1
0

Note that 2(M'fM) = Q, where

1/8 1/4 -1/4
M=|-1/4 0 1/2
1/8 -1/4 -1/4

8In doing this, we use Sage to determine generators for I'(N) for various N.
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and conjugation by M gives an isomorphism of the subgroup (A% B) C H(«, 8) NSO (Z) with the
subgroup (A’, B') C SOgq,(Z) where

16

A = 4 |,B =
1

o O =
S = o
— = =
o = O
—_ o O

The preimage of this group in SLy(Z) under the spin homomorphism in (5.4) is the group

(£X, 1Y) where
1 0 11
X = [ 4 1 }’}/:: { 0 1 ]‘

This group contains the generators

1 4 -15 4 5 -4 9 -16 13 -36

O 1|’ 4 1|74 3|4 -7 |4 -1
of T'(4). Hence H(«, ) is itself arithmetic. In addition, our second strategy of finding a region
which contains a fundamental domain for H yields the compact region shown in Figure 8.

Example 2: a = (3,3,3),6=(0,0,0).

37
In this case H(«, 8) C Of(Z) with generators A, B where

7T 1 -17 0 0 -1 0 0 1
f=| 1 7 1 |,Aa=|102|.B=|10 =3
1717 0 1 -2 01 3
Note that (M'fM) = 3 - Qs where
1/4 0 1/12
M=|-12 1/2 1/12
1/4 -1/2 1/3

and conjugation by M gives an isomorphism of the subgroup (A% B) C H(«, 8) NSO (Z) with the
subgroup (A’, B') C SOgq,(Z) where

1 2 1 1 2 1
A=1]3 5 2| ,B=|01 -1
9 -12 4 00 1

The preimage of this group in SLy(Z) under the spin homomorphism in (5.4) is the group
(£X, 1Y) where
X — [-1 -3 }7},:: Lol

1 2
This group contains the generators
DR
13 -2 ]

e

3
1
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of I'(3). Hence H(a,p) is itself arithmetic. In addition, our second strategy of finding a region
which contains a fundamental domain for H yields the compact region shown in Figure 9.

Example 3: a = (5,3,2),6 =(0,0,0).

In this case H(«, 8) C Of(Z) with generators A, B where

3 1 -5 0 0 -1 0 0 1
f=l131|.,4=]10-1]|,B=]10 -3
5 1 3 01 -1 01 3
Note that M!fM = @, where
1/4 1/4 1/2
M=1| 0 1/2 0
/4 1/4 1/)2

and conjugation by M gives an isomorphism of the subgroup (A?, B) C H(a, 3) NSO;(Z) with the
subgroup (A’, B') C SOg, (Z) where

10 0 1 2 2
A=|l0-10]|.,B=]|2 -1 -2
0 0 1 2 2 3

The preimage of this group in SLy(Z) under the spin homomorphism in (5.3) is the group

(+X,+Y) where
0 1 0 1
AN ERTRSIEEY

and £XY, Y X generate the principal congruence subgroup I'(2). Hence H(«, ) is itself arith-
metic. In addition, our second strategy of finding a region which contains a fundamental domain
for H yields the compact region shown in Figure 10.
Example 4: o = (%, %, %),B =(0,0,0).

In this case H(«, 8) C Of(Z) with generators A, B where

5 3 -3 0 0 -1 00 1
f=l353|.4a=]100]|,B=|10 -3
-3 3 5 01 0 01 3
Note that M!fM = @, where
1/4 -1/2 3/4

M=|1/4 1/2 -3/4
0 0 1/2
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and conjugation by M gives an isomorphism of the subgroup (A% B) C H(«, 8) NSO (Z) with the
subgroup (A’, B') C SOq, (Z[}) where

12 -1 1/2 1/2 -1 -1/2
A= 1 1 1 [, B=|1 1 1
1/2 -1 3/2 12 1 3/2

The preimage of this group in SLy(Z) under the spin homomorphism in (5.3) is the group

(£X, 1Y) where
11 11
=laor=lon

and Y X? Y are a well-known generating set for all of SLy(Z). Hence H(«, 3) is itself arithmetic.
In addition, our second strategy of finding a region which contains a fundamental domain for H
yields the compact region shown in Figure 11.

Example 5 a= (%7 %7 %)aﬁ = (07 ia z%)

In this case H(«, ) C Of(Z) with generators A, B where

5 -1 -7 00 -1 00 1
f=|-15 1|, A=|10 2|,B=|10 -1
7 -1 5 01 -2 01 1

In this case f is anisotropic over Q, and hence we turn to our strategy of approximating the
fundamental domain to prove that H is arithmetic: we produce the compact region shown in
Figure 12 which contains the fundamental domain of H.

Example 6: o = (3,3, 2),8=(0,5,2).

In this case H(«, ) C Of(Z) with generators A, B where

1 0 -2 00 -1 00 1
f=l010],A=|102|,B=|10 -2
20 1 01 -2 01 2

In this case f is anisotropic over Q, and hence we turn to our strategy of approximating the
fundamental domain to prove that H is arithmetic: we produce the compact region shown in
Figure 13 which contains the fundamental domain of H.
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FiGURE 8. Dark red region in upper half plane containing a fundamental domain of
H(a, B) in Example 1.

FiGURE 9. Dark red region in upper half plane containing a fundamental domain of
H(a, B) in Example 2.

-2 -1 0 1 2

F1GURE 10. Dark red region in upper half plane containing a fundamental domain
of H(a, ) in Example 3.

FIGURE 11. Dark red region in upper half plane containing a fundamental domain
of H(a, ) in Example 4.
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s e -
-2 -1 0 il 2

FiGure 12. Dark red region in upper half plane containing a fundamental domain
of H(a, B) in Example 5.

F1GURE 13. Dark red region in upper half plane containing a fundamental domain
of H(a, ) in Example 6.
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