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Poisson slices The wonderful compactification Hessenberg varieties

Essential ingredients

g dim-n <∞, semisimple, over C
〈·, ·〉 : g⊗C g→ C Killing form

Note: g ∼= g∗ via the Killing form =⇒ g is Poisson

τ = (e, h, f ) ∈ g⊕3 sl2-triple

Sτ := e + gf Slodowy slice

Fact: Sτ is a Poisson transversal in g. (*)

G adjoint group of g

X Poisson variety equipped with a Hamiltonian action of G and
moment map µ : X → g

Note: By virtue of (*), µ−1(Sτ ) is a Poisson transversal in X .

Definition

The Poisson variety µ−1(Sτ ) is called a Poisson slice.
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Properties of Poisson slices

Proposition

(i) The Poisson slice µ−1(Sτ ) is transverse to the G -orbits in X .

(ii) There are canonical Poisson variety isomorphisms

(X × (G × Sτ )) � G ∼= µ−1(Sτ ) ∼= X �e Uτ .

(iii) If X is symplectic, then µ−1(Sτ ) is a symplectic subvariety of X .

(iv) If X is log symplectic, then each irreducible component of µ−1(Sτ )
is a log symplectic subvariety of X .

Peter Crooks
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Examples of Poisson slices

Example #1

O ⊆ g adjoint orbit of G

The isomorphism g ∼= g∗ G -equivariantly identifies O with a
coadjoint orbit.
=⇒ O is symplectic; the G -action on O is Hamiltonian with

moment map the inclusion µ : O ↪→ g.

τ sl2-triple  µ−1(Sτ ) = O ∩ Sτ Poisson slice

O ∩ Sτ is a symplectic subvariety of O.

In what follows, we fix a principal sl2-triple τ = (e, h, f ) and set S := Sτ .

Peter Crooks
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Examples of Poisson slices

Example #2

T ∗G = G × g via the left trivialization and Killing form

(G × G ) � G  (G × G ) � T ∗G = G × g

Moment map µ = (µL, µR) : G × g→ g⊕ g, µ(g , ξ) = (Adg (ξ),−ξ)

Consider the principal sl2-triple ((e,−e), (h, h), (f ,−f )) and
associated Slodowy slice S × (−S) ⊆ g⊕ g.

µ−1(S × (−S)) = {(g , ξ) ∈ G × g : ξ ∈ S and g ∈ Gξ}
This symplectic subvariety of T ∗G is called the universal centralizer
and denoted Zg.

Peter Crooks
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Examples of Poisson slices

Example #3

G = ({e} × G ) � T ∗G = G × g

Moment map µR : G × g→ g, µR(g , ξ) = −ξ
Consider the principal sl2-triple (−e, h,−f ) and associated Slodowy
slice −S ⊆ g.

µ−1
R (−S) = G × S, a symplectic subvariety of T ∗G

Peter Crooks
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A definition

Consider the Grassmannian Gr(n, g⊕ g).

(G × G ) � Gr(n, g⊕ g)

We have a (G × G )-equivariant locally closed immersion
γ : G → Gr(n, g⊕ g) defined by

γ(g) = {(Adg (ξ), ξ) : ξ ∈ g}.

G := closure of γ(G ) in Gr(n, g⊕ g)

Note: G is a (G × G )-equivariant projective compactification of G ,
called the wonderful compactification.

Theorem (De Concini–Procesi)

The projective variety G is smooth, and D := G \ G is a normal crossings
divisor in G .

Peter Crooks
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The log cotangent bundle

T → Gr(n, g⊕ g) tautological bundle

T ∗G T ∗G (log(D)) T

G G Gr(n, g⊕ g)

T ∗G (log(D)) is called the log cotangent bundle of (G ,D).

Proposition

(i) T ∗G (log(D)) is a log symplectic variety.

(ii) T ∗G is the unique open dense symplectic leaf in T ∗G (log(D)).

(iii) The action of G × G on G canonically lifts to a Hamiltonian
(G × G )-action on T ∗G (log(D)), and there is an explicit moment
map µ = (µL, µR) : T ∗G (log(D))→ g⊕ g.
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Further examples of Poisson slices

Example #2’

(G × G ) � T ∗G (log(D))

Moment map µ = (µL, µR) : T ∗G (log(D))→ g⊕ g

Consider the Slodowy slice S × (−S) ⊆ g⊕ g.

µ−1(S × (−S)) = {(V , ξ) ∈ G × g : ξ ∈ S and V ∈ Gξ}
This log symplectic subvariety of T ∗G (log(D)) is denoted by Zg.

Peter Crooks
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Further examples of Poisson slices

Example #3’

G = ({e} × G ) � T ∗G (log(D))

Moment map µR : T ∗G (log(D))→ g
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µ−1
R (−S) =: G × S, a log symplectic subvariety of T ∗G (log(D))
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Connecting the various examples

Consider the two diagrams

Zg Zg

S

and
G × S G × S

g
µL µL

.

The former is obtained by pulling the latter back along the inclusion
S → g. In other words, the former is the restriction of the latter to
the Poisson slices

Zg = µ−1
L (S) and Zg = µ−1

L (S).

Each diagram is a fibrewise compactification.

The compactifying spaces Zg and G × S are related to Hessenberg
varieties.

Peter Crooks
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The basics

(e, h, f ) our principal sl2-triple

b unique Borel subalgebra of g containing f

u := [b, b] nilradical of b

m annihilator of [u, u] with respect to the Killing form

Note: m is B-invariant, where B is the Borel subgroup of G
with Lie algebra b.

m is a B-module G -equivariant vector bundle G ×B m→ G/B

Proposition

(i) G ×B m is naturally a Poisson variety.

(ii) The action G � G ×B m is Hamiltonian with moment map

ν : G ×B m→ g, [g , x ] 7→ Adg (x).
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A definition and some properties

Definition

The fibres of ν are called Hessenberg varieties.

Proposition

(i) If x ∈ g, then ν−1(x) is projective.

(ii) If x ∈ g is regular and semisimple, then ν−1(x) is a smooth toric
variety whose cohomology ring H∗(ν−1(x);C) carries Tymoczko’s
dot action of W := NG (T )/T .

(iii) If x ∈ g is regular and nilpotent, then ν−1(x) is isomorphic to the
Peterson variety.
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Relation to the wonderful compactification

Consider the Poisson slice HS := ν−1(S), i.e.

HS G ×B m

S g

ν .

Recall the Poisson slice Zg ⊆ G × S.

Theorem (Bălibanu)

There is a canonical isomorphism

HS Zg

S

∼=

of Poisson

varieties over S.

Corollary

If x ∈ S, then there is a canonical variety isomorphism ν−1(x) ∼= Gx .

Peter Crooks
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Some new results

Recall that we have ν : G ×B m −→ g and µL : G × S −→ g.

Theorem (C.–Röser)

(i) There is a canonical isomorphism
G ×B m G × S

g

∼=

ν µL

of

Poisson varieties over g.

(ii) The pullback of this isomorphism to S is Bălibanu’s isomorphism
HS ∼= Zg. In other words, Bălibanu’s isomorphism is obtained by
restricting our isomorphism to the Poisson slices HS and Zg.

Corollary

If x ∈ g, then there is a canonical closed embedding ν−1(x)→ G .

Peter Crooks
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