イロト イヨト イヨト イヨト

크

Poisson slices and Hessenberg varieties

Peter Crooks

Northeastern University

April 29, 2020

Peter Crooks

- 2 The wonderful compactification
- 3 Hessenberg varieties

The wonderful compactification 00000

Hessenberg varieties 0000

Essential ingredients

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● の Q ()

Peter Crooks

• \mathfrak{g} dim- $n < \infty$, semisimple, over \mathbb{C}

- **g** dim- $n < \infty$, semisimple, over \mathbb{C}
- $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes_{\mathbb{C}} \mathfrak{g} \to \mathbb{C}$ Killing form

- **g** dim- $n < \infty$, semisimple, over \mathbb{C}
- $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes_{\mathbb{C}} \mathfrak{g} \to \mathbb{C}$ Killing form

Note: $\mathfrak{g} \cong \mathfrak{g}^*$ via the Killing form $\Longrightarrow \mathfrak{g}$ is Poisson

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ● ● ●

Essential ingredients

- **g** dim- $n < \infty$, semisimple, over \mathbb{C}
- ⟨·,·⟩: g ⊗_C g → C Killing form
 Note: g ≅ g* via the Killing form ⇒ g is Poisson
 τ = (e, h, f) ∈ g^{⊕3} sl₂-triple

- **g** dim- $n < \infty$, semisimple, over \mathbb{C}
- $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes_{\mathbb{C}} \mathfrak{g} \to \mathbb{C}$ Killing form **Note:** $\mathfrak{g} \cong \mathfrak{g}^*$ via the Killing form $\Longrightarrow \mathfrak{g}$ is Poisson • $\tau = (e, h, f) \in \mathfrak{g}^{\oplus 3} \mathfrak{sl}_2$ -triple
- $\mathcal{S}_{ au} := e + \mathfrak{g}_f$ Slodowy slice

- **g** dim- $n < \infty$, semisimple, over \mathbb{C}
- ⟨·, ·⟩: g ⊗_C g → C Killing form
 Note: g ≃ g* via the Killing form ⇒ g is Poisson
 τ = (e, h, f) ∈ g^{⊕3} sl₂-triple
 S_τ := e + g_f Slodowy slice

Fact: S_{τ} is a Poisson transversal in \mathfrak{g} . (*)

- **g** dim- $n < \infty$, semisimple, over \mathbb{C}
- ⟨·, ·⟩: g ⊗_C g → C Killing form
 Note: g ≅ g* via the Killing form ⇒ g is Poisson
 τ = (e, h, f) ∈ g^{⊕3} sl₂-triple
 S_τ := e + g_f Slodowy slice

Fact: S_{τ} is a Poisson transversal in g. (*)

■ G adjoint group of g

- **g** dim- $n < \infty$, semisimple, over \mathbb{C}
- $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes_{\mathbb{C}} \mathfrak{g} \to \mathbb{C}$ Killing form

Note: $\mathfrak{g} \cong \mathfrak{g}^*$ via the Killing form $\Longrightarrow \mathfrak{g}$ is Poisson

- $au = (e, h, f) \in \mathfrak{g}^{\oplus 3} \mathfrak{sl}_2$ -triple
- $\mathcal{S}_{ au} := e + \mathfrak{g}_f$ Slodowy slice

Fact: S_{τ} is a Poisson transversal in g. (*)

- G adjoint group of g
- X Poisson variety equipped with a Hamiltonian action of G and moment map $\mu: X \to \mathfrak{g}$

- **g** dim- $n < \infty$, semisimple, over \mathbb{C}
- $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes_{\mathbb{C}} \mathfrak{g} \to \mathbb{C}$ Killing form

Note: $\mathfrak{g} \cong \mathfrak{g}^*$ via the Killing form $\Longrightarrow \mathfrak{g}$ is Poisson

- $au = (e, h, f) \in \mathfrak{g}^{\oplus 3} \mathfrak{sl}_2$ -triple
- $\mathcal{S}_{ au} := e + \mathfrak{g}_f$ Slodowy slice

Fact: S_{τ} is a Poisson transversal in \mathfrak{g} . (*)

- G adjoint group of g
- X Poisson variety equipped with a Hamiltonian action of G and moment map $\mu: X \to \mathfrak{g}$

Note: By virtue of (*), $\mu^{-1}(S_{\tau})$ is a Poisson transversal in X.

イロト イヨト イヨト イヨト

크

Essential ingredients

- **g** dim- $n < \infty$, semisimple, over \mathbb{C}
- $\langle \cdot, \cdot \rangle : \mathfrak{g} \otimes_{\mathbb{C}} \mathfrak{g} \to \mathbb{C}$ Killing form

Note: $\mathfrak{g} \cong \mathfrak{g}^*$ via the Killing form $\Longrightarrow \mathfrak{g}$ is Poisson

- $au = (e, h, f) \in \mathfrak{g}^{\oplus 3} \mathfrak{sl}_2$ -triple
- $\mathcal{S}_{ au} := e + \mathfrak{g}_f$ Slodowy slice

Fact: S_{τ} is a Poisson transversal in \mathfrak{g} . (*)

- G adjoint group of g
- X Poisson variety equipped with a Hamiltonian action of G and moment map $\mu: X \to \mathfrak{g}$

Note: By virtue of (*), $\mu^{-1}(S_{\tau})$ is a Poisson transversal in X.

Definition

The Poisson variety $\mu^{-1}(\mathcal{S}_{\tau})$ is called a *Poisson slice*.

▲ロ▶▲母▶▲国▶▲国▶ 国 のQの

Proposition

(i) The Poisson slice $\mu^{-1}(\mathcal{S}_{\tau})$ is transverse to the *G*-orbits in *X*.

Proposition

- (i) The Poisson slice $\mu^{-1}(S_{\tau})$ is transverse to the *G*-orbits in *X*.
- (ii) There are canonical Poisson variety isomorphisms

$$(X \times (G \times S_{\tau})) /\!\!/ G \cong \mu^{-1}(S_{\tau}) \cong X /\!\!/_e U_{\tau}.$$

Proposition

- (i) The Poisson slice $\mu^{-1}(S_{\tau})$ is transverse to the *G*-orbits in *X*.
- (ii) There are canonical Poisson variety isomorphisms

$$(X \times (G \times S_{\tau})) /\!\!/ G \cong \mu^{-1}(S_{\tau}) \cong X /\!\!/_e U_{\tau}.$$

(iii) If X is symplectic, then $\mu^{-1}(S_{\tau})$ is a symplectic subvariety of X.

Proposition

- (i) The Poisson slice $\mu^{-1}(S_{\tau})$ is transverse to the *G*-orbits in *X*.
- (ii) There are canonical Poisson variety isomorphisms

$$(X \times (G \times S_{\tau})) /\!\!/ G \cong \mu^{-1}(S_{\tau}) \cong X /\!\!/_{e} U_{\tau}.$$

(iii) If X is symplectic, then μ⁻¹(S_τ) is a symplectic subvariety of X.
(iv) If X is log symplectic, then each irreducible component of μ⁻¹(S_τ) is a log symplectic subvariety of X.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● の Q ()

Example #1

• $\mathcal{O} \subseteq \mathfrak{g}$ adjoint orbit of G

- $\blacksquare \ \mathcal{O} \subseteq \mathfrak{g} \text{ adjoint orbit of } G$
- The isomorphism g ≅ g* G-equivariantly identifies O with a coadjoint orbit.

- $\mathcal{O} \subseteq \mathfrak{g}$ adjoint orbit of G
- The isomorphism $\mathfrak{g} \cong \mathfrak{g}^*$ *G*-equivariantly identifies \mathcal{O} with a coadjoint orbit.
 - $\implies \mathcal{O}$ is symplectic; the *G*-action on \mathcal{O} is Hamiltonian with moment map the inclusion $\mu : \mathcal{O} \hookrightarrow \mathfrak{g}$.

- $\mathcal{O} \subseteq \mathfrak{g}$ adjoint orbit of G
- The isomorphism g ≅ g* G-equivariantly identifies O with a coadjoint orbit.
 - $\implies \mathcal{O} \text{ is symplectic; the } G\text{-action on } \mathcal{O} \text{ is Hamiltonian with} \\ \text{moment map the inclusion } \mu : \mathcal{O} \hookrightarrow \mathfrak{g}.$
- $\tau \mathfrak{sl}_2$ -triple $\rightsquigarrow \mu^{-1}(\mathcal{S}_{\tau}) = \mathcal{O} \cap \mathcal{S}_{\tau}$ Poisson slice

- $\blacksquare \ \mathcal{O} \subseteq \mathfrak{g} \text{ adjoint orbit of } G$
- The isomorphism g ≅ g* G-equivariantly identifies O with a coadjoint orbit.
 - $\implies \mathcal{O} \text{ is symplectic; the } G\text{-action on } \mathcal{O} \text{ is Hamiltonian with} \\ \text{moment map the inclusion } \mu : \mathcal{O} \hookrightarrow \mathfrak{g}.$
- $\tau \mathfrak{sl}_2$ -triple $\rightsquigarrow \mu^{-1}(\mathcal{S}_{\tau}) = \mathcal{O} \cap \mathcal{S}_{\tau}$ Poisson slice
- $\mathcal{O} \cap \mathcal{S}_{\tau}$ is a symplectic subvariety of \mathcal{O} .

Example #1

- $\mathcal{O} \subseteq \mathfrak{g}$ adjoint orbit of G
- The isomorphism g ≅ g* G-equivariantly identifies O with a coadjoint orbit.

 $\implies \mathcal{O} \text{ is symplectic; the } G\text{-action on } \mathcal{O} \text{ is Hamiltonian with} \\ \text{moment map the inclusion } \mu : \mathcal{O} \hookrightarrow \mathfrak{g}.$

•
$$\tau \mathfrak{sl}_2$$
-triple $\rightsquigarrow \mu^{-1}(\mathcal{S}_{\tau}) = \mathcal{O} \cap \mathcal{S}_{\tau}$ Poisson slice

• $\mathcal{O} \cap \mathcal{S}_{\tau}$ is a symplectic subvariety of \mathcal{O} .

In what follows, we fix a principal \mathfrak{sl}_2 -triple $\tau = (e, h, f)$ and set $S := S_{\tau}$.

Hessenberg varieties 0000

Examples of Poisson slices

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● の Q ()

Example #2

• $T^*G = G \times \mathfrak{g}$ via the left trivialization and Killing form

- $T^*G = G \times \mathfrak{g}$ via the left trivialization and Killing form
- $(G \times G) \circlearrowright G \rightsquigarrow (G \times G) \circlearrowright T^*G = G \times \mathfrak{g}$

- $T^*G = G \times \mathfrak{g}$ via the left trivialization and Killing form
- $(G \times G) \circlearrowright G \rightsquigarrow (G \times G) \circlearrowright T^*G = G \times \mathfrak{g}$
- Moment map $\mu = (\mu_L, \mu_R) : G imes \mathfrak{g} o \mathfrak{g} \oplus \mathfrak{g}, \ \mu(g, \xi) = (\mathrm{Ad}_g(\xi), -\xi)$

Example #2

- $T^*G = G \times \mathfrak{g}$ via the left trivialization and Killing form
- $(G \times G) \circlearrowright G \rightsquigarrow (G \times G) \circlearrowright T^*G = G \times \mathfrak{g}$

• Moment map $\mu = (\mu_L, \mu_R) : G \times \mathfrak{g} \to \mathfrak{g} \oplus \mathfrak{g}, \ \mu(g, \xi) = (\mathrm{Ad}_g(\xi), -\xi)$

Consider the principal \mathfrak{sl}_2 -triple ((e, -e), (h, h), (f, -f)) and associated Slodowy slice $\mathcal{S} \times (-\mathcal{S}) \subseteq \mathfrak{g} \oplus \mathfrak{g}$.

Example #2

- $T^*G = G \times \mathfrak{g}$ via the left trivialization and Killing form
- $(G \times G) \circlearrowright G \rightsquigarrow (G \times G) \circlearrowright T^*G = G \times \mathfrak{g}$

• Moment map $\mu = (\mu_L, \mu_R) : G \times \mathfrak{g} \to \mathfrak{g} \oplus \mathfrak{g}, \ \mu(g, \xi) = (\mathrm{Ad}_g(\xi), -\xi)$

- Consider the principal \mathfrak{sl}_2 -triple ((e, -e), (h, h), (f, -f)) and associated Slodowy slice $\mathcal{S} \times (-\mathcal{S}) \subseteq \mathfrak{g} \oplus \mathfrak{g}$.
- $\mu^{-1}(\mathcal{S} \times (-\mathcal{S})) = \{(g, \xi) \in \mathcal{G} \times \mathfrak{g} : \xi \in \mathcal{S} \text{ and } g \in \mathcal{G}_{\xi}\}$

▲ロト▲聞ト▲臣ト▲臣ト 臣 のへで

Example #2

- $T^*G = G \times \mathfrak{g}$ via the left trivialization and Killing form
- $(G \times G) \circlearrowright G \rightsquigarrow (G \times G) \circlearrowright T^*G = G \times \mathfrak{g}$

• Moment map $\mu = (\mu_L, \mu_R) : \mathcal{G} \times \mathfrak{g} \to \mathfrak{g} \oplus \mathfrak{g}, \ \mu(g, \xi) = (\mathrm{Ad}_g(\xi), -\xi)$

- Consider the principal \mathfrak{sl}_2 -triple ((e, -e), (h, h), (f, -f)) and associated Slodowy slice $\mathcal{S} \times (-\mathcal{S}) \subseteq \mathfrak{g} \oplus \mathfrak{g}$.
- $\mu^{-1}(\mathcal{S} \times (-\mathcal{S})) = \{(g, \xi) \in \mathcal{G} \times \mathfrak{g} : \xi \in \mathcal{S} \text{ and } g \in \mathcal{G}_{\xi}\}$
- This symplectic subvariety of T^*G is called the *universal centralizer* and denoted \mathcal{Z}_{g} .

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● の Q ()

•
$$G = (\{e\} \times G) \circlearrowright T^*G = G \times \mathfrak{g}$$

- $G = (\{e\} \times G) \circlearrowright T^*G = G \times \mathfrak{g}$
- Moment map $\mu_R: \mathcal{G} imes \mathfrak{g}
 ightarrow \mathfrak{g}, \ \mu_R(g,\xi) = -\xi$

- $G = (\{e\} \times G) \circlearrowright T^*G = G \times \mathfrak{g}$
- Moment map $\mu_R: \mathcal{G} imes \mathfrak{g} o \mathfrak{g}, \ \mu_R(g,\xi) = -\xi$
- Consider the principal \mathfrak{sl}_2 -triple (-e, h, -f) and associated Slodowy slice $-S \subseteq \mathfrak{g}$.
Examples of Poisson slices

Example #3

- $G = (\{e\} \times G) \circlearrowright T^*G = G \times \mathfrak{g}$
- Moment map $\mu_R: G imes \mathfrak{g} o \mathfrak{g}, \ \mu_R(g,\xi) = -\xi$
- Consider the principal \mathfrak{sl}_2 -triple (-e, h, -f) and associated Slodowy slice $-S \subseteq \mathfrak{g}$.
- $\mu_R^{-1}(-S) = G \times S$, a symplectic subvariety of T^*G

▲□▶▲□▶▲□▶▲□▶ □ ● ●

• Consider the Grassmannian $Gr(n, \mathfrak{g} \oplus \mathfrak{g})$.

- Consider the Grassmannian $Gr(n, \mathfrak{g} \oplus \mathfrak{g})$.
- $(G \times G) \circlearrowright \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$

イロト イヨト イヨト イヨト

3

A definition

- Consider the Grassmannian $\operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$.
- $(G \times G) \circlearrowright \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$
- We have a $(G \times G)$ -equivariant locally closed immersion $\gamma : G \to Gr(n, \mathfrak{g} \oplus \mathfrak{g})$ defined by

$$\gamma(g) = \{(\mathrm{Ad}_g(\xi), \xi) : \xi \in \mathfrak{g}\}.$$

- Consider the Grassmannian $\operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$.
- $(G \times G) \circlearrowright \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$
- We have a $(G \times G)$ -equivariant locally closed immersion $\gamma : G \to Gr(n, \mathfrak{g} \oplus \mathfrak{g})$ defined by

$$\gamma(g) = \{ (\mathrm{Ad}_g(\xi), \xi) : \xi \in \mathfrak{g} \}.$$

•
$$\overline{G} :=$$
closure of $\gamma(G)$ in $Gr(n, \mathfrak{g} \oplus \mathfrak{g})$

- Consider the Grassmannian $\operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$.
- $(G \times G) \circlearrowright \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$
- We have a $(G \times G)$ -equivariant locally closed immersion $\gamma : G \to Gr(n, \mathfrak{g} \oplus \mathfrak{g})$ defined by

$$\gamma(g) = \{ (\mathrm{Ad}_g(\xi), \xi) : \xi \in \mathfrak{g} \}.$$

• $\overline{G} := \text{closure of } \gamma(G) \text{ in } \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$

Note: \overline{G} is a $(G \times G)$ -equivariant projective compactification of G, called the *wonderful compactification*.

- Consider the Grassmannian $Gr(n, \mathfrak{g} \oplus \mathfrak{g})$.
- $(G \times G) \circlearrowright \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$
- We have a $(G \times G)$ -equivariant locally closed immersion $\gamma : G \to Gr(n, \mathfrak{g} \oplus \mathfrak{g})$ defined by

$$\gamma(g) = \{ (\mathrm{Ad}_g(\xi), \xi) : \xi \in \mathfrak{g} \}.$$

• $\overline{G} := \text{closure of } \gamma(G) \text{ in } \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$

Note: \overline{G} is a $(G \times G)$ -equivariant projective compactification of G, called the *wonderful compactification*.

Theorem (De Concini-Procesi)

The projective variety \overline{G} is smooth, and $D := \overline{G} \setminus G$ is a normal crossings divisor in \overline{G} .

▲□▶▲□▶▲□▶▲□▶ □ ● ●

• $\mathcal{T} \to \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$ tautological bundle

•
$$\mathcal{T} \to \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$$
 tautological bundle

•
$$\mathcal{T} \to \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$$
 tautological bundle

• $T^*\overline{G}(\log(D))$ is called the *log cotangent bundle* of (\overline{G}, D) .

イロト イロト イミト イミト

The log cotangent bundle

•
$$\mathcal{T} \to \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$$
 tautological bundle

• $T^*\overline{G}(\log(D))$ is called the *log cotangent bundle* of (\overline{G}, D) .

Proposition

(i) $T^*\overline{G}(\log(D))$ is a log symplectic variety.

イロト イロト イミト イミト

The log cotangent bundle

•
$$\mathcal{T} \to \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$$
 tautological bundle

• $T^*\overline{G}(\log(D))$ is called the *log cotangent bundle* of (\overline{G}, D) .

Proposition

- (i) $T^*\overline{G}(\log(D))$ is a log symplectic variety.
- (ii) T^*G is the unique open dense symplectic leaf in $T^*\overline{G}(\log(D))$.

•
$$\mathcal{T}
ightarrow \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})$$
 tautological bundle

• $T^*\overline{G}(\log(D))$ is called the *log cotangent bundle* of (\overline{G}, D) .

Proposition

- (i) $T^*\overline{G}(\log(D))$ is a log symplectic variety.
- (ii) T^*G is the unique open dense symplectic leaf in $T^*\overline{G}(\log(D))$.
- (iii) The action of $G \times G$ on \overline{G} canonically lifts to a Hamiltonian $(G \times G)$ -action on $T^*\overline{G}(\log(D))$, and there is an explicit moment map $\overline{\mu} = (\overline{\mu}_L, \overline{\mu}_R) : T^*\overline{G}(\log(D)) \to \mathfrak{g} \oplus \mathfrak{g}$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Example #2'

• $(G \times G) \circlearrowright T^*\overline{G}(\log(D))$

- $(G \times G) \circlearrowright T^*\overline{G}(\log(D))$
- Moment map $\overline{\mu} = (\overline{\mu}_L, \overline{\mu}_R) : T^* \overline{G}(\log(D)) \to \mathfrak{g} \oplus \mathfrak{g}$

- $(G \times G) \circlearrowright T^*\overline{G}(\log(D))$
- Moment map $\overline{\mu} = (\overline{\mu}_L, \overline{\mu}_R) : T^* \overline{G}(\log(D)) \to \mathfrak{g} \oplus \mathfrak{g}$
- Consider the Slodowy slice $\mathcal{S} \times (-\mathcal{S}) \subseteq \mathfrak{g} \oplus \mathfrak{g}$.

- $(G \times G) \circlearrowright T^*\overline{G}(\log(D))$
- Moment map $\overline{\mu} = (\overline{\mu}_L, \overline{\mu}_R) : T^* \overline{G}(\log(D)) \to \mathfrak{g} \oplus \mathfrak{g}$
- Consider the Slodowy slice $\mathcal{S} \times (-\mathcal{S}) \subseteq \mathfrak{g} \oplus \mathfrak{g}$.
- $\overline{\mu}^{-1}(\mathcal{S} \times (-\mathcal{S})) = \{(V,\xi) \in \overline{\mathcal{G}} \times \mathfrak{g} : \xi \in \mathcal{S} \text{ and } V \in \overline{\mathcal{G}_{\xi}}\}$

- $(G \times G) \circlearrowright T^*\overline{G}(\log(D))$
- Moment map $\overline{\mu} = (\overline{\mu}_L, \overline{\mu}_R) : T^* \overline{G}(\log(D)) \to \mathfrak{g} \oplus \mathfrak{g}$
- Consider the Slodowy slice $\mathcal{S} \times (-\mathcal{S}) \subseteq \mathfrak{g} \oplus \mathfrak{g}$.
- $\overline{\mu}^{-1}(\mathcal{S} \times (-\mathcal{S})) = \{ (V, \xi) \in \overline{\mathcal{G}} \times \mathfrak{g} : \xi \in \mathcal{S} \text{ and } V \in \overline{\mathcal{G}_{\xi}} \}$
- This log symplectic subvariety of $T^*\overline{G}(\log(D))$ is denoted by $\overline{\mathcal{Z}_g}$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

•
$$G = (\{e\} \times G) \circlearrowright T^*\overline{G}(\log(D))$$

- $G = (\{e\} \times G) \circlearrowright T^*\overline{G}(\log(D))$
- Moment map $\overline{\mu}_R : T^*\overline{G}(\log(D))
 ightarrow \mathfrak{g}$

- $G = (\{e\} \times G) \circlearrowright T^*\overline{G}(\log(D))$
- Moment map $\overline{\mu}_R$: $T^*\overline{G}(\log(D)) \to \mathfrak{g}$
- Consider the Slodowy slice $-S \subseteq \mathfrak{g}$.

- $G = (\{e\} \times G) \circlearrowright T^*\overline{G}(\log(D))$
- Moment map $\overline{\mu}_R$: $T^*\overline{G}(\log(D)) \to \mathfrak{g}$
- Consider the Slodowy slice $-S \subseteq \mathfrak{g}$.
- $\overline{\mu}_R^{-1}(-S) =: \overline{G \times S}$, a log symplectic subvariety of $T^*\overline{G}(\log(D))$

Peter Crooks

Consider the two diagrams

• The former is obtained by pulling the latter back along the inclusion $S \to \mathfrak{g}$. In other words, the former is the restriction of the latter to the Poisson slices

$$\mathcal{Z}_{\mathfrak{g}} = \mu_L^{-1}(\mathcal{S}) \quad \text{and} \quad \overline{\mathcal{Z}_{\mathfrak{g}}} = \overline{\mu}_L^{-1}(\mathcal{S}).$$

Consider the two diagrams

• The former is obtained by pulling the latter back along the inclusion $S \to \mathfrak{g}$. In other words, the former is the restriction of the latter to the Poisson slices

$$\mathcal{Z}_{\mathfrak{g}} = \mu_L^{-1}(\mathcal{S}) \quad \text{and} \quad \overline{\mathcal{Z}_{\mathfrak{g}}} = \overline{\mu}_L^{-1}(\mathcal{S}).$$

Each diagram is a fibrewise compactification.

Consider the two diagrams

• The former is obtained by pulling the latter back along the inclusion $S \to \mathfrak{g}$. In other words, the former is the restriction of the latter to the Poisson slices

$$\mathcal{Z}_{\mathfrak{g}} = \mu_L^{-1}(\mathcal{S}) \quad \text{and} \quad \overline{\mathcal{Z}_{\mathfrak{g}}} = \overline{\mu}_L^{-1}(\mathcal{S}).$$

- Each diagram is a fibrewise compactification.
- The compactifying spaces $\overline{Z_g}$ and $\overline{G \times S}$ are related to *Hessenberg* varieties.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

• (e, h, f) our principal \mathfrak{sl}_2 -triple

- (e, h, f) our principal \mathfrak{sl}_2 -triple
- \mathfrak{b} unique Borel subalgebra of \mathfrak{g} containing f

- (e, h, f) our principal \mathfrak{sl}_2 -triple
- \mathfrak{b} unique Borel subalgebra of \mathfrak{g} containing f
- $\blacksquare \ \mathfrak{u} := [\mathfrak{b}, \mathfrak{b}]$ nilradical of \mathfrak{b}

- (e, h, f) our principal \mathfrak{sl}_2 -triple
- \mathfrak{b} unique Borel subalgebra of \mathfrak{g} containing f
- $\mathfrak{u} := [\mathfrak{b}, \mathfrak{b}]$ nilradical of \mathfrak{b}
- $\blacksquare \mathfrak{m}$ annihilator of $[\mathfrak{u},\mathfrak{u}]$ with respect to the Killing form
The basics

- (e, h, f) our principal \mathfrak{sl}_2 -triple
- \mathfrak{b} unique Borel subalgebra of \mathfrak{g} containing f
- ${\color{black}\bullet}\ {\mathfrak u}:=[{\mathfrak b},{\mathfrak b}]$ nilradical of ${\mathfrak b}$
- m annihilator of [u, u] with respect to the Killing form
 Note: m is B-invariant, where B is the Borel subgroup of G with Lie algebra b.

The basics

- (e, h, f) our principal \mathfrak{sl}_2 -triple
- \mathfrak{b} unique Borel subalgebra of \mathfrak{g} containing f
- $\blacksquare \ \mathfrak{u} := [\mathfrak{b}, \mathfrak{b}]$ nilradical of \mathfrak{b}
- m annihilator of [u, u] with respect to the Killing form
 Note: m is B-invariant, where B is the Borel subgroup of G with Lie algebra b.
- \mathfrak{m} is a *B*-module \rightsquigarrow *G*-equivariant vector bundle $G \times_B \mathfrak{m} \to G/B$

イロト イロト イミト イミト

The basics

- (e, h, f) our principal \mathfrak{sl}_2 -triple
- \mathfrak{b} unique Borel subalgebra of \mathfrak{g} containing f
- ${\scriptstyle \blacksquare} \ \mathfrak{u} := [\mathfrak{b}, \mathfrak{b}]$ nilradical of \mathfrak{b}
- \mathfrak{m} annihilator of $[\mathfrak{u},\mathfrak{u}]$ with respect to the Killing form

Note: \mathfrak{m} is *B*-invariant, where *B* is the Borel subgroup of *G* with Lie algebra \mathfrak{b} .

• \mathfrak{m} is a *B*-module \rightsquigarrow *G*-equivariant vector bundle $G \times_B \mathfrak{m} \to G/B$

Proposition

(i) $G \times_B \mathfrak{m}$ is naturally a Poisson variety.

The basics

- (e, h, f) our principal \mathfrak{sl}_2 -triple
- \mathfrak{b} unique Borel subalgebra of \mathfrak{g} containing f
- $\blacksquare \ \mathfrak{u} := [\mathfrak{b}, \mathfrak{b}]$ nilradical of \mathfrak{b}
- \mathfrak{m} annihilator of $[\mathfrak{u},\mathfrak{u}]$ with respect to the Killing form
 - **Note:** \mathfrak{m} is *B*-invariant, where *B* is the Borel subgroup of *G* with Lie algebra \mathfrak{b} .
- \mathfrak{m} is a *B*-module \rightsquigarrow *G*-equivariant vector bundle $G \times_B \mathfrak{m} \rightarrow G/B$

Proposition

- (i) $G \times_B \mathfrak{m}$ is naturally a Poisson variety.
- (ii) The action $G \circlearrowright G \times_B \mathfrak{m}$ is Hamiltonian with moment map

$$\nu: G \times_B \mathfrak{m} \to \mathfrak{g}, \quad [g, x] \mapsto \mathrm{Ad}_g(x).$$

イロト イロト イミト イミト

Definition

The fibres of ν are called *Hessenberg varieties*.

Definition

The fibres of ν are called *Hessenberg varieties*.

Proposition

(i) If $x \in \mathfrak{g}$, then $\nu^{-1}(x)$ is projective.

Definition

The fibres of ν are called *Hessenberg varieties*.

Proposition

- (i) If $x \in \mathfrak{g}$, then $\nu^{-1}(x)$ is projective.
- (ii) If x ∈ g is regular and semisimple, then ν⁻¹(x) is a smooth toric variety whose cohomology ring H*(ν⁻¹(x); C) carries Tymoczko's dot action of W := N_G(T)/T.

Definition

The fibres of ν are called *Hessenberg varieties*.

Proposition

- (i) If $x \in \mathfrak{g}$, then $\nu^{-1}(x)$ is projective.
- (ii) If x ∈ g is regular and semisimple, then ν⁻¹(x) is a smooth toric variety whose cohomology ring H*(ν⁻¹(x); C) carries Tymoczko's dot action of W := N_G(T)/T.
- (iii) If $x \in \mathfrak{g}$ is regular and nilpotent, then $\nu^{-1}(x)$ is isomorphic to the Peterson variety.

Hessenberg varieties

Relation to the wonderful compactification

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ④ ○ ○

Relation to the wonderful compactification

• Consider the Poisson slice $\mathcal{H}_{\mathcal{S}} := \nu^{-1}(\mathcal{S})$, i.e.

Hessenberg varieties

Relation to the wonderful compactification

• Consider the Poisson slice $\mathcal{H}_{\mathcal{S}} := \nu^{-1}(\mathcal{S})$, i.e.

• Recall the Poisson slice $\overline{\mathcal{Z}}_{\mathfrak{g}} \subseteq \overline{\mathcal{G} \times \mathcal{S}}$.

Hessenberg varieties

Relation to the wonderful compactification

• Consider the Poisson slice $\mathcal{H}_{\mathcal{S}} := \nu^{-1}(\mathcal{S})$, i.e.

• Recall the Poisson slice $\overline{\mathcal{Z}}_{\mathfrak{g}} \subseteq \overline{\mathcal{G} \times \mathcal{S}}$.

Theorem (Bălibanu)

There is a canonical isomorphism $\mathcal{H}_{\mathcal{S}} \xrightarrow{\cong} \overline{\mathcal{Z}}_{\mathfrak{g}}$ of Poisson varieties over \mathcal{S} .

Hessenberg varieties

Relation to the wonderful compactification

• Consider the Poisson slice $\mathcal{H}_{\mathcal{S}} := \nu^{-1}(\mathcal{S})$, i.e.

• Recall the Poisson slice $\overline{\mathcal{Z}}_{\mathfrak{g}} \subseteq \overline{\mathcal{G} \times \mathcal{S}}$.

Theorem (Bălibanu)

There is a canonical isomorphism $\mathcal{H}_{\mathcal{S}} \xrightarrow{\cong} \overline{\mathcal{Z}}_{\mathfrak{g}}$ of Poisson varieties over \mathcal{S} .

Corollary

If $x \in S$, then there is a canonical variety isomorphism $\nu^{-1}(x) \cong \overline{G_x}$.

Some new results

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Hessenberg varieties

Some new results

Recall that we have $\nu : G \times_B \mathfrak{m} \longrightarrow \mathfrak{g}$ and $\overline{\mu}_L : \overline{G \times S} \longrightarrow \mathfrak{g}$.

 $G \times_B \mathfrak{m} \xrightarrow{\cong} \overline{G \times S}$

g

 $\overline{\mu}_{I}$

 ν

Hessenberg varieties

of

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● の Q ()

Some new results

Recall that we have
$$\nu : G \times_B \mathfrak{m} \longrightarrow \mathfrak{g}$$
 and $\overline{\mu}_L : \overline{G \times S} \longrightarrow \mathfrak{g}$.

Theorem (C.–Röser)

(i) There is a canonical isomorphism

Poisson varieties over \mathfrak{g} .

Some new results

Recall that we have
$$\nu : G \times_B \mathfrak{m} \longrightarrow \mathfrak{g}$$
 and $\overline{\mu}_L : \overline{G \times S} \longrightarrow \mathfrak{g}$.

Theorem (C.–Röser)

(i) There is a canonical isomorphism

Poisson varieties over \mathfrak{g} .

(ii) The pullback of this isomorphism to S is Bălibanu's isomorphism $\mathcal{H}_S \cong \overline{\mathcal{Z}}_{\mathfrak{g}}$. In other words, Bălibanu's isomorphism is obtained by restricting our isomorphism to the Poisson slices \mathcal{H}_S and $\overline{\mathcal{Z}}_{\mathfrak{g}}$.

Some new results

Recall that we have
$$\nu : G \times_B \mathfrak{m} \longrightarrow \mathfrak{g}$$
 and $\overline{\mu}_L : \overline{G \times S} \longrightarrow \mathfrak{g}$.

Theorem (C.–Röser)

(i) There is a canonical isomorphism

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

크

Poisson varieties over \mathfrak{g} .

(ii) The pullback of this isomorphism to S is Bălibanu's isomorphism $\mathcal{H}_{S} \cong \overline{\mathcal{Z}_{g}}$. In other words, Bălibanu's isomorphism is obtained by restricting our isomorphism to the Poisson slices \mathcal{H}_{S} and $\overline{\mathcal{Z}_{g}}$.

Corollary

If $x \in \mathfrak{g}$, then there is a canonical closed embedding $\nu^{-1}(x) \to \overline{G}$.