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Essential ingredients

m g dim-n < oo, semisimple, over C

m (-, :g®cg— C Killing form

Note: g = g* via the Killing form = g is Poisson
T = (e, h,f) € g3 sly-triple

S; = e + gr Slodowy slice

Fact: S- is a Poisson transversal in g. (*)

G adjoint group of g

X Poisson variety equipped with a Hamiltonian action of G and
moment map p: X — g

Note: By virtue of (*), u~1(S;) is a Poisson transversal in X.

The Poisson variety 1~ 1(S;) is called a Poisson slice.
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Properties of Poisson slices

(i) The Poisson slice 1 ~1(S;) is transverse to the G-orbits in X.

(ii) There are canonical Poisson variety isomorphisms

(X x (Gx8) ) G=pHS)2X [l Uy.

(iii) If X is symplectic, then u~1(S,) is a symplectic subvariety of X.

(iv) If X is log symplectic, then each irreducible component of 1 =1(S;)
is a log symplectic subvariety of X.
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Examples of Poisson slices

Example #1

m O C g adjoint orbit of G

m The isomorphism g = g* G-equivariantly identifies O with a
coadjoint orbit.
= O is symplectic; the G-action on O is Hamiltonian with
moment map the inclusion p: O < g.

m 7 sly-triple ~~ u71(S,) = O NS, Poisson slice
m ONS; is a symplectic subvariety of O.

In what follows, we fix a principal sly-triple 7 = (e, h, f) and set S := S;.
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m 7°G = G X g via the left trivialization and Killing form
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Examples of Poisson slices

Example #2

m 7°G = G X g via the left trivialization and Killing form
B(GXG)OG~(GXxG)OT*G=Gxg

m Moment map 1 = (uur, ur) : G x g — g g, p(g, &) = (Adg(€), =€)
m Consider the principal slp-triple ((e, —e), (h, h), (f,—f)) and
associated Slodowy slice S x (=S) C g & g.

pHSx (=8))={(g,£) € G xg:£€S and g € G¢}

This symplectic subvariety of T*G is called the universal centralizer
and denoted Z,.
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Examples of Poisson slices

Example #3

BG=({e} xG)OT*G=Gxg

m Moment map ug: G xg— g, ur(g,§) = —¢

m Consider the principal sly-triple (—e, h, —f) and associated Slodowy
slice =S C g.

m 1! (—S) = G x S, a symplectic subvariety of T*G
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A definition

m Consider the Grassmannian Gr(n, g & g).
m(GxG)OGr(ng®g)

m We have a (G x G)-equivariant locally closed immersion
~v: G — Gr(n,g® g) defined by

1(g) = {(Adg(€),€) - € € g}

m G := closure of v(G) in Gr(n,g @ g)
Note: G is a (G x G)-equivariant projective compactification of G,
called the wonderful compactification.

Theorem (De Concini—Procesi)

The projective variety G is smooth, and D := G \ G is a normal crossings
divisor in G.



The wonderful compactification
[¢] le]e]e}

The log cotangent bundle



The wonderful compactification
[¢] le]e]e}

The log cotangent bundle

m 7 — Gr(n,g @ g) tautological bundle



The wonderful compactification
[¢] le]e]e}

The log cotangent bundle

m 7 — Gr(n,g @ g) tautological bundle

T*G —— T*G(log(D)) —— T

" | | |

G G Gr(n,g®g)




The wonderful compactification
[¢] le]e]e}

The log cotangent bundle

m 7 — Gr(n,g @ g) tautological bundle

T*G —— T*G(log(D)) —— T

" | | |

G G Gr(n,g®g)
m T*G(log(D)) is called the log cotangent bundle of (G, D).




The wonderful compactification
[¢] le]e]e}

The log cotangent bundle

m 7 — Gr(n,g @ g) tautological bundle

TG —— T*G(log(D)) — T
! | |
G G Gr(n,g®g)
m T*G(log(D)) is called the log cotangent bundle of (G, D).

(i) T*G(log(D)) is a log symplectic variety.




The wonderful compactification
[¢] le]e]e}

The log cotangent bundle

m 7 — Gr(n,g @ g) tautological bundle

TG —— T*G(log(D)) — T
! | |
G G Gr(n,g®g)
m T*G(log(D)) is called the log cotangent bundle of (G, D).

(i) T*G(log(D)) is a log symplectic variety.

(i) T*G is the unique open dense symplectic leaf in T*G(log(D)).



The wonderful compactification
[¢] le]e]e}

The log cotangent bundle

m 7 — Gr(n,g @ g) tautological bundle

T*G —— T*G(log(D)) —— T

" | | |

G G Gr(n,g®g)

m T*G(log(D)) is called the log cotangent bundle of (G, D).

(i) T*G(log(D)) is a log symplectic variety.
(i) T*G is the unique open dense symplectic leaf in T*G(log(D)).
(iii) The action of G x G 025 canonically lifts to a Hamiltonian
(G x G)-action on T*G(log(D)), and there is an explicit moment
map 7i = (7i,, fig) : T*G(log(D)) = g & g.
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Further examples of Poisson slices

Example #2'

= (G x G) O T*G(log(D))

m Moment map 7z = (7, fig) : T*G(log(D)) — g @ g

m Consider the Slodowy slice S X (=S) C g® g.

B I(Sx(=8)={(V,£)e Gxg:£€Sand V€ G}

m This log symplectic subvariety of T*G(log(D)) is denoted by Z,.



The wonderful compactification
[e]o]e] lo}

Further examples of Poisson slices



The wonderful compactification
[e]o]e] lo}

Further examples of Poisson slices

Example #3’

B G=({e} x G) O T*G(log(D))



The wonderful compactification
[e]o]e] lo}

Further examples of Poisson slices

Example #3’

m G = ({e} x G) O T*G(log(D))

m Moment map fig : T*G(log(D)) — g



The wonderful compactification
[e]o]e] lo}

Further examples of Poisson slices

Example #3’
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m Moment map fig : T*G(log(D)) — g
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Further examples of Poisson slices

Example #3’

m G =({e} x G) O T*G(log(D))
m Moment map fig : T*G(log(D)) — g
m Consider the Slodowy slice —S C g.

m 7' (—S) = G x S, a log symplectic subvariety of T*G(log(D))
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Connecting the various examples

m Consider the two diagrams

GxS — GxS

2y — Z,
NS N A
S g

m The former is obtained by pulling the latter back along the inclusion
S — g. In other words, the former is the restriction of the latter to
the Poisson slices

Zy=p ' (S) and Zg=7;Y(S).

m Each diagram is a fibrewise compactification.

m The compactifying spaces Z; and G x S are related to Hessenberg
varieties.
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The basics

m (e, h, f) our principal sl-triple

m b unique Borel subalgebra of g containing f

m u = [b, b] nilradical of b

m m annihilator of [u,u] with respect to the Killing form

Note: m is B-invariant, where B is the Borel subgroup of G
with Lie algebra b.

m m is a B-module ~ G-equivariant vector bundle G xgm — G/B

(i) G xgmis naturally a Poisson variety.
(i) The action G © G xg m is Hamiltonian with moment map

v:Gxgm—g, [g,x]— Adg(x).



Hessenberg varieties
[e] Tele]

A definition and some properties



Hessenberg varieties
[e] Tele]

A definition and some properties

The fibres of v are called Hessenberg varieties.



Hessenberg varieties
[e] Tele]

A definition and some properties

The fibres of v are called Hessenberg varieties.

Proposition

(i) If x € g, then v71(x) is projective.



Hessenberg varieties
[e] Tele]

A definition and some properties

The fibres of v are called Hessenberg varieties.

Proposition

(i) If x € g, then v71(x) is projective.

(i) If x € g is regular and semisimple, then v~1(x) is a smooth toric
variety whose cohomology ring H*(v~1(x); C) carries Tymoczko's
dot action of W := Ng(T)/T.



Hessenberg varieties
[e] Tele]

A definition and some properties

The fibres of v are called Hessenberg varieties.

Proposition

(i) If x € g, then v71(x) is projective.

(i) If x € g is regular and semisimple, then v~1(x) is a smooth toric
variety whose cohomology ring H*(v~1(x); C) carries Tymoczko's
dot action of W := Ng(T)/T.

(iii) If x € g is regular and nilpotent, then v~1(x) is isomorphic to the
Peterson variety.
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Relation to the wonderful compactification

Hs —— G xgm
m Consider the Poisson slice Hs := v~1(S), i.e. J{ iy

S— g

m Recall the Poisson slice Z; C G x S.

Theorem (Bilibanu)
Hs ——— Z,

There is a canonical isomorphism \ / of Poisson
S

varieties over S.

Corollary

If x € S, then there is a canonical variety isomorphism v~1(x) 2 G,.
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Some new results

Recall that we have v: G xgm —s gand 7i, : G x S — g.

Theorem (C.—Roser)

Gme—>G><S

(i) There is a canonical isomorphism \ / of

Poisson varieties over g.

(i) The pullback of this isomorphism to S is Bélibanu's isomorphism
Hs = Z4. In other words, Bdlibanu's isomorphism is obtained by
restricting our isomorphism to the Poisson slices Hs and Z;.

Corollary

If x € g, then there is a canonical closed embedding v~1(x) — G.
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