Combinatorics and real lifts of bitangents to tropical plane quartics

Maria Angelica Cueto

Department of Mathematics
The Ohio State University

Joint work with Hannah Markwig (U. Tuebingen, Germany)

Algebraic Geometry Seminar UC Davis
Today’s focus: two classical result in Algebraic Geometry

Plücker (1834): A small quartic curve in $\mathbb{P}^2_{\mathbb{C}}$ has exactly 28 bitangent lines.

Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $V_{\mathbb{R}}(f) \subset \mathbb{P}^2_{\mathbb{R}}$).

The real curve

- 4 ovals
- 1 oval
- 3 ovals
- 2 nested ovals
- 2 non-nested ovals
- empty curve

Trott: 28 totally real bitangents.

Salmon: 28 real, 24 totally real.

ISSUE: Plücker’s result fails tropically! But we can fix it.

GOAL: Use tropical geometry to find bitangents over $\mathbb{C}_\{t\}$ and $\mathbb{R}_\{t\}$.
Today’s focus: two classical result in Algebraic Geometry

Plücker (1834): A smooth quartic curve in $\mathbb{P}^2_\mathbb{C}$ has exactly 28 bitangent lines.

Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $\mathbb{V}(f) \subset \mathbb{P}^2_\mathbb{R}$).

The real curve

- 4 ovals
- 1 oval
- 3 ovals
- 2 nested ovals
- 2 non-nested ovals
- empty curve

Trott: 28 totally real bitangents.

Salmon: 28 real, 24 totally real.

ISSUE: Plücker’s result fails tropically! But we can fix it.

GOAL: Use tropical geometry to find bitangents over $\mathbb{C}\{t\}$ and $\mathbb{R}\{t\}$.
Today’s focus: two classical result in Algebraic Geometry

Plücker (1834): A sm. quartic curve in $\mathbb{P}^2_{\mathbb{C}}$ has exactly 28 bitangent lines.

Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $\mathcal{V}_R(f) \subset \mathbb{P}^2_R$).

<table>
<thead>
<tr>
<th>The real curve</th>
<th>Real bitangents</th>
<th>The real curve</th>
<th>Real bitangents</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ovals</td>
<td>28</td>
<td>1 oval</td>
<td>4</td>
</tr>
<tr>
<td>3 ovals</td>
<td>16</td>
<td>2 nested ovals</td>
<td>4</td>
</tr>
<tr>
<td>2 non-nested ovals</td>
<td>8</td>
<td>empty curve</td>
<td>4</td>
</tr>
</tbody>
</table>
Today’s focus: two classical result in Algebraic Geometry

Plücker (1834): A smooth quartic curve in $\mathbb{P}^2_\mathbb{C}$ has exactly 28 bitangent lines.

Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $\mathcal{V}_\mathbb{R}(f) \subset \mathbb{P}^2_\mathbb{R}$).

<table>
<thead>
<tr>
<th>The real curve</th>
<th>Real bitangents</th>
<th>The real curve</th>
<th>Real bitangents</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ovals</td>
<td>28</td>
<td>1 oval</td>
<td>4</td>
</tr>
<tr>
<td>3 ovals</td>
<td>16</td>
<td>2 nested ovals</td>
<td>4</td>
</tr>
<tr>
<td>2 non-nested ovals</td>
<td>8</td>
<td>empty curve</td>
<td>4</td>
</tr>
</tbody>
</table>

Trott: 28 totally real bitangents.

Salmon: 28 real, 24 totally real.
Today’s focus: two classical result in Algebraic Geometry

Plücker (1834): A sm. quartic curve in $\mathbb{P}_\mathbb{C}^2$ has exactly 28 bitangent lines.

Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $\mathcal{V}_\mathbb{R}(f) \subset \mathbb{P}_\mathbb{R}^2$).

<table>
<thead>
<tr>
<th>The real curve</th>
<th>Real bitangents</th>
<th>The real curve</th>
<th>Real bitangents</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ovals</td>
<td>28</td>
<td>1 oval</td>
<td>4</td>
</tr>
<tr>
<td>3 ovals</td>
<td>16</td>
<td>2 nested ovals</td>
<td>4</td>
</tr>
<tr>
<td>2 non-nested ovals</td>
<td>8</td>
<td>empty curve</td>
<td>4</td>
</tr>
</tbody>
</table>

Trott: 28 totally real bitangents.

Salmon: 28 real, 24 totally real.

ISSUE: Plücker’s result fails tropically! But we can fix it.
Today’s focus: two classical results in Algebraic Geometry

Plücker (1834): A smooth quartic curve in $\mathbb{P}^2_{\mathbb{C}}$ has exactly 28 bitangent lines.

Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $\mathcal{V}_\mathbb{R}(f) \subset \mathbb{P}^2_{\mathbb{R}}$).

<table>
<thead>
<tr>
<th>The real curve</th>
<th>Real bitangents</th>
<th>The real curve</th>
<th>Real bitangents</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ovals</td>
<td>28</td>
<td>1 oval</td>
<td>4</td>
</tr>
<tr>
<td>3 ovals</td>
<td>16</td>
<td>2 nested ovals</td>
<td>4</td>
</tr>
<tr>
<td>2 non-nested ovals</td>
<td>8</td>
<td>empty curve</td>
<td>4</td>
</tr>
</tbody>
</table>

Trott: 28 totally real bitangents.
Salmon: 28 real, 24 totally real.

ISSUE: Plücker’s result fails tropically! But we can fix it.

GOAL: Use tropical geometry to find bitangents over $\mathbb{C}\{t\}$ and $\mathbb{R}\{t\}$.
28 bitangent lines to sm. plane quartics over $\mathbb{K} = \mathbb{C}((t))$.

Plücker-Zeuthen: A sm. quartic curve in \mathbb{P}_K^2 has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)
Plücker-Zeuthen: A smooth quartic curve in \mathbb{P}^2_K has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

- What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in \mathbb{R}^2 has infinitely many tropical bitangents (in 7 equivalence classes.)

Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

- Two independent answers (with different approaches):
 - Len-Markwig (2020): We have an algorithm to reconstruct the 4 classical bitangents $\ell = y + mx + nx$ and the tangencies for each class under mild genericity conditions.

Question 1: What is a tropical bitangent line? Tropical tangencies?

Question 2: What is a tropical bitangent class?

Answer: Continuous translations preserving bitangency properties.
28 bitangent lines to sm. plane quartics over $\mathbb{K} = \mathbb{C}((t))$.

Plücker-Zeuthen: A sm. quartic curve in \mathbb{P}_K^2 has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

- What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in \mathbb{R}^2 has infinitely many tropical bitangents (in 7 equivalence classes.)

Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

Question 1: What is a tropical bitangent line? Tropical tangencies?

Question 2: What is a tropical bitangent class?

Answer: Continuous translations preserving bitangency properties.
Plücker-Zeuthen: A sm. quartic curve in \mathbb{P}^2_K has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

- What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in \mathbb{R}^2 has infinitely many tropical bitangents (in 7 equivalence classes.)

Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

- Two independent answers (with different approaches):

Len-Markwig (2020): We have an algorithm to reconstruct the 4 classical bitangents $\ell = y + m + nx$ and the tangencies for each class under mild genericity conditions.
Plücker-Zeuthen: A smooth quartic curve in \mathbb{P}^2_K has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

- What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in \mathbb{R}^2 has infinitely many tropical bitangents (in 7 equivalence classes.)

Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

- Two independent answers (with different approaches):

Len-Markwig (2020): We have an algorithm to reconstruct the 4 classical bitangents $\ell = y + m + nx$ and the tangencies for each class under mild genericity conditions.

Question 1: What is a tropical bitangent line? Tropical tangencies?
28 bitangent lines to sm. plane quartics over $\mathbb{K} = \mathbb{C}((t))$.

Plücker-Zeuthen: A sm. quartic curve in \mathbb{P}^2_K has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

• What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in \mathbb{R}^2 has infinitely many tropical bitangents (in 7 equivalence classes.)

Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

• Two independent answers (with different approaches):

Len-Markwig (2020): We have an algorithm to reconstruct the 4 classical bitangents $\ell = y + m + nx$ and the tangencies for each class under mild genericity conditions.

Question 1: What is a tropical bitangent line? Tropical tangencies?

Question 2: What is a tropical bitangent class?

Answer: Continuous translations preserving bitangency properties.
Theorem: There are 28 classical bitangents to smooth plane quartics over $\mathbb{K} = \mathbb{C}((t))$ but 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2.

Tropical smooth quartic = dual to unimodular triangulation of Δ^2 of side length 4.

\Rightarrow duality gives a genus 3 planar metric graph.
Theorem: There are 28 classical bitangents to smooth plane quartics over $\mathbb{K} = \mathbb{C}((t))$. But 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2.

Tropical smooth quartic \Rightarrow dual to unimodular triangulation of Δ_2 of side length 4.

$duality$ gives a genus 3 planar metric graph.
28 bitangent lines to sm. plane quartics over $K=\mathbb{C}((t))$.

Theorem: There are 28 classical bitangents to sm. plane quartics over K but 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2.

Trop. sm. quartic = dual to unimodular triangulation of Δ_2 of side length 4.

$\sim \sim$ duality gives a genus 3 planar metric graph.

Possible cases:
28 bitangent lines to sm. plane quartics over $\mathbb{K} = \overline{\mathbb{C}}((t))$.

Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} but 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2.

Trop. sm. quartic \Rightarrow dual to unimodular triangulation of Δ_2 of side length 4.

\Rightarrow duality gives a genus 3 planar metric graph.

Possible cases: [BLMPR '16]
28 bitangent lines to sm. plane quartics over $\mathbb{K} = \mathbb{C}((t))$.

Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} but 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2.

Trop. sm. quartic = dual to unimodular triangulation of Δ_2 of side length 4.

\mapsto duality gives a *genus 3 planar metric graph.*

Possible cases:

[BLOMP '16]

Basic facts about general tropical plane curves:

(1) Interpolation for general pts in \mathbb{R}^2 holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points, ...)

(2) General trop. curves intersect properly and as expected (Trop. Bézout.)
Basic facts about general tropical plane curves:

(1) Interpolation for general pts in \mathbb{R}^2 holds tropically (Mikhalkin’s Corresp.)
(unique line through 2 gen. points, unique conic through 5 gen. points,...)
Basic facts about general tropical plane curves:

(1) Interpolation for general pts in \mathbb{R}^2 holds tropically (Mikhalkin’s Corresp.)
(unique line through 2 gen. points, unique conic through 5 gen. points, . . .)

(2) General trop. curves intersect properly and as expected (Trop. Bézout.)
Basic facts about general tropical plane curves:

(1) Interpolation for general pts in \mathbb{R}^2 holds tropically (Mikhalkin’s Corresp.)
(unique line through 2 gen. points, unique conic through 5 gen. points, . . .)

(2) General trop. curves intersect properly and as expected (Trop. Bézout.)
Basic facts about general tropical plane curves:

(1) Interpolation for general pts in \mathbb{R}^2 holds tropically (Mikhalkin’s Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points, . . .)

(2) General trop. curves intersect properly and as expected (Trop. Bézout.)

Non-general case: Replace usual intersection with stable intersection.

$$C_1 \cap_{st} C_2 := \lim_{\varepsilon \to (0,0)} C_1 \cap (C_2 + \varepsilon).$$
Tropical bitangent Lines to tropical smooth quartics in \mathbb{R}^2:

Definition: \(\Lambda \) is a **bitangent line** for quartic \(\Gamma \) if and only if:

(i) \(\Lambda \cap \Gamma \) has 2 connected components of stable intersection multiplicity 2 each; or

(ii) \(\Lambda \cap \Gamma \) is connected and its stable intersection multiplicity is 4.
Tropical bitangent Lines to tropical smooth quartics in \mathbb{R}^2:

Definition: $\Lambda = \rightarrow$ is a **bitangent line** for quartic Γ if and only if:

(i) $\Lambda \cap \Gamma$ has 2 connected components of stable intersection multiplicity 2 each; or

(ii) $\Lambda \cap \Gamma$ is connected and its stable intersection multiplicity is 4.

[L-M ’20]: 6 local tangency types between Λ and Γ (up to S_3-symmetry).

Stable intersection (2 pts) vs. Midpoint tangency vs. Proper intersection

1. \(\begin{array}{c}
\bullet 2 \text{ or } 4 \end{array} \)

2. \(\begin{array}{c}
\bullet 2 \text{ or } 4 \end{array} \)

3a. \(\begin{array}{c}
2 \end{array} \)

3b. \(\begin{array}{c}
2 \text{ or } 4 \end{array} \)

3c. \(\begin{array}{c}
2 \end{array} \)

4. \(\begin{array}{c}
2 \text{ or } 4 \end{array} \)

5a. \(\begin{array}{c}
2 \end{array} \)

5b. \(\begin{array}{c}
4 \end{array} \)

6a. \(\begin{array}{c}
2 \end{array} \)

6b. \(\begin{array}{c}
4 \end{array} \)
Tropical bitangent Lines to tropical smooth quartics in \mathbb{R}^2:

Definition: Λ is a **bitangent line** for quartic Γ if and only if:

(i) $\Lambda \cap \Gamma$ has 2 connected components of stable intersection multiplicity 2 each; or

(ii) $\Lambda \cap \Gamma$ is connected and its stable intersection multiplicity is 4.

[L-M '20]: 6 local tangency types between Λ and Γ (up to S_3-symmetry).

- **Stable intersection (2 pts)**
- **Midpoint tangency**
- **Proper intersection**

\[\begin{align*}
(1) & \quad \begin{array}{c}
\text{2 or 4} \\
\end{array} \\
(2) & \quad \begin{array}{c}
\text{2 or 4} \\
\end{array} \\
(3a) & \quad 2 \\
(3b) & \quad 2 \text{ or 4} \\
(3c) & \quad 2 \\
(4) & \quad 2 \text{ or 4} \\
(5a) & \quad 2 \\
(5b) & \quad 4 \\
(6a) & \quad 2 \\
(6b) & \quad 4 \\
\end{align*}\]

- **Star shape**
28 classical bitangents vs. 7 tropical bitangent classes.

Zharkov (2010): Trop. theta char on a metric graph $\Gamma \leftrightarrow H_1(\Gamma, \mathbb{Z}/2\mathbb{Z})$.
$2\theta_i \sim K_\Gamma = \sum_{x \in \Gamma} (\text{val}(x) - 2)x$; L_0 non-effective $\leftrightarrow 0$; $2^{b_1(\Gamma)-1}$ effectives.
28 classical bitangents vs. 7 tropical bitangent classes.

[BLMPR '16]: 7 effective trop. theta characteristics on skeleton of tropical sm. quartic Γ in \mathbb{R}^2 produce 7 tropical bitangent lines Λ to Γ.
28 classical bitangents vs. 7 tropical bitangent classes.

[BLMPR '16]: Equiv. class = move Λ continuously, remaining bitangent.

[L-M '18, J-M '20]: Each bitangent class lifts to 4 classical bitangents.
C.-Markwig (2020): There are 39 shapes of bitangent classes (up to symm.) They are min-tropical convex sets. Liftings come from vertices. Over \(\mathbb{R} \): lifttings on each class are either all (totally) real or none is real.
THM 1: Classification into 39 bitangent classes (up to S_3-symmetry)

Bitangent line \leftrightarrow location of its vertex (standard duality $= -$vertex)
Step 1: Identify edge directions for Γ involved in local tangencies.
Proof sketch of Combinatorial classification Theorem

Step 1: Identify edge directions for Γ involved in local tangencies.

Step 2: Identify local moves of the vertex of Λ that preserve one tangency.
Proof sketch of Combinatorial classification Theorem

Step 1: Identify edge directions for Γ involved in local tangencies.

Step 2: Identify local moves of the vertex of Λ that preserve one tangency.

Step 3: Interpret S_3-tangency types from cells in the Newton subdivision of $q(x, y) = \sum_{i,j} a_{i,j} x^i y^j$ with $\text{Trop}(\mathcal{V}(q)) = \Gamma$ and combine local moves.
Proof sketch of Combinatorial classification Theorem

Step 1: Identify edge directions for Γ involved in local tangencies.

Step 2: Identify local moves of the vertex of Λ that preserve one tangency

Step 3: Interpret S_3-tangency types from cells in the Newton subdivision.

Step 4: Classify the shapes using 3 properties of its members:

<table>
<thead>
<tr>
<th>max. mult.</th>
<th>proper</th>
<th>min. conn. comp.</th>
<th>shapes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>yes</td>
<td>1</td>
<td>(II)</td>
</tr>
<tr>
<td>4</td>
<td>no</td>
<td>1</td>
<td>(C), (D), (L), (L'), (O), (P), (Q), (R), (S)</td>
</tr>
<tr>
<td>2</td>
<td>yes/no</td>
<td>2</td>
<td>rest</td>
</tr>
</tbody>
</table>

For the last row, refine using dimension and boundedness of its top cell.
Sample refinement: max mult. 2, dim=2 and bounded top-cell.
Sample refinement: max mult. 2, dim=2 and bounded top-cell.

• Since 2-cell is bounded, the tangency points for any member Λ occur in relative interior of two different ends of Λ (e.g. horizontal and diagonal).
Sample refinement: max mult. 2, dim=2 and bounded top-cell.

- Since 2-cell is bounded, the tangency points for any member \(\Lambda \) occur in relative interior of \textbf{two different ends} of \(\Lambda \) (e.g. horizontal and diagonal).
- \(\text{dim} \ 2 \) means we can find tangencies at two bounded edges \(e, e' \) of \(\Gamma \), both in the boundary of the conn. component of \(\mathbb{R}^2 \setminus \Gamma \) dual to \(x^2 \) (because \(e \) and \(e' \) are bridges of \(\Gamma \), so metric graph is \(\circ - \circ - \circ \)).
Sample refinement: max mult. 2, dim=2 and bounded top-cell.

- Since 2-cell is bounded, the tangency points for any member Λ occur in relative interior of two different ends of Λ (e.g. horizontal and diagonal).
- dim 2 means we can find tangencies at two bounded edges e, e' of Γ, both in the boundary of the conn. component of $\mathbb{R}^2 \setminus \Gamma$ dual to x^2 (because e and e' are bridges of Γ, so metric graph is $\circ - \circ$).
- Draw parallelogram \mathcal{P} with horizontal and diagonal lines through endpoints of e and e', respectively; analyze $\mathcal{P} \cap e$ and $\mathcal{P} \cap e'$
Sample refinement: max mult. 2, dim=2 and bounded top-cell.

- Since 2-cell is bounded, the tangency points for any member Λ occur in relative interior of two different ends of Λ (e.g. horizontal and diagonal).
- dim 2 means we can find tangencies at two bounded edges e, e' of Γ, both in the boundary of the conn. component of $\mathbb{R}^2 \setminus \Gamma$ dual to x^2 (because e and e' are bridges of Γ, so metric graph is \circlearrowright)
- Draw parallelogram \mathcal{P} with horizontal and diagonal lines through endpoints of e and e', respectively; analyze $\mathcal{P} \cap e$ and $\mathcal{P} \cap e'$.

<table>
<thead>
<tr>
<th>e' vs. e</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(W)</td>
<td>(X)</td>
<td>(Y)</td>
<td>(GG)</td>
<td>(EE)</td>
</tr>
<tr>
<td>(b)</td>
<td>$\tau_1(X)$</td>
<td>(Z)</td>
<td>(AA)</td>
<td>(HH)</td>
<td>(FF)</td>
</tr>
<tr>
<td>(c)</td>
<td>$\tau_1(Y)$</td>
<td>$\tau_1(Z)$</td>
<td>(BB)</td>
<td>(DD)</td>
<td>(CC)</td>
</tr>
</tbody>
</table>

$\tau_1: X \mapsto -X$, $Y \mapsto Y - X$ in \mathbb{R}^2

$(x \leftrightarrow z, y \leftrightarrow y$ in $\mathbb{P}^2)$
Partial Newton subdivisions for all 39 bitangent shapes:
Fix $K = \mathbb{C}\{t\}$ (complex Puiseux series), $K_R = \mathbb{R}\{t\}$ (real P. s.).
Fix $K = \mathbb{C}\{t\}$ (complex Puiseux series), $K_R = \mathbb{R}\{t\}$ (real Puiseux series).

- If $a = a_0 t^\alpha + h.o.t. \in K$, write $\bar{a} := a_0 = a t^{-\alpha}$ in \mathbb{C} (initial term).
Lifting tropical bitangents to classical bitangents to $\mathcal{V}(q)$

Fix $K = \mathbb{C}\{t\}$ (complex Puiseux series), $K_{\mathbb{R}} = \mathbb{R}\{t\}$ (real Puiseux series).

- If $a = a_0 t^\alpha + \text{h.o.t.} \in K$, write $\bar{a} := a_0 = \frac{a}{t^{-\alpha}}$ in \mathbb{C} (initial term).

- Assume no classical bitangent line ℓ to $\mathcal{V}(q) \subset (K^*)^2$ is vertical and all tangency points are in torus (if not, rotate and translate). Thus, $\ell: y + m + n x = 0$ with $m, n \in K^*$.

Question: When is ℓ tangent to $\mathcal{V}(q)$ at $p \in (K^*)^2$?

Answer: p satisfies $\ell = q = W = 0$, where $W = J(\ell, q)$ is the Wronskian.
Fix $K = \mathbb{C}\{\{t\}\}$ (complex Puiseux series), $K_R = \mathbb{R}\{\{t\}\}$ (real Puiseux series).

- If $a = a_0 t^\alpha + h.o.t. \in K$, write $\bar{a} := a_0 = a t^{-\alpha}$ in \mathbb{C} (initial term).

- Assume no classical bitangent line ℓ to $\mathcal{V}(q) \subset (K^*)^2$ is vertical and all tangency points are in torus (if not, rotate and translate). Thus,

$$\ell : y + m + n x = 0 \quad \text{with } m, n \in K^*.$$

Question: When is ℓ tangent to $\mathcal{V}(q)$ at $p \in (K^*)^2$?
Fix $K = \mathbb{C}\{t\}$ (complex Puiseux series), $K_{\mathbb{R}} = \mathbb{R}\{t\}$ (real Puiseux series).

• If $a = a_0 t^\alpha + h.o.t. \in K$, write $\bar{a} := a_0 = \frac{a t^{-\alpha}}{1}$ in \mathbb{C} (initial term).

• Assume no classical bitangent line ℓ to $\mathcal{V}(q) \subset (K^*)^2$ is vertical and all tangency points are in torus (if not, rotate and translate). Thus,

$$\ell: y + m + n x = 0 \quad \text{with } m, n \in K^*.$$

Question: When is ℓ tangent to $\mathcal{V}(q)$ at $p \in (K^*)^2$?

Answer: p satisfies $\ell = q = W = 0$, where $W = J(\ell, q)$ is the Wronskian.
Lifting tropical bitangents to classical bitangents to $\mathcal{V}(q)$

Fix $K = \mathbb{C}\{\{t\}\}$ (complex Puiseux series), $K_R = \mathbb{R}\{\{t\}\}$ (real P. s.)

- If $a = a_0 t^\alpha + h.o.t. \in K$, write $\bar{a} := a_0 = \overline{a t^{-\alpha}}$ in \mathbb{C} (initial term).

- Assume no classical bitangent line ℓ to $\mathcal{V}(q) \subset (K^*)^2$ is vertical and all tangency points are in torus (if not, rotate and translate). Thus,

$$\ell: y + m + n x = 0 \quad \text{with } m, n \in K^*.$$

Question: When is ℓ tangent to $\mathcal{V}(q)$ at $p \in (K^*)^2$?

Answer: p satisfies $\ell = q = W = 0$, where $W = J(\ell, q)$ is the Wronskian.

Prop. [L-M '20]: If $p = (b_0 t^{\alpha_0} + h.o.t, b_1 t^{\alpha_1} + h.o.t)$, then

(i) $-(\alpha_0, \alpha_1)$ is a trop. tangency pt. for $\Lambda := \text{Trop } \ell$ and $\Gamma := \text{Trop } \mathcal{V}(q)$.

(ii) The initials $\bar{q}, \bar{\ell}, \bar{W}$ from lowest valuation terms of q, ℓ, W vanish at the initial term $\bar{p} := (b_0, b_1)$. (Initial degener. vanish at \bar{p}!)
Fix $K = \mathbb{C}\{\{t\}\}$ (complex Puiseux series), $K_R = \mathbb{R}\{\{t\}\}$ (real Puiseux series).

- If $a = a_0 t^\alpha + h.o.t. \in K$, write $\bar{a} := a_0 = \overline{a t^{-\alpha}}$ in \mathbb{C} (initial term).

- Assume no classical bitangent line ℓ to $V(q) \subset (K^*)^2$ is vertical and all tangency points are in torus (if not, rotate and translate). Thus, $\ell : y + m + n x = 0$ with $m, n \in K^*$.

Question: When is ℓ tangent to $V(q)$ at $p \in (K^*)^2$?

Answer: p satisfies $\ell = q = W = 0$, where $W = J(\ell, q)$ is the Wronskian.

Prop. [L-M '20]: If $p = (b_0 t^{\alpha_0} + h.o.t, b_1 t^{\alpha_1} + h.o.t)$, then

(i) $-(\alpha_0, \alpha_1)$ is a trop. tangency pt. for $\Lambda := \text{Trop} \ell$ and $\Gamma := \text{Trop} V(q)$.

(ii) The initials $\bar{q}, \bar{\ell}, \bar{W}$ from lowest valuation terms of q, ℓ, W vanish at the initial term $\bar{p} := (b_0, b_1)$. ($\text{Initial degener. vanish at } \bar{p}!$)

Thm. [L-M '20]: We can use $\bar{q} = \bar{\ell} = \bar{W} = 0$ to find $(\bar{m}, \bar{n}, \bar{p}) \in (\mathbb{C}^*)^4$.

M.A. Cueto (Ohio State) Tropical Bitangents to Plane Quartics May 6th 2020 22 / 27
Lifting tropical bitangents to classical bitangents (cont)

$$ (\bar{m}, \bar{n}, \bar{p}) \text{ and } \bar{q} = \bar{l} = \bar{W} = 0 \rightsquigarrow (m, n, p) \text{ and } q = \ell = W = 0 $$
Lifting tropical bitangents to classical bitangents (cont)

$$(\bar{m}, \bar{n}, \bar{p}) \text{ and } \bar{q} = \bar{\ell} = \bar{W} = 0 \quad \overset{??}{\longrightarrow} \quad (m, n, p) \text{ and } q = \ell = W = 0$$

Multivariate Hensel’s Lemma: If $J_{x,y}(\bar{q}, \bar{\ell}, \bar{W})|_{\bar{p}} \neq 0$, then (\bar{m}, \bar{p}) lifts to a unique solution (m, p); get n from $\ell(p) = 0$.

Crucial [C-M]: Lifting lies in K_R if $(\bar{m}, \bar{n}, \bar{p}) \in R^4$ and $q(x,y) \in K_R[x,y]$.

[L-M '20]: Analyzed local mult. 2 tangencies and saw:

(i) Tangencies in 2 ends of Λ give complementary data $(\bar{m}, \bar{n} \text{ or } \bar{m}/\bar{n})$.

(ii) Tangencies in same end of Λ with $\Lambda \cap \Gamma$ disconnected give non-compatible local equations (genericity condition).

<table>
<thead>
<tr>
<th>Type</th>
<th>Mult.</th>
<th>$\det(e, e')$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(3a)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(3b)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(3c)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(5a)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(5b)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(6a)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(6b)</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

[L-M'20, C-M'20]: If mult. four, no hyperflexes:

- Type star

Thm. [L-M'20]: Local solns. for mult. 1 in $\mathbb{Q}(a_{ij})$ but for mult. 2 in $\mathbb{Q}(\sqrt{a_{ij}})$.

M.A. Cueto (Ohio State) Tropical Bitangents to Plane Quartics May 6th 2020 23 / 27
Lifting tropical bitangents to classical bitangents (cont)

$$(\bar{m}, \bar{n}, \bar{p}) \quad \text{and} \quad \bar{q} = \bar{\ell} = \bar{W} = 0 \quad \Rightarrow \quad (m, n, p) \quad \text{and} \quad q = \ell = W = 0$$

Multivariate Hensel’s Lemma: If $J_{x,y,\bar{m}}(\bar{q}, \bar{\ell}, \bar{W})|_{\bar{p}} \neq 0$, then (\bar{m}, \bar{p}) lifts to a unique solution (m, p); get n from $\ell(p) = 0$.

Crucial [C-M]: Lifting lies in \mathbb{K}_R if $(\bar{m}, \bar{n}, \bar{p}) \in \mathbb{R}^4$ and $q(x, y) \in \mathbb{K}_R[x,y]$.

Thm. [L-M’20]: Local solns. for mult 1 in $\mathbb{Q}(a_{ij})$ but for mult 2 in $\mathbb{Q}(\sqrt{a_{ij}})$.

M.A. Cueto (Ohio State)
Tropical Bitangents to Plane Quartics
May 6th 2020 23 / 27
Lifting tropical bitangents to classical bitangents (cont)

\((\bar{m}, \bar{n}, \bar{p})\) and \(\bar{q} = \bar{\ell} = \bar{W} = 0\) \(\Rightarrow\) \((m, n, p)\) and \(q = \ell = W = 0\)

Multivariate Hensel’s Lemma: If \(J_{x,y,m}(\bar{q}, \bar{\ell}, \bar{W})|_{\bar{p}} \neq 0\), then \((\bar{m}, \bar{p})\) lifts to a unique solution \((m, p)\); get \(n\) from \(\ell(p) = 0\).

Crucial [C-M]: Lifting lies in \(K_R\) if \((\bar{m}, \bar{n}, \bar{p}) \in \mathbb{R}^4\) and \(q(x, y) \in K_R[x, y]\).

[L-M ’20]: Analyzed local mult. 2 tangencies and saw:

(i) Tangencies in 2 ends of \(\Lambda\) give complementary data \((\bar{m}, \bar{n}\) or \(\bar{m}/\bar{n})\).

(ii) Tangencies in same end of \(\Lambda\) with \(\Lambda \cap \Gamma\) disconnected give non-compatible local equations (genericity condition.)
Lifting tropical bitangents to classical bitangents (cont)

\[(\bar{m}, \bar{n}, \bar{p}) \text{ and } \bar{q} = \bar{\ell} = \bar{W} = 0 \quad \Rightarrow \quad (m, n, p) \text{ and } q = \ell = W = 0\]

Multivariate Hensel’s Lemma: If \(J_{x,y,\bar{m}}(\bar{q}, \bar{\ell}, \bar{W})|_{\bar{p}} \neq 0 \), then \((\bar{m}, \bar{p})\) lifts to a unique solution \((m, p)\); get \(n\) from \(\ell(p) = 0\).

Crucial [C-M]: Lifting lies in \(K_R\) if \((\bar{m}, \bar{n}, \bar{p}) \in \mathbb{R}^4\) and \(q(x, y) \in K_R[x, y]\).

[L-M ’20]: Analyzed local mult. 2 tangencies and saw:

(i) Tangencies in 2 ends of \(\Lambda\) give complementary data \((\bar{m}, \bar{n} \text{ or } \bar{m}/\bar{n})\).

(ii) Tangencies in same end of \(\Lambda\) with \(\Lambda \cap \Gamma\) disconnected give non-compatible local equations (genericity condition.)

<table>
<thead>
<tr>
<th>type</th>
<th>(1)</th>
<th>(2)</th>
<th>(3a), (3b) or (3c)</th>
<th>(4)</th>
<th>(5a)</th>
<th>(6a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mult.</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>(\det(e, e'))</td>
<td>2</td>
<td>(\det(e, e'))</td>
</tr>
</tbody>
</table>

\((e' \text{ edge of } \Gamma \text{ responsible for second tropical tangency, } \det = 1 \text{ or } 2\).\)
Lifting tropical bitangents to classical bitangents (cont)

$$(\bar{m}, \bar{n}, \bar{p}) \text{ and } \bar{q} = \bar{\ell} = \bar{W} = 0 \quad \rightarrow \quad (m, n, p) \text{ and } q = \ell = W = 0$$

Multivariate Hensel’s Lemma: If $J_{x,y,\bar{m}}(\bar{q}, \bar{\ell}, \bar{W})|_{\bar{p}} \neq 0$, then (\bar{m}, \bar{p}) lifts to a unique solution (m, p); get n from $\ell(p) = 0$.

Crucial [C-M]: Lifting lies in $\mathbb{K}_{\mathbb{R}}$ if $(\bar{m}, \bar{n}, \bar{p}) \in \mathbb{R}^4$ and $q(x, y) \in \mathbb{K}_{\mathbb{R}}[x, y]$.

[L-M ’20]: Analyzed local mult. 2 tangencies and saw:

(i) Tangencies in 2 ends of Λ give complementary data (\bar{m}, \bar{n} or \bar{m}/\bar{n}).

(ii) Tangencies in same end of Λ with $\Lambda \cap \Gamma$ disconnected give non-compatible local equations (genericity condition.)

<table>
<thead>
<tr>
<th>type</th>
<th>(1)</th>
<th>(2)</th>
<th>(3a), (3b) or (3c)</th>
<th>(4)</th>
<th>(5a)</th>
<th>(6a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mult.</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>det(e, e')</td>
<td>2</td>
<td>det(e, e')</td>
</tr>
</tbody>
</table>

$$(e' \text{ edge of } \Gamma \text{ responsible for second tropical tangency, det } \neq 1 \text{ or } 2.)$$

[L-M’20, C-M’20]: If mult. four, no hyperflexes:

<table>
<thead>
<tr>
<th>type</th>
<th>star</th>
<th>(5b)</th>
<th>(6b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mult.</td>
<td>2 \cdot 2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Lifting tropical bitangents to classical bitangents (cont)

\[(\tilde{m}, \tilde{n}, \tilde{p})\] and \[\tilde{q} = \tilde{\ell} = \tilde{W} = 0\] \[\xrightarrow{??}\] \[(m, n, p)\] and \[q = \ell = W = 0\]

Multivariate Hensel’s Lemma: If \(J_{x,y,\tilde{m}}(\tilde{q}, \tilde{\ell}, \tilde{W})|_{\tilde{p}} \neq 0\), then \((\tilde{m}, \tilde{p})\) lifts to a unique solution \((m, p)\); get \(n\) from \(\ell(p) = 0\).

Crucial [C-M]: Lifting lies in \(K_R\) if \((\tilde{m}, \tilde{n}, \tilde{p}) \in \mathbb{R}^4\) and \(q(x, y) \in K_R[x, y]\).

[L-M ’20]: Analyzed local mult. 2 tangencies and saw:

(i) Tangencies in 2 ends of \(\Lambda\) give complementary data \((\tilde{m}, \tilde{n}\) or \(\tilde{m}/\tilde{n}\)).

(ii) Tangencies in same end of \(\Lambda\) with \(\Lambda \cap \Gamma\) disconnected give non-compatible local equations (genericity condition.)

<table>
<thead>
<tr>
<th>type</th>
<th>(1)</th>
<th>(2)</th>
<th>(3a), (3b) or (3c)</th>
<th>(4)</th>
<th>(5a)</th>
<th>(6a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mult.</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>det(e, e’)</td>
<td>2</td>
<td>det(e, e’)</td>
</tr>
</tbody>
</table>

(e’ edge of \(\Gamma\) responsible for second tropical tangency, det = 1 or 2.)

[L-M’20, C-M’20]: If mult. four, no hyperflexes:

<table>
<thead>
<tr>
<th>type</th>
<th>star</th>
<th>(5b)</th>
<th>(6b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mult.</td>
<td>2 \cdot 2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Thm.[L-M’20]: Local solns. for mult 1 in \(\mathbb{Q}(\sqrt{a_{ij}})\) but for mult 2 in \(\mathbb{Q}(\sqrt{a_{ij}})\).
THM 2: Lifting multiplicities over $\mathbb{C}\{t\}$ for all 39 bitangent classes
THM 3: Total lifting multiplicity over $\mathbb{R}\{t\}$ for each shape is 0 or 4.

Proof technique: determine when relevant radicands are positive and compare/combine constraints for different members of the same shape.

\[(3a) \]
\[\begin{align*}
&w + v + 1 \left(s^u v^s u^v + 1 \right)^w + v^s u^v - 1 \left(s^u v^s u^v - 1 \right)^w \\
&\text{sign}(\bar{n}) > 0 \\
&\text{horizontal}
\end{align*} \]

\[(3c) \]
\[\begin{align*}
&w + u + 1 \left(s^u v^s u^v + 1 \right)^w + u^s v^u - 1 \left(s^u v^s u^v - 1 \right)^w \\
&\text{sign}(\bar{n}) > 0 \\
&\text{vertical}
\end{align*} \]

\[(4),(6a) \]
\[\begin{align*}
&w + w \left(s^u v^s u^v + 1 \right)^r + w^s u^w - 1 \left(s^u v^s u^v - 1 \right)^r \\
&\text{sign}(\bar{n}) > 0 \\
&\text{diagonal}
\end{align*} \]

\[(5a) \]
\[\begin{align*}
&w + w \left(s^u v^s u^v + 1 \right)^r + w^s u^w - 1 \left(s^u v^s u^v - 1 \right)^r \\
&\text{sign}(\bar{n}) > 0 \\
&\text{vertical}
\end{align*} \]

$s_{ij} = \text{sign of initials a_{ij}} \in \mathbb{R}$.

Indices in formulas come from relevant cells in Newton subdivision.
THM 3: Total lifting multiplicity over $\mathbb{R}\{\{t\}\}$ for each shape is 0 or 4.

Proof technique: determine when relevant radicands are positive and compare/combine constraints for different members of the same shape.

<table>
<thead>
<tr>
<th>type</th>
<th>condition for real solutions</th>
<th>coeff.</th>
<th>end of Λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3a)</td>
<td>$(-1)^{w+v+1}(s_{uv}s_{u,v+1})^{w+v}s_{u-1,w}s_{u,v+1}\text{sign}(\bar{n}) > 0$</td>
<td>m</td>
<td>horizontal</td>
</tr>
<tr>
<td></td>
<td>$(-1)^{w+u+1}(s_{uv}s_{u+1,v})^{w+u}s_{w,v-1}s_{u+1,v}\text{sign}(\bar{n}) > 0$</td>
<td>m/n</td>
<td>vertical</td>
</tr>
<tr>
<td>(3c)</td>
<td>$(-1)^{r+w}(s_{uv}s_{u,v+1})^{r+w}s_{u+1,r}s_{u-1,w} > 0$</td>
<td>m</td>
<td>horizontal</td>
</tr>
<tr>
<td></td>
<td>$(-1)^{r+w}(s_{uv}s_{u+1,v})^{r+w}s_{r,v+1}s_{w,v-1} > 0$</td>
<td>m/n</td>
<td>vertical</td>
</tr>
<tr>
<td>(4),(6a)</td>
<td>$-\text{sign}(\bar{n})s_{uv}s_{u+1,v+1} > 0$</td>
<td>m</td>
<td>diagonal</td>
</tr>
<tr>
<td></td>
<td>$-\text{sign}(\bar{m})s_{u,v+1}s_{u+2,v} > 0$</td>
<td>n</td>
<td>horizontal</td>
</tr>
<tr>
<td>(5a)</td>
<td>$\text{sign}(\bar{n})s_{u+1,v}s_{u,v+1} > 0$</td>
<td>m</td>
<td>diagonal</td>
</tr>
<tr>
<td></td>
<td>$\text{sign}(\bar{m})s_{u+1,v+1}s_{u+1,v} > 0$</td>
<td>n</td>
<td>horizontal</td>
</tr>
</tbody>
</table>
THM 3: Total lifting multiplicity over $\mathbb{R}\{\{t\}\}$ for each shape is 0 or 4.

Proof technique: determine when relevant radicands are positive and compare/combine constraints for different members of the same shape.

<table>
<thead>
<tr>
<th>type</th>
<th>condition for real solutions</th>
<th>coeff.</th>
<th>end of Λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3a)</td>
<td>$(-1)^{w+v+1}(s_{uv}s_{u,v+1})^{w+v}s_{u-1,w}s_{u,v+1}\text{sign}(\bar{n}) > 0$</td>
<td>m</td>
<td>horizontal</td>
</tr>
<tr>
<td></td>
<td>$(-1)^{w+u+1}(s_{uv}s_{u+1,v})^{w+u}s_{w,v-1}s_{u+1,v}\text{sign}(\bar{n}) > 0$</td>
<td>m/n</td>
<td>vertical</td>
</tr>
<tr>
<td>(3c)</td>
<td>$(-1)^{r+w}(s_{uv}s_{u,v+1})^{r+w}s_{u+1,r}s_{u-1,w} > 0$</td>
<td>m</td>
<td>horizontal</td>
</tr>
<tr>
<td></td>
<td>$(-1)^{r+w}(s_{uv}s_{u+1,v})^{r+w}s_{r,v+1}s_{w,v-1} > 0$</td>
<td>m/n</td>
<td>vertical</td>
</tr>
<tr>
<td>(4),(6a)</td>
<td>$-\text{sign}(\bar{n})s_{uv}s_{u+1,v+1} > 0$</td>
<td>m</td>
<td>diagonal</td>
</tr>
<tr>
<td></td>
<td>$-\text{sign}(\bar{m})s_{u,v+1}s_{u+2,v} > 0$</td>
<td>n</td>
<td>horizontal</td>
</tr>
<tr>
<td>(5a)</td>
<td>$\text{sign}(\bar{n})s_{u+1,v}s_{u,v+1} > 0$</td>
<td>m</td>
<td>diagonal</td>
</tr>
<tr>
<td></td>
<td>$\text{sign}(\bar{m})s_{u+1,v+1}s_{u+1,v} > 0$</td>
<td>n</td>
<td>horizontal</td>
</tr>
</tbody>
</table>

- $s_{ij} = \text{sign of initials } a_{ij} \in \mathbb{R}$.
- Indices in formulas come from relevant cells in Newton subdivision:
Real lifting sign conditions for each representative bitangent class:

<table>
<thead>
<tr>
<th>Shape</th>
<th>Lifting conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>((-s_1 v_1 s_{1,v+1})^{i} s_0 i s_{22} > 0) and ((-s_1 u_1 s_{u+1,1})^{j} s_{j0} s_{22} > 0)</td>
</tr>
<tr>
<td>(B)</td>
<td>((-s_1 v_1 s_{1,v+1})^{i+1} s_0 i s_{21} > 0) and ((-s_{21})^{i+1} s_{31}^{j} s_1 v s_{1,v+1} s_{j0} > 0)</td>
</tr>
<tr>
<td>(C)</td>
<td>((-s_{11} s_{12})^{i} s_0 i s_{20} > 0) and ((-s_{21} s_{12})^{k} s_{k,4-k} s_{20} > 0) if (j = 2), ((-s_{11})^{i+1} s_{12}^{i} s_{21} s_0 i s_{j0} > 0) and ((-s_{21})^{k+1} s_{12}^{k} s_{11} s_{k,4-k} s_{j0} > 0) if (j = 1, 3).</td>
</tr>
<tr>
<td>(H),(H')</td>
<td>((-s_1 v_1 s_{1,v+1})^{i+1} s_0 i s_{21} > 0) and (s_1 v s_{1,v+1} s_{21} s_{40} < 0)</td>
</tr>
<tr>
<td>(M)</td>
<td>((-s_1 v_1 s_{1,v+1})^{i+1} s_0 i s_{21} > 0) and (s_1 v s_{1,v+1} s_{30} s_{31} > 0)</td>
</tr>
<tr>
<td>(D)</td>
<td>((-s_1 v s_{1,v+1})^{i} s_0 i s_{22} > 0)</td>
</tr>
<tr>
<td>(E),(F),(J)</td>
<td>((-s_1 v s_{1,v+1})^{i} s_0 i s_{20} > 0)</td>
</tr>
<tr>
<td>(G)</td>
<td>((-s_{10} s_{11})^{i} s_0 i s_{k,4-k} > 0)</td>
</tr>
<tr>
<td>(I),(N)</td>
<td>(s_{10} s_{11} s_{01} s_{k,4-k} < 0)</td>
</tr>
<tr>
<td>(K),(T),(U),(V)</td>
<td>(s_{k,4-k} > 0)</td>
</tr>
<tr>
<td>(L),(O),(P)</td>
<td>(s_{10} s_{11} s_{01} s_{22} < 0)</td>
</tr>
<tr>
<td>(L'),(Q),(R),(S)</td>
<td>(s_{00} s_{22} > 0)</td>
</tr>
</tbody>
</table>

Indices: relevant vertices in the Newton subdivision for each tangency, e.g.
Sample sign choices for our running example:

<table>
<thead>
<tr>
<th>Negative signs</th>
<th>Real bitangent classes</th>
<th>Number of Real lifts</th>
<th>Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>(1) and (3)</td>
<td>8</td>
<td>2 non-nested ovals</td>
</tr>
<tr>
<td>s_{31}</td>
<td>(1), (2), (3) and (7)</td>
<td>16</td>
<td>3 ovals</td>
</tr>
<tr>
<td>s_{13}, s_{31}</td>
<td>(1), ..., (7)</td>
<td>28</td>
<td>4 ovals</td>
</tr>
<tr>
<td>s_{13}, s_{31}, s_{22}</td>
<td>(3)</td>
<td>4</td>
<td>1 oval</td>
</tr>
</tbody>
</table>

(2) as (E)

(3) as (W)

(4) as (E)