Combinatorics and real lifts of bitangents to tropical plane quartics

Maria Angelica Cueto

Department of Mathematics The Ohio State University

Joint work with Hannah Markwig (U. Tuebingen, Germany) (arXiv:2004.10891)

Algebraic Geometry Seminar UC Davis

M.A. Cueto (Ohio State)

Tropical Bitangents to Plane Quartics

Today's focus: two classical result in Algebraic Geometry

Today's focus: two classical result in Algebraic Geometry Plücker (1834): A sm. quartic curve in $\mathbb{P}^2_{\mathbb{C}}$ has exactly 28 bitangent lines.

Today's focus: two classical result in Algebraic Geometry			
Plücker (1834): A sm. quartic curve in $\mathbb{P}^2_{\mathbb{C}}$ has exactly 28 bitangent lines.			
Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $\mathcal{V}_{\mathbb{R}}(f) \subset \mathbb{P}^2_{\mathbb{R}}$).			
The real curve	Real bitangents	The real curve	Real bitangents
4 ovals	28	1 oval	4
3 ovals	16	2 nested ovals	4
2 non-nested ovals	8	empty curve	4

Today's focus: two classical result in Algebraic Geometry Plücker (1834): A sm. quartic curve in $\mathbb{P}^2_{\mathbb{C}}$ has exactly 28 bitangent lines. Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $\mathcal{V}_{\mathbb{R}}(f) \subset \mathbb{P}^2_{\mathbb{P}}$).

		U	TT () II //
The real curve	Real bitangents	The real curve	Real bitangents
4 ovals	28	1 oval	4
3 ovals	16	2 nested ovals	4
2 non-nested ovals	8	empty curve	4

Trott: 28 totally real bitangents.

Salmon: 28 real, 24 totally real.

Today's focus: two classical result in Algebraic Geometry Plücker (1834): A sm. quartic curve in $\mathbb{P}^2_{\mathbb{C}}$ has exactly 28 bitangent lines. Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $\mathcal{V}_{\mathbb{R}}(f) \subset \mathbb{P}^2_{\mathbb{P}}$).

	•	0 (
The real curve	Real bitangents	The real curve	Real bitangents
4 ovals	28	1 oval	4
3 ovals	16	2 nested ovals	4
2 non-nested ovals	8	empty curve	4

Trott: 28 totally real bitangents.

Salmon: 28 real, 24 totally real.

ISSUE: Plücker's result fails tropically! But we can fix it.

Today's focus: two classical result in Algebraic Geometry Plücker (1834): A sm. quartic curve in $\mathbb{P}^2_{\mathbb{C}}$ has exactly 28 bitangent lines. Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $\mathcal{V}_{\mathbb{R}}(f) \subset \mathbb{P}^2_{\mathbb{P}}$).

	,	0 (
The real curve	Real bitangents	The real curve	Real bitangents
4 ovals	28	1 oval	4
3 ovals	16	2 nested ovals	4
2 non-nested ovals	8	empty curve	4

Trott: 28 totally real bitangents.

Salmon: 28 real, 24 totally real.

ISSUE: Plücker's result fails tropically! But we can fix it.

GOAL: Use tropical geometry to find bitangents over $\mathbb{C}\{\{t\}\}\$ and $\mathbb{R}\{\{t\}\}$.

M.A. Cueto (Ohio State)

Plücker-Zeuthen: A sm. quartic curve in $\mathbb{P}^2_{\mathbb{K}}$ has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

Plücker-Zeuthen: A sm. quartic curve in $\mathbb{P}^2_{\mathbb{K}}$ has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

• What happens tropically?

Plücker-Zeuthen: A sm. quartic curve in $\mathbb{P}^2_{\mathbb{K}}$ has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

• What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in \mathbb{R}^2 has infinitely many tropical bitangents (in **7 equivalence classes**.) Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

Plücker-Zeuthen: A sm. quartic curve in $\mathbb{P}^2_{\mathbb{K}}$ has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

• What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in \mathbb{R}^2 has infinitely many tropical bitangents (in **7** equivalence classes.) Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

• Two independent answers (with different approaches):

Len-Jensen (2018): Each class always lifts to 4 classical bitangents.

Len-Markwig (2020): We have an **algorithm** to reconstruct the 4 classical bitangents $\ell = y + m + nx$ and the tangencies for each class under mild genericity conditions.

Plücker-Zeuthen: A sm. quartic curve in $\mathbb{P}^2_{\mathbb{K}}$ has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

• What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in \mathbb{R}^2 has infinitely many tropical bitangents (in **7** equivalence classes.) Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

• Two independent answers (with different approaches):

Len-Jensen (2018): Each class always lifts to 4 classical bitangents.

Len-Markwig (2020): We have an **algorithm** to reconstruct the 4 classical bitangents $\ell = y + m + nx$ and the tangencies for each class under mild genericity conditions.

Question 1: What is a tropical bitangent line? Tropical tangencies?

Plücker-Zeuthen: A sm. quartic curve in $\mathbb{P}^2_{\mathbb{K}}$ has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

• What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in \mathbb{R}^2 has infinitely many tropical bitangents (in **7 equivalence classes**.) Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

• Two independent answers (with different approaches):

Len-Jensen (2018): Each class always lifts to 4 classical bitangents.

Len-Markwig (2020): We have an **algorithm** to reconstruct the 4 classical bitangents $\ell = y + m + nx$ and the tangencies for each class under mild genericity conditions.

Question 1: What is a tropical bitangent line? Tropical tangencies?

Question 2: What is a tropical bitangent class?

Answer: Continuous translations preserving bitangency properties.

M.A. Cueto (Ohio State)

Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} but 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2 .

Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} **but** 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2 .

Trop. sm. quartic = dual to unimodular triangulation of Δ_2 of side length 4.

 \rightsquigarrow duality gives a genus 3 planar metric graph.

Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} **but** 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2 .

Trop. sm. quartic = dual to unimodular triangulation of Δ_2 of side length 4.

Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} **but** 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2 .

Trop. sm. quartic = dual to unimodular triangulation of Δ_2 of side length 4.

Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} but 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2 .

Trop. sm. quartic = dual to unimodular triangulation of Δ_2 of side length 4.

Brodsky-Joswig-Morrison-Sturmfels (2015): Newton subdivisions give linear restrictions on the lengths u, v, w, x, y, z of the edges.

M.A. Cueto (Ohio State)

Tropical Bitangents to Plane Quartics

(1) Interpolation for *general* pts in \mathbb{R}^2 holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)

(1) Interpolation for *general* pts in \mathbb{R}^2 holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)

(2) General trop. curves intersect properly and as expected (Trop. Bézout.)

(1) Interpolation for *general* pts in \mathbb{R}^2 holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)

(2) General trop. curves intersect properly and as expected (Trop. Bézout.)

(1) Interpolation for *general* pts in \mathbb{R}^2 holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)

(2) General trop. curves intersect properly and as expected (Trop. Bézout.)

$$C_1 \cap_{st} C_2 := \lim_{\underline{\varepsilon} \to (0,0)} C_1 \cap (C_2 + \underline{\varepsilon}).$$

Tropical bitangent Lines to tropical smooth quartics in \mathbb{R}^2 :

Tropical bitangent Lines to tropical smooth quartics in \mathbb{R}^2 :

Tropical bitangent Lines to tropical smooth quartics in \mathbb{R}^2 :

M.A. Cueto (Ohio State)

Tropical Bitangents to Plane Quartics

[BLMPR '16]: 7 effective trop. theta characteristics on **skeleton** of tropical sm. quartic Γ in \mathbb{R}^2 produce 7 tropical bitangent lines Λ to Γ .

[BLMPR '16]: Equiv. class = move Λ continuously, remaining bitangent. [L-M '18, J-M '20]: Each bitangent class lifts to 4 classical bitangents.

C.-Markwig (2020): There are **39 shapes** of bitangent classes (up to symm.) They are **min-tropical** convex sets. Liftings come from vertices. **Over** R: liftings on each class are either all (totally) real or none is real. MA. Cueto (Ohio State) Tropical Bitangents to Plane Quartics May 6th 2020 16/27

THM 1: Classification into 39 bitangent classes (up to S_3 -symmetry)

17 / 27

Step 1: Identify edge directions for Γ involved in local tangencies.

Step 1: Identify edge directions for Γ involved in local tangencies. **Step 2:** Identify local moves of the vertex of Λ that preserve one tangency

Step 1: Identify edge directions for Γ involved in local tangencies. **Step 2:** Identify local moves of the vertex of Λ that preserve one tangency

Step 3: Interpret S₃-tangency types from cells in the Newton subdivision of $q(x, y) = \sum_{i,j} a_{i,j} x^i y^j$ with $\text{Trop}(\mathcal{V}(q)) = \Gamma$ and combine local moves.

Step 1: Identify edge directions for Γ involved in local tangencies. **Step 2:** Identify local moves of the vertex of Λ that preserve one tangency

Step 3: Interpret S_3 -tangency types from cells in the Newton subdivision. **Step 4:** Classify the shapes using 3 properties of its members:

max. mult.	proper	min. conn. comp.	shapes
4	yes	1	(11)
4	no	1	(C),(D),(L),(L'),(O),(P),(Q),(R),(S)
2	yes/no	2	rest

For the last row, refine using dimension and boundedness of its top cell.

M.A. Cueto (Ohio State)

19 / 27

• Since 2-cell is bounded, the tangency points for any member Λ occur in relative interior of **two different ends** of Λ (e.g. horizontal and diagonal).

Since 2-cell is bounded, the tangency points for any member Λ occur in relative interior of two different ends of Λ (e.g. horizontal and diagonal).
dim 2 means we can find tangencies at two bounded edges e, e' of Γ, both in the boundary of the conn. component of ℝ² \ Γ dual to x² (because e and e' are bridges of Γ, so metric graph is ----)

Since 2-cell is bounded, the tangency points for any member Λ occur in relative interior of two different ends of Λ (e.g. horizontal and diagonal).
dim 2 means we can find tangencies at two bounded edges e, e' of Γ, both in the boundary of the conn. component of ℝ² \ Γ dual to x² (because e and e' are bridges of Γ, so metric graph is o-o-o)
Draw parallelogram P with horizontal and diagonal lines through endpoints of e and e', respectively ; analyze P ∩ e and P ∩ e'

• Since 2-cell is bounded, the tangency points for any member Λ occur in relative interior of **two different ends** of Λ (e.g. horizontal and diagonal). • dim 2 means we can find tangencies at two bounded edges e, e' of Γ , both in the boundary of the conn. component of $\mathbb{R}^2 \setminus \Gamma$ dual to x^2 (because e and e' are bridges of Γ , so metric graph is $\bigcirc \bigcirc \bigcirc$) • Draw parallelogram \mathcal{P} with horizontal and diagonal lines through endpoints of e and e', respectively ; analyze $\mathcal{P} \cap e$ and $\mathcal{P} \cap e'$

M.A. Cueto (Ohio State)

Tropical Bitangents to Plane Quartics

Partial Newton subdivisions for all 39 bitangent shapes:

Fix $\mathbb{K} = \mathbb{C}\{\{t\}\}$ (complex Puiseux series), $\mathbb{K}_{\mathbb{R}} = \mathbb{R}\{\{t\}\}$ (real P. s.)

Fix $\mathbb{K} = \mathbb{C}\{\{t\}\}$ (complex Puiseux series), $\mathbb{K}_{\mathbb{R}} = \mathbb{R}\{\{t\}\}$ (real P. s.)

• If $a = a_0 t^{\alpha} + h.o.t. \in \mathbb{K}$, write $| \bar{a} := a_0 = \overline{a t^{-\alpha}}$ in \mathbb{C} (initial term).

Fix $\mathbb{K} = \mathbb{C}\{\{t\}\}$ (complex Puiseux series), $\mathbb{K}_{\mathbb{R}} = \mathbb{R}\{\{t\}\}$ (real P. s.)

• If $a = a_0 t^{\alpha} + h.o.t. \in \mathbb{K}$, write $\left| \overline{a} := a_0 = \overline{a t^{-\alpha}} \right|$ in \mathbb{C} (initial term).

• Assume no classical bitangent line ℓ to $\mathcal{V}(q) \subset (\mathbb{K}^*)^2$ is vertical and all tangency points are in torus (if not, rotate and translate). Thus,

 $\ell: y + m + nx = 0$ with $m, n \in \mathbb{K}^*$.

Fix $\mathbb{K} = \mathbb{C}\{\{t\}\}$ (complex Puiseux series), $\mathbb{K}_{\mathbb{R}} = \mathbb{R}\{\{t\}\}$ (real P. s.)

• If $a = a_0 t^{\alpha} + h.o.t. \in \mathbb{K}$, write $\left| \overline{a} := a_0 = \overline{a t^{-\alpha}} \text{ in } \mathbb{C}$ (initial term) $\right|$.

• Assume no classical bitangent line ℓ to $\mathcal{V}(q) \subset (\mathbb{K}^*)^2$ is vertical and all tangency points are in torus (if not, rotate and translate). Thus,

 $\ell: y + m + nx = 0$ with $m, n \in \mathbb{K}^*$.

Question: When is ℓ tangent to $\mathcal{V}(q)$ at $p \in (\mathbb{K}^*)^2$?

Fix $\mathbb{K} = \mathbb{C}\{\{t\}\}$ (complex Puiseux series), $\mathbb{K}_{\mathbb{R}} = \mathbb{R}\{\{t\}\}$ (real P. s.)

• If $a = a_0 t^{\alpha} + h.o.t. \in \mathbb{K}$, write $\left| \overline{a} := a_0 = \overline{a t^{-\alpha}} \text{ in } \mathbb{C}$ (initial term) $\right|$.

• Assume no classical bitangent line ℓ to $\mathcal{V}(q) \subset (\mathbb{K}^*)^2$ is vertical and all tangency points are in torus (if not, rotate and translate). Thus,

 $\ell: y + m + nx = 0$ with $m, n \in \mathbb{K}^*$.

Question: When is ℓ tangent to $\mathcal{V}(q)$ at $p \in (\mathbb{K}^*)^2$? **Answer:** p satisfies $\ell = q = W = 0$, where $W = J(\ell, q)$ is the **Wronskian**.

Fix $\mathbb{K} = \mathbb{C}\{\{t\}\}$ (complex Puiseux series), $\mathbb{K}_{\mathbb{R}} = \mathbb{R}\{\{t\}\}$ (real P. s.)

• If $a = a_0 t^{\alpha} + h.o.t. \in \mathbb{K}$, write $\left| \overline{a} := a_0 = \overline{a t^{-\alpha}} \text{ in } \mathbb{C}$ (initial term) $\right|$.

• Assume no classical bitangent line ℓ to $\mathcal{V}(q) \subset (\mathbb{K}^*)^2$ is vertical and all tangency points are in torus (if not, rotate and translate). Thus,

 $\ell: y + m + nx = 0$ with $m, n \in \mathbb{K}^*$.

Question: When is ℓ tangent to $\mathcal{V}(q)$ at $p \in (\mathbb{K}^*)^2$? **Answer:** p satisfies $\ell = q = W = 0$, where $W = J(\ell, q)$ is the **Wronskian**.

Prop. [L-M '20]: If $p = (b_0 t^{\alpha_0} + h.o.t, b_1 t^{\alpha_1} + h.o.t)$, then (i) $-(\alpha_0, \alpha_1)$ is a **trop. tangency pt.** for $\Lambda := \text{Trop } \ell$ and $\Gamma := \text{Trop } \mathcal{V}(q)$. (ii) The initials $\bar{q}, \bar{\ell}, \bar{W}$ from **lowest valuation terms** of q, ℓ, W **vanish** at the initial term $\bar{p} := (b_0, b_1)$. (*Initial degener. vanish at* \bar{p} !)

Fix $\mathbb{K} = \mathbb{C}\{\{t\}\}$ (complex Puiseux series), $\mathbb{K}_{\mathbb{R}} = \mathbb{R}\{\{t\}\}$ (real P. s.)

• If $a = a_0 t^{\alpha} + h.o.t. \in \mathbb{K}$, write $\left| \bar{a} := a_0 = \overline{a t^{-\alpha}} \text{ in } \mathbb{C}$ (initial term) $\right|$.

• Assume no classical bitangent line ℓ to $\mathcal{V}(q) \subset (\mathbb{K}^*)^2$ is vertical and all tangency points are in torus (if not, rotate and translate). Thus,

$$\ell: y + m + n x = 0$$
 with $m, n \in \mathbb{K}^*$.

Question: When is ℓ tangent to $\mathcal{V}(q)$ at $p \in (\mathbb{K}^*)^2$? **Answer:** p satisfies $\ell = q = W = 0$, where $W = J(\ell, q)$ is the **Wronskian**.

Prop. [L-M '20]: If $p = (b_0 t^{\alpha_0} + h.o.t, b_1 t^{\alpha_1} + h.o.t)$, then (i) $-(\alpha_0, \alpha_1)$ is a **trop. tangency pt.** for $\Lambda := \text{Trop } \ell$ and $\Gamma := \text{Trop } \mathcal{V}(q)$. (ii) The initials $\bar{q}, \bar{\ell}, \bar{W}$ from **lowest valuation terms** of q, ℓ, W **vanish** at the initial term $\bar{p} := (b_0, b_1)$. (*Initial degener. vanish at* \bar{p} !)

Thm. [L-M '20]: We can use $\bar{q} = \bar{\ell} = \bar{W} = 0$ to find $(\bar{m}, \bar{n}, \bar{p}) \in (\mathbb{C}^*)^4$.

$$(\bar{m},\bar{n},\bar{p})$$
 and $\bar{q}=\bar{\ell}=\bar{W}=0$ \longrightarrow (m,n,p) and $q=\ell=W=0$

$$(\bar{m},\bar{n},\bar{p})$$
 and $\bar{q}=\bar{\ell}=\bar{W}=0$ \longrightarrow (m,n,p) and $q=\ell=W=0$

Multivariate Hensel's Lemma: If $J_{x,y,\bar{m}}(\bar{q}, \bar{\ell}, \bar{W})_{|\bar{p}} \neq 0$, then (\bar{m}, \bar{p}) lifts to a **unique solution** (m, p); get n from $\ell(p) = 0$.

$$(ar{m},ar{n},ar{p})$$
 and $ar{q}=ar{\ell}=ar{W}=0$ \longrightarrow (m,n,p) and $q=\ell=W=0$

Multivariate Hensel's Lemma: If $J_{x,y,\bar{m}}(\bar{q}, \bar{\ell}, \bar{W})_{|\bar{p}} \neq 0$, then (\bar{m}, \bar{p}) lifts to a **unique solution** (m, p); get n from $\ell(p) = 0$.

Crucial [C-M]: Lifting lies in $\mathbb{K}_{\mathbb{R}}$ if $(\bar{m}, \bar{n}, \bar{p}) \in \mathbb{R}^4$ and $q(x, y) \in \mathbb{K}_{\mathbb{R}}[x, y]$.

$$(ar{m},ar{n},ar{p})$$
 and $ar{q}=ar{\ell}=ar{W}=0$ \longrightarrow (m,n,p) and $q=\ell=W=0$

Multivariate Hensel's Lemma: If $J_{x,y,\bar{m}}(\bar{q}, \bar{\ell}, \bar{W})_{|\bar{p}} \neq 0$, then (\bar{m}, \bar{p}) lifts to a **unique solution** (m, p); get *n* from $\ell(p) = 0$.

Crucial [C-M]: Lifting lies in $\mathbb{K}_{\mathbb{R}}$ if $(\bar{m}, \bar{n}, \bar{p}) \in \mathbb{R}^4$ and $q(x, y) \in \mathbb{K}_{\mathbb{R}}[x, y]$.

[L-M '20]: Analyzed local mult. 2 tangencies and saw:

- (i) Tangencies in 2 ends of Λ give complementary data $(\bar{m}, \bar{n} \text{ or } \bar{m}/\bar{n})$.
- (ii) Tangencies in same end of Λ with $\Lambda \cap \Gamma$ disconnected give non-compatible local equations (genericity condition.)

$$(ar{m},ar{n},ar{p})$$
 and $ar{q}=ar{\ell}=ar{W}=0$ \longrightarrow (m,n,p) and $q=\ell=W=0$

Multivariate Hensel's Lemma: If $J_{x,y,\bar{m}}(\bar{q}, \bar{\ell}, \bar{W})_{|\bar{p}} \neq 0$, then (\bar{m}, \bar{p}) lifts to a **unique solution** (m, p); get *n* from $\ell(p) = 0$.

Crucial [C-M]: Lifting lies in $\mathbb{K}_{\mathbb{R}}$ if $(\bar{m}, \bar{n}, \bar{p}) \in \mathbb{R}^4$ and $q(x, y) \in \mathbb{K}_{\mathbb{R}}[x, y]$.

[L-M '20]: Analyzed local mult. 2 tangencies and saw:

(i) Tangencies in 2 ends of Λ give complementary data (m
, n
 or m/n).
(ii) Tangencies in same end of Λ with Λ ∩ Γ disconnected give

non-compatible local equations (genericity condition.)

type	(1)	(2)	(3a), (3b) or (3c)	(4)	(5a)	(6a)
mult.	0	1	2	det(<i>e</i> , <i>e</i> ′)	2	$ \det(e, e') $
(a', a) = (a, b) =						

(e' edge of Γ responsible for second tropical tangency, det = 1 or 2.)

$$(\bar{m},\bar{n},\bar{p})$$
 and $\bar{q}=\bar{\ell}=\bar{W}=0$ \longrightarrow (m,n,p) and $q=\ell=W=0$

Multivariate Hensel's Lemma: If $J_{x,y,\bar{m}}(\bar{q}, \bar{\ell}, \bar{W})_{|\bar{p}} \neq 0$, then (\bar{m}, \bar{p}) lifts to a **unique solution** (m, p); get n from $\ell(p) = 0$.

Crucial [C-M]: Lifting lies in $\mathbb{K}_{\mathbb{R}}$ if $(\bar{m}, \bar{n}, \bar{p}) \in \mathbb{R}^4$ and $q(x, y) \in \mathbb{K}_{\mathbb{R}}[x, y]$.

[L-M '20]: Analyzed local mult. 2 tangencies and saw:

- (i) Tangencies in 2 ends of Λ give complementary data $(\bar{m}, \bar{n} \text{ or } \bar{m}/\bar{n})$.
- (ii) Tangencies in same end of Λ with $\Lambda \cap \Gamma$ disconnected give non-compatible local equations (genericity condition.)

		•				,
type	(1)	(2)	(3a), (3b) or (3c)	(4)	(5a)	(6a)
mult.	0	1	2	$ \det(e, e') $	2	$ \det(e, e') $
(1)	C F		· · · · · · · · · · · · · · · · · · ·	1.	1. 1	0)

(e^\prime edge of Γ responsible for second tropical tangency, det = 1 or 2.)

[L-M'20, C-M'20]: If mult. four, no hyperflexes:

type	star	(5b)	(6b)
mult.	2 · 2	1	1

$$(ar{m},ar{n},ar{p})$$
 and $ar{q}=ar{\ell}=ar{W}=0$ \longrightarrow (m,n,p) and $q=\ell=W=0$

Multivariate Hensel's Lemma: If $J_{x,y,\bar{m}}(\bar{q}, \bar{\ell}, \bar{W})_{|\bar{p}} \neq 0$, then (\bar{m}, \bar{p}) lifts to a **unique solution** (m, p); get n from $\ell(p) = 0$.

Crucial [C-M]: Lifting lies in $\mathbb{K}_{\mathbb{R}}$ if $(\bar{m}, \bar{n}, \bar{p}) \in \mathbb{R}^4$ and $q(x, y) \in \mathbb{K}_{\mathbb{R}}[x, y]$.

[L-M '20]: Analyzed local mult. 2 tangencies and saw:

- (i) Tangencies in 2 ends of Λ give complementary data $(\bar{m}, \bar{n} \text{ or } \bar{m}/\bar{n})$.
- (ii) Tangencies in same end of Λ with Λ ∩ Γ disconnected give non-compatible local equations (genericity condition.)

		-	-	· - ·	-				
type	(1)	(2)	(3a), (3b) or (3c)	(4)		(5a)		(6a)	
mult.	0	1	2	det(<i>e</i> , <i>e</i> ′	')	2	de	t(e, e')	
(e' edge	of Γ r	espons	sible for second trop	ical tangend	cy, d	et =	1 or 2	.)	_
[M'20 C M'20] If mult four no hunorfloured type star (5b) (6b)					(6b)				
$\begin{bmatrix} L-M & 20, \ C-M & 20 \end{bmatrix}$ If mult. Tour, no hypernexes: mult. $2 \cdot 2 = 1$					1				
Thm.[L-M'20]: Local solns. for mult 1 in $\mathbb{Q}(\overline{a_{ij}})$ but for mult 2 in $\mathbb{Q}(\sqrt{\overline{a_{ij}}})$.									
M.A. C	ueto (Ohi	io State)	Tropical Bitangent	s to Plane Quartio	cs		M	ay 6th 2020	23 / 27

THM 2: Lifting multiplicities over $\mathbb{C}\{\{t\}\}\$ for all 39 bitangent classes

THM 3: Total lifting multiplicity over $\mathbb{R}\{\{t\}\}\$ for each shape is 0 or 4.

THM 3: Total lifting multiplicity over $\mathbb{R}\{\{t\}\}\$ for each shape is 0 or 4.

Proof technique: determine when relevant radicands are positive and compare/combine constraints for different members of the same shape.

type	condition for real solutions	coeff.	end of Λ
(22)	$(-1)^{w+v+1}(s_{uv}s_{u,v+1})^{w+v}s_{u-1,w}s_{u,v+1}\operatorname{sign}(\bar{n})>0$	т	horizontal
	$(-1)^{w+u+1}(s_{uv}s_{u+1,v})^{w+u}s_{w,v-1}s_{u+1,v}\operatorname{sign}(\bar{n}) > 0$	m/n	vertical
(3c)	$(-1)^{r+w}(s_{uv}s_{u,v+1})^{r+w}s_{u+1,r}s_{u-1,w}>0$	т	horizontal
(30)	$(-1)^{r+w}(s_{uv}s_{u+1,v})^{r+w}s_{r,v+1}s_{w,v-1}>0$	m/n	vertical
(4) (62)	$-\operatorname{sign}(ar{n})s_{uv}s_{u+1,v+1}>0$	т	diagonal
(4),(0a)	$-\operatorname{sign}(\overline{m})s_{u,v+1}s_{u+2,v}>0$	n	horizontal
(50)	$sign(\bar{n})s_{u+1,v}s_{u,v+1}>0$	т	diagonal
(5a) -	$sign(\overline{m})s_{u+1,\nu+1}s_{u+1,\nu}>0$	n	horizontal

THM 3: Total lifting multiplicity over $\mathbb{R}\{\{t\}\}\$ for each shape is 0 or 4.

Proof technique: determine when relevant radicands are positive and compare/combine constraints for different members of the same shape.

type	condition for real solutions	coeff.	end of Λ
(22)	$(-1)^{w+v+1}(s_{uv}s_{u,v+1})^{w+v}s_{u-1,w}s_{u,v+1}\operatorname{sign}(\bar{n})>0$	т	horizontal
(54)	$(-1)^{w+u+1}(s_{uv}s_{u+1,v})^{w+u}s_{w,v-1}s_{u+1,v}\operatorname{sign}(\bar{n}) > 0$	m/n	vertical
(2c)	$(-1)^{r+w}(s_{uv}s_{u,v+1})^{r+w}s_{u+1,r}s_{u-1,w}>0$	т	horizontal
(30)	$(-1)^{r+w}(s_{uv}s_{u+1,v})^{r+w}s_{r,v+1}s_{w,v-1}>0$	m/n	vertical
(A) (6-)	$-\operatorname{sign}(ar{n})s_{uv}s_{u+1,v+1}>0$	т	diagonal
(4),(0a)	$-\operatorname{sign}(\overline{m})s_{u,v+1}s_{u+2,v}>0$	п	horizontal
(50)	$sign(\bar{n})s_{u+1,v}s_{u,v+1}>0$	т	diagonal
(5a)	$sign(\overline{m}) s_{u+1,v+1} s_{u+1,v} > 0$	n	horizontal

- $s_{ij} = \text{sign of initials } \overline{a_{ij}} \in \mathbb{R}$.
- Indices in formulas come from relevant cells in Newton subdivision:

M.A. Cueto (Ohio State)

Tropical Bitangents to Plane Quartics

Real lifting sign conditions for each representative bitangent class:

Shape	Lifting conditions
(A)	$(-s_{1v}s_{1,v+1})^i s_{0i}s_{22} > 0$ and $(-s_{u1}s_{u+1,1})^j s_{j0}s_{22} > 0$
(B)	$(-s_{1\nu}s_{1,\nu+1})^{j+1}s_{0j}s_{21}>0$ and $(-s_{21})^{j+1}s_{31}{}^{j}s_{1\nu}s_{1,\nu+1}s_{j0}>0$
	$\int (-s_{11}s_{12})^{i}s_{0i}s_{20} > 0 \text{ and } (-s_{21}s_{12})^{k}s_{k,4-k}s_{20} > 0 \text{ if } j = 2,$
(C)	$\left((-s_{11})^{i+1}s_{12}^{i}s_{21}s_{0i}s_{j0}>0 \text{ and } (-s_{21})^{k+1}s_{12}^{k}s_{11}s_{k,4-k}s_{j0}>0 \text{if } j=1,3. \right.$
(H),(H')	$(-s_{1v}s_{1,v+1})^{i+1}s_{0i}s_{21}>0$ and $s_{1v}s_{1,v+1}s_{21}s_{40}<0$
(M)	$(-s_{1 u}s_{1, u+1})^{i+1}s_{0i}s_{21}>0 \ \ { m and} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
(D)	$(-s_{10}s_{11})^i s_{0i}s_{22} > 0$
(E),(F),(J)	$(-s_{1\nu}s_{1,\nu+1})^i s_{0i} s_{20} > 0$
(G)	$(-s_{10}s_{11})^i s_{0i} s_{k,4-k} > 0$
(I),(N)	$s_{10}s_{11}s_{01}s_{k,4-k} < 0$
(K),(T),(U),(V)	$s_{00}s_{k,4-k}>0$
(L),(O),(P)	$s_{10}s_{11}s_{01}s_{22} < 0$
(L'),(Q),(R),(S)	$s_{00}s_{22} > 0$
rest	no conditions

Indices: relevant vertices in the Newton subdivision for each tangency, e.g.

Sample sign choices for our running example:

Negative signs	Real bitangent classes	Number of Real lifts	Topology
—	(1) and (3)	8	2 non-nested ovals
<i>s</i> ₃₁	(1), (2), (3) and (7)	16	3 ovals
<i>s</i> ₁₃ , <i>s</i> ₃₁	$(1), \dots, (7)$	28	4 ovals
<i>s</i> ₁₃ , <i>s</i> ₃₁ , <i>s</i> ₂₂	(3)	4	1 oval