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Today’s focus: two classical result in Algebraic Geometry

Plücker (1834): A sm. quartic curve in P2
C has exactly 28 bitangent lines.

Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: VR(f ) ⊂ P2
R).

The real curve Real bitangents The real curve Real bitangents

4 ovals 28 1 oval 4
3 ovals 16 2 nested ovals 4
2 non-nested ovals 8 empty curve 4

Trott: 28 totally real bitangents. Salmon: 28 real, 24 totally real.

ISSUE: Plücker’s result fails tropically! But we can fix it.

GOAL: Use tropical geometry to find bitangents over C{{t}} and R{{t}}.
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28 bitangent lines to sm. plane quartics over K=C((t)).

Plücker-Zeuthen: A sm. quartic curve in P2
K has exactly 28 bitangent lines

(4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

• What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in
R2 has infinitely many tropical bitangents (in 7 equivalence classes.)
Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

• Two independent answers (with different approaches):

Len-Jensen (2018): Each class always lifts to 4 classical bitangents.

Len-Markwig (2020): We have an algorithm to reconstruct the 4 classical
bitangents ` = y + m + nx and the tangencies for each class under mild
genericity conditions.

Question 1: What is a tropical bitangent line? Tropical tangencies?

Question 2: What is a tropical bitangent class?
Answer: Continuous translations preserving bitangency properties.
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Plücker-Zeuthen: A sm. quartic curve in P2
K has exactly 28 bitangent lines

(4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

• What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in
R2 has infinitely many tropical bitangents (in 7 equivalence classes.)
Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

• Two independent answers (with different approaches):

Len-Jensen (2018): Each class always lifts to 4 classical bitangents.

Len-Markwig (2020): We have an algorithm to reconstruct the 4 classical
bitangents ` = y + m + nx and the tangencies for each class under mild
genericity conditions.

Question 1: What is a tropical bitangent line? Tropical tangencies?

Question 2: What is a tropical bitangent class?
Answer: Continuous translations preserving bitangency properties.

M.A. Cueto (Ohio State) Tropical Bitangents to Plane Quartics May 6th 2020 3 / 27



28 bitangent lines to sm. plane quartics over K=C((t)).

Theorem: There are 28 classical bitangents to sm. plane quartics over K
but 7 tropical bitangent classes to their smooth tropicalizations in R2.

Trop. sm. quartic = dual to unimodular triangulation of ∆2 of side length 4.

 duality gives a genus 3 planar metric graph.

Possible cases:
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Brodsky-Joswig-Morrison-Sturmfels (2015): Newton subdivisions give
linear restrictions on the lengths u, v , w , x , y , z of the edges.
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Basic facts about general tropical plane curves:

(1) Interpolation for general pts in R2 holds tropically (Mikhalkin’s Corresp.)

(unique line through 2 gen. points, unique conic through 5 gen. points,. . . )

(2) General trop. curves intersect properly and as expected (Trop. Bézout.)
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Basic facts about general tropical plane curves:

(1) Interpolation for general pts in R2 holds tropically (Mikhalkin’s Corresp.)

(unique line through 2 gen. points, unique conic through 5 gen. points,. . . )

(2) General trop. curves intersect properly and as expected (Trop. Bézout.)

Non-general case: Replace usual intersection with stable intersection.

C1 ∩st C2 := lim
ε→(0,0)

C1 ∩ (C2 + ε).
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Tropical bitangent Lines to tropical smooth quartics in R2:

Definition: Λ = is a bitangent line for quartic Γ if and only if:

(i) Λ ∩ Γ has 2 conn. components of stable intersection mult. 2 each; or

(ii) Λ ∩ Γ is connected and its stable intersection multiplicity is 4.

[L-M ’20]: 6 local tangency types between Λ and Γ (up to S3-symmetry).
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28 classical bitangents vs. 7 tropical bitangent classes.
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28 classical bitangents vs. 7 tropical bitangent classes.

Zharkov (2010): Trop. theta char on a metric graph Γ ↔ H1(Γ,Z/2Z).
2θi ∼ KΓ =

∑
x∈Γ(val(x)− 2)x ; L0 non-effective ↔ 0; 2b1(Γ)−1 effectives.
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28 classical bitangents vs. 7 tropical bitangent classes.

[BLMPR ’16]: 7 effective trop. theta characteristics on skeleton of
tropical sm. quartic Γ in R2 produce 7 tropical bitangent lines Λ to Γ.
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28 classical bitangents vs. 7 tropical bitangent classes.

[BLMPR ’16]: Equiv. class = move Λ continuously, remaining bitangent.
[L-M ’18, J-M ’20]: Each bitangent class lifts to 4 classical bitangents.
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28 classical bitangents vs. 7 tropical bitangent classes.

C.-Markwig (2020): There are 39 shapes of bitangent classes (up to
symm.) They are min-tropical convex sets. Liftings come from vertices.
Over R: liftings on each class are either all (totally) real or none is real.
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THM 1: Classification into 39 bitangent classes (up to S3-symmetry)

Bitangent line ←→ location of its vertex (standard duality = -vertex)
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Proof sketch of Combinatorial classification Theorem

Step 1: Identify edge directions for Γ involved in local tangencies.

Step 2: Identify local moves of the vertex of Λ that preserve one tangency

Step 3: Interpret S3-tangency types from cells in the Newton subdivision
of q(x , y) =

∑
i ,j ai ,jx

iy j with Trop(V(q)) = Γ and combine local moves.
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Proof sketch of Combinatorial classification Theorem

Step 1: Identify edge directions for Γ involved in local tangencies.
Step 2: Identify local moves of the vertex of Λ that preserve one tangency

Step 3: Interpret S3-tangency types from cells in the Newton subdivision.
Step 4: Classify the shapes using 3 properties of its members:

max. mult. proper min. conn. comp. shapes
4 yes 1 (II)
4 no 1 (C),(D),(L),(L’),(O),(P),(Q),(R),(S)

2 yes/no 2 rest

For the last row, refine using dimension and boundedness of its top cell.
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Sample refinement: max mult. 2, dim=2 and bounded top-cell.

• Since 2-cell is bounded, the tangency points for any member Λ occur in
relative interior of two different ends of Λ (e.g. horizontal and diagonal).
• dim 2 means we can find tangencies at two bounded edges e, e ′ of Γ,
both in the boundary of the conn. component of R2 r Γ dual to x2

(because e and e ′ are bridges of Γ, so metric graph is )
• Draw parallelogram P with horizontal and diagonal lines through
endpoints of e and e ′, respectively ; analyze P ∩ e and P ∩ e ′

e′ vs. e (a) (b) (c) (d) (e)
(a) (W) (X) (Y) (GG) (EE)
(b) τ1(X) (Z) (AA) (HH) (FF)
(c) τ1(Y) τ1(Z) (BB) (DD) (CC)

τ1 : X 7→ −X , Y 7→ Y − X in R2

(x ←→ z, y ↔ y in P2)
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Partial Newton subdivisions for all 39 bitangent shapes:
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Lifting tropical bitangents to classical bitangents to V(q)

Fix K = C{{t}} (complex Puiseux series), KR = R{{t}} (real P. s.)

• If a = a0t
α + h.o.t. ∈ K, write ā := a0 = a t−α in C (initial term) .

• Assume no classical bitangent line ` to V(q) ⊂ (K∗)2 is vertical and all
tangency points are in torus (if not, rotate and translate). Thus,

` : y + m + n x = 0 with m, n ∈ K∗.

Question: When is ` tangent to V(q) at p ∈ (K∗)2?

Answer: p satisfies `=q=W =0 , where W = J(`, q) is the Wronskian.

Prop. [L-M ’20]: If p = (b0 t
α0 + h.o.t, b1 t

α1 + h.o.t), then

(i) −(α0, α1) is a trop. tangency pt. for Λ:=Trop ` and Γ:=TropV(q).

(ii) The initials q̄, ¯̀, W̄ from lowest valuation terms of q, `,W vanish
at the initial term p̄ := (b0, b1). (Initial degener. vanish at p̄!)

Thm. [L-M ’20]: We can use q̄ = ¯̀ = W̄ = 0 to find (m̄, n̄, p̄) ∈ (C∗)4.
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α + h.o.t. ∈ K, write ā := a0 = a t−α in C (initial term) .

• Assume no classical bitangent line ` to V(q) ⊂ (K∗)2 is vertical and all
tangency points are in torus (if not, rotate and translate). Thus,

` : y + m + n x = 0 with m, n ∈ K∗.

Question: When is ` tangent to V(q) at p ∈ (K∗)2?

Answer: p satisfies `=q=W =0 , where W = J(`, q) is the Wronskian.

Prop. [L-M ’20]: If p = (b0 t
α0 + h.o.t, b1 t

α1 + h.o.t), then

(i) −(α0, α1) is a trop. tangency pt. for Λ:=Trop ` and Γ:=TropV(q).

(ii) The initials q̄, ¯̀, W̄ from lowest valuation terms of q, `,W vanish
at the initial term p̄ := (b0, b1). (Initial degener. vanish at p̄!)

Thm. [L-M ’20]: We can use q̄ = ¯̀ = W̄ = 0 to find (m̄, n̄, p̄) ∈ (C∗)4.

M.A. Cueto (Ohio State) Tropical Bitangents to Plane Quartics May 6th 2020 22 / 27



Lifting tropical bitangents to classical bitangents to V(q)

Fix K = C{{t}} (complex Puiseux series), KR = R{{t}} (real P. s.)

• If a = a0t
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Lifting tropical bitangents to classical bitangents (cont)

(m̄, n̄, p̄) and q̄ = ¯̀ = W̄ = 0
??? // (m, n, p) and q = ` = W = 0

Multivariate Hensel’s Lemma: If Jx ,y ,m̄(q̄, ¯̀, W̄ )|p̄ 6= 0, then (m̄, p̄) lifts to
a unique solution (m, p); get n from `(p) = 0.

Crucial [C-M]: Lifting lies in KR if (m̄, n̄, p̄) ∈ R4 and q(x , y) ∈ KR[x , y ].

[L-M ’20]: Analyzed local mult. 2 tangencies and saw:

(i) Tangencies in 2 ends of Λ give complementary data (m̄, n̄ or m̄/n̄).
(ii) Tangencies in same end of Λ with Λ ∩ Γ disconnected give

non-compatible local equations (genericity condition.)
type (1) (2) (3a), (3b) or (3c) (4) (5a) (6a)
mult. 0 1 2 | det(e, e′)| 2 | det(e, e′)|

(e′ edge of Γ responsible for second tropical tangency, det = 1 or 2.)

[L-M’20, C-M’20]: If mult. four, no hyperflexes:
type star (5b) (6b)
mult. 2 · 2 1 1

Thm.[L-M’20]: Local solns. for mult 1 in Q(aij) but for mult 2 in Q(
√
aij).
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THM 2: Lifting multiplicities over C{{t}} for all 39 bitangent classes
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THM 3: Total lifting multiplicity over R{{t}} for each shape is 0 or 4.

Proof technique: determine when relevant radicands are positive and
compare/combine constraints for different members of the same shape.

type condition for real solutions coeff. end of Λ

(3a)
(−1)w+v+1(suv su,v+1)w+v su−1,w su,v+1 sign(n̄) > 0 m horizontal

(−1)w+u+1(suv su+1,v )w+usw ,v−1 su+1,v sign(n̄) > 0 m/n vertical

(3c)
(−1)r+w (suv su,v+1)r+w su+1,r su−1,w > 0 m horizontal

(−1)r+w (suv su+1,v )r+w sr ,v+1 sw ,v−1 > 0 m/n vertical

(4),(6a)
− sign(n̄)suv su+1,v+1 > 0 m diagonal

− sign(m)su,v+1 su+2,v > 0 n horizontal

(5a)
sign(n̄)su+1,v su,v+1 > 0 m diagonal

sign(m)su+1,v+1su+1,v > 0 n horizontal

• sij = sign of initials aij ∈ R.
• Indices in formulas come from relevant cells in Newton subdivision:
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Real lifting sign conditions for each representative bitangent class:

Shape Lifting conditions

(A) (−s1v s1,v+1)i s0i s22 > 0 and (−su1su+1,1)j sj0s22 > 0

(B) (−s1v s1,v+1)i+1s0i s21 > 0 and (−s21)j+1s31
j s1v s1,v+1sj0 > 0

(C)

{
(−s11s12)i s0i s20 > 0 and (−s21s12)k sk,4−k s20 > 0 if j = 2,

(−s11)i+1s i12s21s0i sj0 > 0 and (−s21)k+1sk12s11sk,4−k sj0 > 0 if j = 1, 3.

(H),(H’) (−s1v s1,v+1)i+1s0i s21 > 0 and s1v s1,v+1s21s40 < 0

(M) (−s1v s1,v+1)i+1s0i s21 > 0 and s1v s1,v+1s30s31 > 0

(D) (−s10s11)i s0i s22 > 0

(E),(F),(J) (−s1v s1,v+1)i s0i s20 > 0

(G) (−s10s11)i s0i sk,4−k > 0
(I),(N) s10s11s01sk,4−k < 0

(K),(T),(U),(V) s00sk,4−k > 0
(L),(O),(P) s10s11s01s22 < 0

(L’),(Q),(R),(S) s00s22 > 0

rest no conditions

Indices: relevant vertices in the Newton subdivision for each tangency, e.g.
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Sample sign choices for our running example:

Negative signs Real bitangent classes Number of Real lifts Topology

— (1) and (3) 8 2 non-nested ovals
s31 (1), (2), (3) and (7) 16 3 ovals

s13, s31 (1), . . . ,(7) 28 4 ovals
s13, s31, s22 (3) 4 1 oval
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