Coulomb Branches and Plane Curve Singularities

Niklas Garner

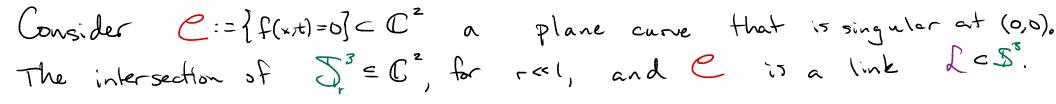
UC Davis April 1st 2020

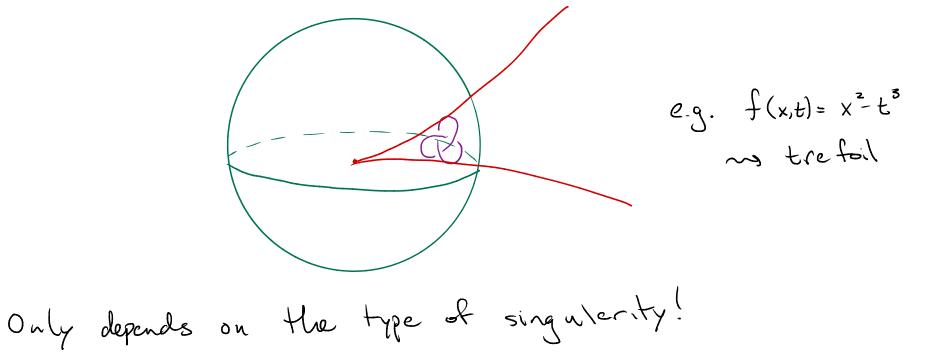
math -O. Kivinen] joint w/ -T. Dimofte] - J. Hilburn - A. Oblomkov - L. Rozonsky

(Motivation

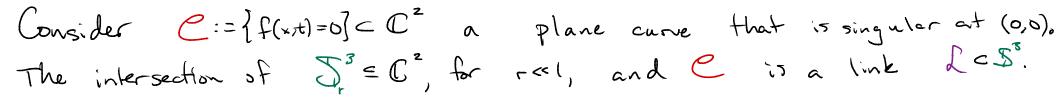
Consider $C := \{f(x,t)=0\} \subset \mathbb{C}^2$ a plane curve that is singular at (0,0). The intersection of $\sum_{j=0}^{3} \in \mathbb{C}^2$, for real, and C is a link $\mathcal{L} \subset \mathbb{S}^3$.

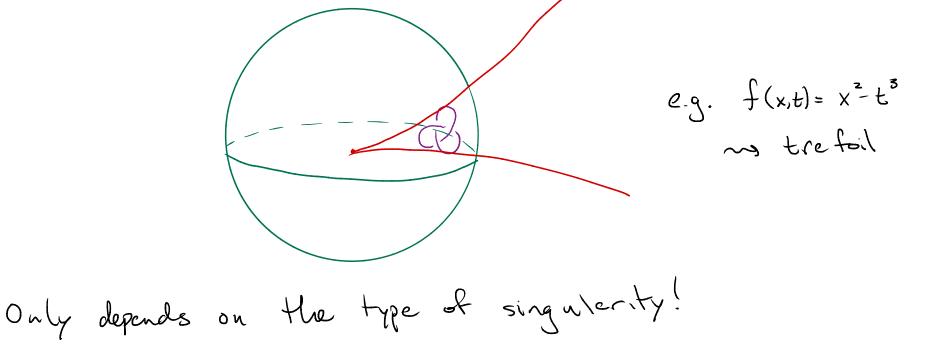
Motivation





Motivation





Conjecture: (Oblomkov-Rosmussen-Shende)
For singularity with Milnor number
$$n(:= \dim_{\mathbb{C}} \mathbb{C}[\mathbb{I} \times \mathbb{C}]/(\mathfrak{a}_{*}\mathfrak{t},\mathfrak{a}_{*}\mathfrak{t}))$$

 $\overline{\mathcal{D}}_{\min}(\mathcal{A}) = (\frac{1}{8})^{n} \sum_{M \ge 0} g^{2m} \otimes (\mathbb{C}^{mJ})$
 $\omega(\chi) = \text{weight polynomial of } \chi \sim g^{raded} \text{ enter character}$
 $\overline{\mathcal{D}}_{\min} := g^{raded} \text{ character of the lowest "a-digree"}$
(unreduced) triply graded HOMFLY homology

Conjecture: (Oblomkov-Room ussen-Shende)
For singularity with Milnor number
$$n(:= \dim_{\mathbb{C}} \mathbb{C}[[x,t]]/(a,t,a_t))$$

 $\overline{\mathcal{D}}_{\min}(\mathcal{A}) = (\frac{1}{8})^{h_1} \sum_{M \ge 0} g^{2m} \mathcal{W}(\mathbb{C}^{mJ})$
 $\mathcal{W}(X) = \text{weight polynomial of } X \sim g^{noded} \text{ enler character}$
 $\overline{\mathcal{D}}_{\min} := g^{noded} \text{ character of the lowest "a-degree"}$
(unreduced) triply graded HOMFLY homology

Note:
They also conjecture about the higher degree, these
are determined by of higher moduli spaces
$$\mathcal{C}^{[m, m+e]}$$
.

For torns knots
$$(f = x^n - t^k, gcd(n,k) = i)$$
 this can be taken
fur ther.

For torus knots
$$(f = x^n - t^k, gcd(n, k) = i)$$
 this can be taken
fur ther. Let \mathcal{M}_e be the \mathcal{M}_n spherical Cherednike
algebra:
generators: $X = \sigma = \gamma$
 $S = S = S$
 $\mathbb{C}[\mathcal{H}_i] = \mathbb{C}[S^n] = \mathbb{C}[\mathcal{H}_i^n]$
relations: $i) = \nabla X \sigma^{-1} = \sigma (x)$
 $ii) = \gamma \sigma^{-1} = \sigma (y)$
 $iii) = (\chi, \chi] = (\chi, \chi) - \mathbb{C} \sum_{i = 1}^{n} (\chi, \chi) (\pi^{\vee}, \chi) S_{\chi}$

For torus knots
$$(f = x^n - t^k, gcd(n,k) = i)$$
 this can be taken
fur ther. Let df_c be the dl_n spherical Cherednike
algebra:
generators: $X = \sigma = y$
 $S = S = S$
 $C[h] C[S^n] C[h^*]$
relations: $i) \sigma \times \sigma^{-1} = \sigma(x)$
 $ii) \sigma \gamma \sigma^{-1} = \sigma(y)$
 $iii) [x,y] = (y,x) - C \sum_{integrate} (Y, \alpha) (x^v, x) S_{\alpha}$

For torus knots
$$(f = x^n - t^k, gcd(n,k) = i)$$
 this can be taken
further. Let df_c be the dl_n spherical Cherednike
algebra:
generators: $x = \sigma = y$
 $S = S = S$
 $C(h) = C(S^n) = C(h^*)$
relations: $i) = \sigma(x)$
 $ii) = \gamma = \sigma(y)$
 $iii) = (\gamma, x) - c = \sum_{n=1}^{\infty} \langle \gamma, x \rangle \langle x^n, x \rangle S_x$

Theorem: (Berest-Etingof-Ginzburg)

$$M_c(t)$$
 has a finite dimensional simple guotient iff
 $c = k/n$ for n, k comprime and either
 $i)$ $t = trivial, k70$ $ii)$ $t = sign, k<0$

Note: The algebra \mathcal{M}_{c} has an inner $\mathfrak{sl}(2, \mathfrak{C})$ action with Cortan generator \mathcal{H}_{c}

Note:

The algebra \mathcal{M}_{c} has an inner $\mathfrak{sl}(2, \mathfrak{C})$ action with Cartan generator \mathcal{H}_{c}

Prop: (Gorsky-Oblomkov-Rosmussen-Shende) $P_{\min}\begin{pmatrix} (n,k)-torns \\ k & ot \end{pmatrix} = tr(gh; Hom_{sn}(C, L k_n))$

reduced, doublygraded HOMFLY polynomial

Note:

The algebra
$$\mathcal{M}_{c}$$
 has an inner $\mathfrak{sl}(2, \mathfrak{c})$ action with Cortan generator h .

Conjecture: (Gorsky-Oklomkov-Rosmussen-Shende)
There exists a filtration
$$F$$
 on Lm_n such that
 $H_{min}\begin{pmatrix} (n,k)-torus\\ knot \end{pmatrix} \cong Hom_{S^n}\begin{pmatrix} C,gr^F L & y_n \end{pmatrix}$ graded Honfly
homology

Note:

The algebra
$$\mathcal{M}_{c}$$
 has an inner $\mathfrak{sl}(2, \mathfrak{c})$ action with Cortan generator h .

Prop: (Gorsky-Oldomkov-Rosmussen-Shende)

$$P_{min}\begin{pmatrix} (n,k)-torns \\ k & ot \\ n \end{pmatrix} = tr(g^{h}; Hom_{s^{n}}(C, L & h))$$
graded HOMFLY
polynomial

Conjecture: (Gorsky-Oldomkov-Rosmussen-Shende)
There exists a filtration
$$F$$
 on Lm_{n} such that
 $H_{min}\begin{pmatrix} (n,k)-torus\\ knot \end{pmatrix} \cong Hom_{S^n}\begin{pmatrix} C,g^{rF} L & kn \end{pmatrix}$ graded Honfly
homology

(Results (GK, in prep.) Sn-invariant Let f(x,t) be of x-degree n, edge the spherical subalgebra of the gln rational Cherednike algebra DC.

(Results (GK, in prep.) Sn-invariant Let f(x,t) be of x-degree n, edge the spherical Subalgebra of the gln rational Chereduik algebra Alc. $eH_ce \cong eH_ce \otimes (C[x,y]/(x,y]=n)$ Note:

(Results (GK, in prep.) Sn-invariant Let f(x,t) be of x-degree n, edge the spherical Subalgebra of the gln rational Cherednike algebra Alc. $eH_{c}e \cong eH_{c}e \otimes (C[x,y]/(x,y]=n)$ Note:

Theorem: There is an action of effice on $H^{L}(C^{[v]}) = \bigoplus_{m_{2}0} H^{L}(C^{[m]}).$ In particular, for $f = x^{n} - t^{k}$ (n,k) coprime $H^{L}(C^{(v)}) \cong e^{\lfloor -v/n \rfloor}.$

Results (GK, in prep)
Let
$$f(x,t)$$
 be of x-degree n, edf_ce the spherical
subalgebra of the gln rational Cherednik algebra M_c .
Note:
 $edf_ce \cong edf_ce \otimes (c(x,y)/(x,y)=n)$
Theorem:
There is an action of edf_ce on

There is an action of
$$elg_{c}e$$
 on
 $H^{L}(\mathcal{C}^{[n]}) = \bigoplus_{m_{2}0} H^{L}(\mathcal{C}^{[m]}).$
In particular, for $f = x^{n} - t^{k}$ (n,k) coprime
 $H^{L}(\mathcal{C}^{[n]}) \cong e^{\lfloor -y_{h} \rfloor}.$
Remark:

Physics (DGHOR, in prep.)

- 32 N=4 Gange theory $G = GL(n, C) \quad N = gl(n, C) \oplus C^n \iff \bigoplus_{i=1}^{n}$

(Physics (DGHOR, in prep.)

 $-3d \mathcal{N}=4 \quad \text{Gange theory}$ $G = GL(n, C) \quad \mathbb{N} = gl(n, C) \oplus \mathbb{C}^{n} \iff \bigoplus_{1 \leq 1}^{m}$ $\longrightarrow \mathcal{M}_{C} \cong \mathcal{M}_{H} = \text{Hilb}^{n}(\mathbb{C}^{2})$

Physics (DGHOR, in prep.)

- 32 $\mathcal{N}=4$ Gauge theory G = GL(n, C) $N = gl(n, C) \oplus C^n \longrightarrow \bigoplus_{t=1}^{\infty}$ $\longrightarrow \mathcal{M}_C \cong \mathcal{M}_H = Hilb^n(C^2)$ $\widetilde{\mathcal{A}}_t \cong Spherical Subalgebra of the glu$ rational Cheredrik algebra

(Physics (DGHOR, in prep.)

- 32 N=4 Gange theory G = GL(n, C) $N = gl(n, C) \oplus C^n \longrightarrow \bigcup_{i=1}^{n}$ $\longrightarrow \mathcal{M}_{C} \cong \mathcal{M}_{H} = \operatorname{Hilb}^{n}(\mathbb{C}^{2})$ At = spherical subalgebra of the glu rational Chereduik algebra Ttime

Physics (DGHOR, in prep.)

- 32 N=4 Gange theory G = GL(n, C) $N = gl(n, C) \oplus C^n \longrightarrow G$ $\longrightarrow \mathcal{M}_{C} \cong \mathcal{M}_{H} = \operatorname{Hilb}^{n}(\mathbb{C}^{2})$ At = spherical subalgebra of the glu rational Cheredrik algebra At CHSUSY (D, Br)

Physics (DGHOR, in prep.)

- 32 N=4 Gange theory G = GL(n, C) $N = gl(n, C) \oplus C^n \longrightarrow G$ $\sim \mathcal{M}_{c} \cong \mathcal{M}_{H} = \operatorname{Hilb}^{n}(\mathbb{C}^{2})$ At = spherical subalgebra of the glu rational Cheredrik algebra At CHSUSY (D, B) Itime Det by d Conjecture: $M_{susy}(D, B_{\mathcal{L}}) \cong H_{min}(\mathcal{L})$ + higher dequee versions

(Coulomb Branches

Choose & complex reductive, NE Rep&. Denote $\mathcal{O} = \mathbb{C}[[t]], | \mathcal{L} = \mathbb{C}((t)).$

(Coulomb Branches Choose G complex reductive, NE RepG. Denote

$$C_{\text{MODSE}} = C[[t]], |k = C((t)).$$

$$C = C[[t]], |k = C((t)).$$

$$The \quad \underline{\text{Space}} \quad of \quad \underline{\text{triples}} \quad R \quad is \quad (as \ a \ set)$$

$$R = \left\{ [g, J] \in G_{K} \underset{G_{0}}{\times} N_{0} \right\} \quad v' = g. v \in N_{0} \quad J \quad \subset G_{K} \underset{G_{0}}{\times} N_{0} =: T$$

(Coulomb Branches Choose G complex reductive, NE RepG. Denote $\mathcal{O} = \mathbb{C}[[t]], \mathbb{K} = \mathbb{C}((t)).$ The <u>space of triples</u> R is (as a set)

(Coulomb Branches Choose G complex reductive, NE RepG. Denote $\mathcal{O} = \mathbb{C}[[t]], | \mathcal{K} = \mathbb{C}((t)).$ The <u>space of triples</u> R is (as a set) $\mathcal{R} = \left\{ \begin{bmatrix} 9 \\ 7 \end{bmatrix} \in G_{K} \underset{G_{0}}{\times} N_{0} \right\} v' = g \cdot v \in N_{0} \quad j \in G_{K} \underset{G_{0}}{\times} N_{0} =: \Upsilon$ think: { ... v,gveNo} Theorem: (Braverman, Finkelberg, Nalezjina) $A:=H^{a_{o}}(R)$ has the structure of a commutative algebra (over c).

(Coulomb Branches Choose G complex reductive, NE RepG. Denote $\mathcal{O} = \mathbb{C}[[t]], | \mathcal{K} = \mathbb{C}((t)).$ The <u>space of triples</u> R is (as a set) $\mathcal{R} = \left\{ \begin{bmatrix} g, J \in G_{K} \times N_{G_{0}} \\ N_{G_{0}} \end{bmatrix} v' = g \cdot v \in N_{G_{0}} \\ y \in G_{K} \times N_{G_{0}} \\$ think: { , , gue No} Theorem: (Braverman, Finkelberg, Nalezjina) $A:=H^{G_0}(\mathcal{R})$ has the structure of a commutative algebra (over c). Hink: 3^{V} 3^{V} 3^{V} 3^{V} 3^{V} 3^{V} 3^{V} 3^{V}

(Coulomb Branches Choose & complex reductive, NE Rep&. Denote $\mathcal{O} = \mathbb{C}[[t]], | \mathcal{K} = \mathbb{C}((t)).$ The <u>space of triples</u> R is (as a set) R = {[g,JeGKXNo] gueNojeGKXNo=: ~ think: { is u,g'u e No? Theorem: (Braverman, Finkelberg, Nalezjina) $A:=H^{a_{o}}(R)$ has the structure of a commutative algebra (over c). Mai = Spec A "Coulomb Branch"

Note:
A has a natural quantization and admits a
family of "flavor" deformations given by

$$1 \rightarrow G \rightarrow \widehat{G} \rightarrow T_F \rightarrow 1$$

for T_F a torus such that $\widehat{G} \stackrel{\circ}{\mathcal{O}} \stackrel{\circ}{\mathcal{N}} \stackrel{\circ}{\mathcal{N}} \stackrel{\circ}{\mathcal{S}} \stackrel$

Note:
A has a natural quantization and admits a
family of "flavor" deformations given by

$$1 \rightarrow G \rightarrow \widehat{G} \rightarrow T_F \rightarrow 1$$

for T_F a torus such that $\widehat{G} \stackrel{\circ}{\cup} N$.
 $\widehat{G} \stackrel{\sim}{\to} Scales t$
 $\widehat{A}_n := H \stackrel{\circ}{\cdot} (R)$

$$F_{X}: - G = \mathbb{C}^{X}, N = \mathbb{C}^{L}$$

$$\longrightarrow \mathcal{A} = \mathbb{C}[u, v, w]/(uv = w^{2}), \mathcal{M}_{c} \cong \mathbb{C}^{2}/\mathbb{Z}_{L}$$

Note:
A has a natural quantization and admits a
family of "flavor" deformations given by

$$1 \rightarrow G \rightarrow \widetilde{G} \rightarrow T_F \rightarrow 1$$

for T_F a torus such that $\widetilde{G} \ \mathcal{C}^{\nu} N$.
 $\mathcal{A}_{\kappa} := H \cdot \begin{pmatrix} \widetilde{G} \\ \cdot \end{pmatrix} \begin{pmatrix} \mathcal{R} \\ \cdot \end{pmatrix}$

$$\begin{aligned} & \mathcal{F}_{\mathbf{X}}: \\ & -\mathcal{G} = \mathbb{C}^{\mathbf{X}} , \ N = \mathbb{C}^{\mathbf{L}} \\ & \sim \mathcal{A} = \mathbb{C}[\mathcal{U}_{\mathbf{y}}\mathcal{U}, \mathbb{w}]/(\mathcal{U}\mathcal{V} = \mathcal{w}^{\mathbf{e}}) , \ \mathcal{M}_{\mathbf{c}} \cong \mathbb{C}^{2}/\mathbb{Z}_{\mathbf{L}} \\ & -\mathcal{G} = \mathcal{G}_{\mathbf{L}}(\mathcal{U}, \mathbb{C}) \quad \mathcal{N} = \mathfrak{gl}(\mathcal{U}, \mathbb{C}) \oplus \mathbb{C}^{\mathbf{u}} , \ \widetilde{\mathcal{G}} = \mathcal{G} \times \mathbb{C}_{\mathbf{d};\mathbf{l}}^{\mathbf{x}} \quad \mathfrak{sccles} \\ & \mathcal{I}_{\mathbf{d};\mathbf{l}} = \mathfrak{gl}(\mathcal{U}, \mathbb{C}) \quad \mathcal{N} = \mathfrak{gl}(\mathcal{U}, \mathbb{C}) \oplus \mathbb{C}^{\mathbf{u}} , \ \widetilde{\mathcal{G}} = \mathcal{G} \times \mathbb{C}_{\mathbf{d};\mathbf{l}}^{\mathbf{x}} \quad \mathfrak{gl}(\mathcal{U}, \mathbb{C}) \\ & \mathcal{I}_{\mathbf{d};\mathbf{l}} \cong \mathfrak{e} \xrightarrow{\mathbf{H}}_{\mathbf{m}} \mathfrak{e} , \ \mathcal{M}_{\mathbf{c}} \cong \mathbb{H}_{\mathbf{l}} \mathbb{H}_{\mathbf{b}}^{\mathbf{u}}(\mathbb{C}^{2}) \end{aligned}$$

BFN Springer Theory (Hilburn - Kennitzer) - Weekes Choose ve NK and set $V_{i:=}(\widetilde{G}_{K} \times \mathcal{D}_{rot.v}) \wedge No$, where GK is the preimage of (TF)OC(TF)K in GK.

BFN Springer Theory (Hilburn - Kennitzer) -Weekes

Choose ve NK and set V:= (GK × Crot. v) ~ No, where GK is the preimage of (TF)OC(TF)K in GK.

Note: If $\sum_{v} = stabg_{xx}c^{x}(v)$ and $Sp_{v} := [g]eG_{r}: g^{-1}v \in No]$

then $V_{u}/G_{0} = S_{Pu}/L_{v}$

BFN Springer Theory (Hilburn - Kennitzer) - Weekes

Choose ve NK and set $V_{i:=}(\tilde{G}_{K} \times \tilde{C}_{rot.v}) \wedge NO$, where GK is the preimage of (TF)OC(TF)K in GK.

If $U_v = stabgo_{xx} C^x(v)$ and $Sp_v := [g] \in G_r : g^{-1} v \in No]$ Note: then

BFN Springer Theory (Hilburn - Kennitzer) - Weekes

Choose ve NK and set $V_{r}:=(\tilde{G}_{K}^{o} \times G_{rot.v}) \wedge No$, where \tilde{G}_{K}^{o} is the preimege of $(T_{F})_{OC}(T_{F})_{K}$ in \tilde{G}_{K} .

Note: If $\sum_{v} = stab \tilde{g}_{v}^{o} c^{x}(v)$ and $Sp_{v} := [g] \in G_{r} : g^{-1} v \in No]$ then $V_{\nu}/G_{0} = S_{P\nu}/L_{\nu}$ think: $\int \frac{v \in fixed}{g^{-1}v}$

Theorem: (HKW) There is an Az-module structure on H^E. (Sp.).

BFN Springer Theory (Hilburn - Kennitzer) - Weekes

Choose ve NK and set $V_{v}:=(\widetilde{G}_{K} \times \widetilde{G}_{rot} \cdot v) \wedge No$, \widetilde{G}_{K} is the preimege of $(T_{F})_{O} \subset (T_{F})_{K}$ in \widetilde{G}_{K} . where

Note: If $\sum_{v} = stab \tilde{g}_{v} c^{x}(v)$ and $Sp_{v} := [g] \in G_{r} : g^{-1} v \in No_{j}$ then $V_{\nu}/G_{0} = S_{P\nu}/L_{\nu}$ think: $\begin{bmatrix} v \in fixed \\ g^{-\nu} \end{bmatrix}$ Theorem: (HKW) There is an Ã_k-module structure on H^E. (Sp.).

The deformation and guantization parameters may be forced to obey (linear) relations depending on Lu.

(Back to Hilbert Schemes

Theorem: (GK, in prep) Let C = Spec C[(x,t]) be the germ of at plane curve singularity. Without loss, assume that $f(x,t) = x^n - f_{n-1} x^{n-1} - \dots - f_0$. (Weier stranss) preparation)

(Back to Hilbert Schemes

Theorem:
$$(GK, in prep)$$

Let $C = Spec C[(x,t]](f(x,t))$ be the germ of at
plane curve singularity. Without loss, assume tha
 $f(x,t) = x^n - f_{n-1} x^{n-1} - \dots - f_0$. (Weier stranss)
 $f(x,t) = x^n - f_{n-1} x^{n-1} - \dots - f_0$. (Weier stranss)
Then for $G = GL(n,d)$, $N = gl_n \oplus C^n$
 $C^{(1)} := \bigcup_{m \ge 0} C^{(m)} \cong Spv$

(Back to Hilbert Schemes

Theorem:
$$(G_{1}K, in prep)$$

Let $C = Spec C[[xt]](f(xt)]$ be the germ of at
plane curve singularity. Without loss, assume tha
 $f(x,t) = x^{n} - f_{n-1} x^{n-1} - \dots - f_{0}$. (Weier stranss)
Then for $G = GL(n, d)$, $N = gl_{n} \oplus C^{n}$
 $C^{(n)} := \bigcup_{w \neq 0} C^{(n)} \cong Spv$
for $V = (e_{1}, x)$, $X = \begin{pmatrix} f_{n-1} & f_{n-2} & \dots & f_{1} & f_{0} \\ i & 0 & \dots & i & 0 \\ 0 & i & \dots & 0 & 0 \\ i & i & \dots & i & i \\ 0 & 0 & \dots & i & 0 \end{pmatrix}$

(Back to Hilbert Schemes

Theorem: (GK, in prep) Let C = Spec C[[x,t]] (f(x,t)) be the germ of at plane curve singularity. Without loss, assume that $f(x_it) = x^n - f_{n-1}x^{n-1} - \dots - f_0$. (Weier stranss) preparation) Then for G = GL(n, c), $N = gl_n \oplus \mathbb{C}^n$ $\mathcal{C}^{[\cdot]} := \bigcup_{m \ge 0} \mathcal{C}^{[m]} \cong \mathcal{S}_{pv}$ for $V = (e_{1}, \gamma)$, $\gamma = \begin{pmatrix} f_{n-1} & f_{n-2} & \dots & f_{1} & f_{0} \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$

Gr: $H_{*}^{\mathcal{U}}(\mathbb{C}^{(j)})$ admits an action of effice for some c.

Sketch of Proof:
First note that

$$C.f. Lusztig-Smelt$$

 $C^{[0]} = \begin{cases} nonzero \\ fractional R \\ ideals I \end{cases} I = R \xrightarrow{3} \cong \begin{cases} lattices \Lambda \\ closed under T \end{cases} \Lambda c(O^{n+1})^{-1} = : X$

Sketch of Proof:
First note that

$$C^{[J]} = \left\{ \begin{array}{c} \text{nonserv} \\ \text{fractional } R \end{array} \mid I = R \right\} \stackrel{?}{=} \left\{ \begin{array}{c} \text{lattices } \Lambda \\ \text{closed under } V \end{array} \mid \Lambda c(0^{n})^{*} \right\} = : X$$

Using $\Lambda \leftrightarrow [g]$ one finds $\Lambda = (0^{n})^{*} g^{-1} \in X$; F

$$\widehat{O} (\widehat{O})^* g^- \leq (\widehat{O})^*$$

$$\widehat{O} (\widehat{O})^* g^- \otimes g = \bigwedge \otimes g \subset \bigwedge g = (\widehat{O})^*$$

Sketch of Proof:
First note that

$$C.f. Lusztig-Smelt$$

 $C^{[J]} = \begin{cases} nonzero \\ fractional R \\ ideals I \end{cases} I = R = \begin{cases} lattices \Lambda \\ closed under T \\ closed under T \\ racional R \end{cases}$

Using
$$\Lambda \hookrightarrow [g]$$
 one finds $\Lambda = (0^n)^* g^{-1} \in X$ if
 $\square (0^n)^* g^{-1} \subseteq (\mathbb{O}^n)^*$
 $\Im = \Im g^{-1} (e_1, \chi) \in \mathcal{N}_O$
 $(\bigcirc 0^n)^* g^{-1} \chi g = \Lambda^* g \subset \Lambda g = (\bigcirc n)^* J$

Sketch of Proof:
First note that

$$C.f. Lusztig-Smelt$$

 $C^{[J]} = \begin{cases} nonzero \\ fractional R \\ ideals I \end{cases} I = R = \begin{cases} 1 \\ I = R \end{cases} A = \begin{cases} nonzero \\ ractional R \\ I = R \end{cases} = \begin{cases} nonzero \\ ractional R \\ ractional R \\ ractional R \end{cases} = X$

Using
$$\Lambda \hookrightarrow [g]$$
 one finds $\Lambda = 0$, $g \in X$, f
 $O(O^n)^* g^- \subseteq (O^n)^*$
 $\widehat{O}(O^n)^* g^- \otimes g = \Lambda \otimes g \subset \Lambda \otimes g = (O^n)^*$

Similarly, if
$$g^{-1}(e_1, \delta) \in \mathcal{N}_0$$
 then $(\mathcal{O}^n)^* g^{-1} \in X$. Thus,
 $e^{[\cdot]} \cong X \cong S_{P_V}$.

Remark:
For
$$f = x^n - t^k$$
, n,k coprime, we find $L_V \cong C^x$ has isolated
fixed points labelled by monomial ideals. Moreover, it requires
 $c = -\frac{1}{n!}$

Kemark: For $f = x^n - t^k$, n,k coprime, we find $L_V \cong C^x$ has isolated fixed points labelled by monomial ideals. Moreover, it requires c=-le/n! In the fixed-point basis we can show:

Kemark: For $f = x^n - t^k$, n,k coprime, we find $L_v \cong C^x$ has isolated fixed points labelled by monomial ideals. Moreover, it requires c=-1e/n! In the fixed-point basis we can show: Lemma: (GK, in prep.) i) As a module for $e H_{-v_n}^{c_n} e$, $H_{-v_n}^{c_n} (e_{(n,v)}^{c_n})$ has a unique singular vector. (=> $H_{-v_n}^{c_n} (e_{(n,v)}^{c_n}) \cong \mathbb{C}[x] \otimes M$, MERepedine simple)

Kemark: For $f = x^n - t^k$, n, k coprime, we find $L_v \cong C^x$ has isolated fixed points labelled by monomial ideals. Moreover, it requires c=-le/n! In the fixed-point basis we can show: Lemma: (GK, in prep.) i) As a module for $e H_{-\nu_n}e$, $H^{C^*}(\mathcal{C}_{(n,k)}^{CJ})$ has a unique singular vector. (=> $H^{C^*}(\mathcal{C}_{(n,k)}^{CJ}) \cong \mathbb{C}[X] \otimes M$, $M \in Repetitive$ ii) grdin $H^{C^*}(\mathcal{C}_{(n,k)}^{CJ}) = \frac{1}{1-g^*} \begin{bmatrix} n-1+k \\ n-1 \end{bmatrix}_g (=) \dim_{\mathbb{C}} M = \frac{1}{n} \begin{pmatrix} n+k-1 \\ n-1 \end{pmatrix} \end{pmatrix}$

Kemark: For $f = x^n - t^k$, n, k coprime, we find $L_V \cong C^{\chi}$ has isolated fixed points labelled by monomial ideals. Moreover, it requires $c = -\frac{le}{n}$ In the fixed-point basis we can show: Lemma: (GK, in prep.) i) As a module for $e H_{-\nu_{n}}e$, $H_{-}^{C^{*}}(\mathcal{C}_{(\eta,k)}^{CJ})$ has a unique singular vector. (=> $H_{-}^{C^{*}}(\mathcal{C}_{(\eta,k)}^{CJ}) \cong \mathbb{C}[X] \otimes M$, $M \in \operatorname{Repeduge}_{Simple}$ ii) grdim $H_{-}^{C^{*}}(\mathcal{C}_{(\eta,k)}^{CJ}) = \frac{1}{1-2n} \begin{bmatrix} n-1+\nu_{n-1} \end{bmatrix}_{2} (=) \dim_{\mathbb{C}} M = \frac{1}{n} \begin{pmatrix} n+k-1 \\ n-1 \end{pmatrix}$ Theorem/Cor: (GK, in prep.) $H^{c^{*}}(\mathcal{C}^{c_{J}}_{(n,k)}) \cong e^{-k/n}$

Kemark: For $f = x^n - t^k$, n, k coprime, we find $L_v \cong C^x$ has isolated fixed points labelled by monomial ideals. Moreover, it requires c=-1e/n! In the fixed-point basis we can show: Lemma: (GK, in prep.) i) As a module for $e H_{-y_n} e$, $H_{-x_n}^{C^*}(\mathcal{C}_{(\eta,k)}^{C^*})$ has a unique singular vector. (=> $H_{-x_n}^{C^*}(\mathcal{C}_{(\eta,k)}^{C^*}) \cong \mathbb{C}[x] \otimes M$, $M \in \operatorname{Repeduge}_{x_n} e$ ii) grdim $H_{-x}^{C^*}(\mathcal{C}_{(\eta,k)}^{C^*}) = \frac{1}{1-g_n^*} \begin{bmatrix} n-1+x_n \\ n-1 \end{bmatrix}_{g} (=) \dim_{\mathbb{C}} M = \frac{1}{n} \begin{pmatrix} n+k-1 \\ n-1 \end{pmatrix} \end{pmatrix}$ Theorem/Cor: (GK, in prep.) $H^{\mathcal{C}}(\mathcal{C}_{(n,k)}) \cong e^{-i/n}$ Proof: Only one such module satisfying i), ii) exists.

Conclusions () e^{EJ} is a generalized affine Springer fiber (BASF) for E any plane curve singularity.

Conclusions Deris a generalized affine Springer fiber (GASF) for Cany plane curve singularity.

HKW, this gives an Action 2 Using a construction due to of effice on $H^{L}(e^{t\cdot 7})$.

(2) Using a construction due to
$$HKW$$
, this gives an action of effice on $H^{L}(e^{t\cdot 7})$.

(3) For
$$C = C(n,k)$$
 corresponding to a torus knot, we have
 $H_{*}^{C^{*}}(C_{(n,k)}^{CJ}) \cong eL_{*}/h$.

(Future Directions

1) Geometrically realize differential leading to KR homology

Future Directions

Future Directions

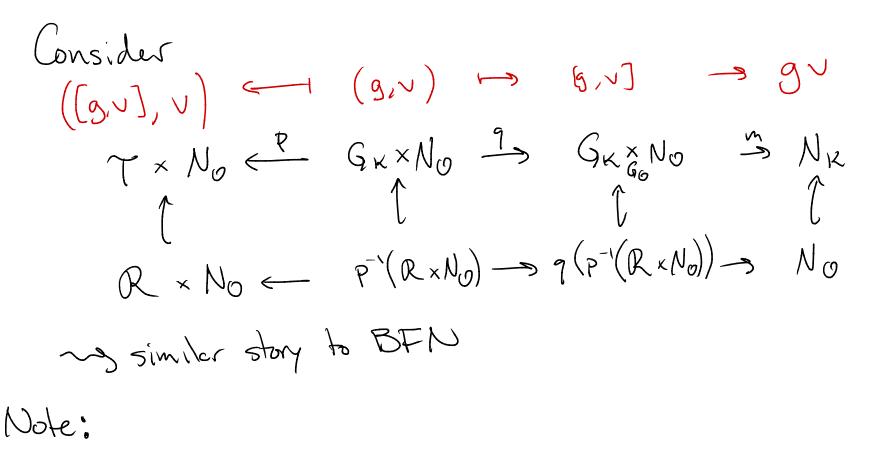
Thank ! you!

BFN

 $\begin{array}{c} \text{Consider} \\ (\underline{b}_{2},\underline{s}_{N}], [\underline{b}_{1},\underline{v}] \end{pmatrix} & \longleftarrow \\ (\underline{b}_{2},\underline{s}_{N}], [\underline{b}_{1},\underline{v}] \end{pmatrix} & \longleftarrow \\ T \times \mathcal{R} \stackrel{P}{\leftarrow} G_{K} \times \mathcal{R} \stackrel{q}{\rightarrow} G_{K} \stackrel{X}{}_{\mathcal{G}_{0}} \mathcal{R} \stackrel{\mathcal{T}}{\rightarrow} T \\ \begin{array}{c} T \\ f \\ \end{array} \\ \mathcal{R} \times \mathcal{R} \stackrel{P}{\leftarrow} P^{-}(\mathcal{R} \times \mathcal{R}) \xrightarrow{q} (P^{-}(\mathcal{R} \times \mathcal{R})) \xrightarrow{q} \mathcal{R} \end{array}$

Theorem: (Braverman, Finkelberg, Nalezjina) $C_1 \not = (m \circ g)_{\star} \circ p^{\star}(C_1 \boxtimes C_2) \text{ gives } A := (H^{G_0}(\mathbb{R}), \not)$ the structure of a commutative algebra (over c). Mc:= Spec A "Coulomb Branch"

HKW



Using the map
$$\mu: T \rightarrow N_{k}$$
, $[g, v] \rightarrow gv$ form $T \propto T_{N_{k}}$
then $R/G_{0} \sim (T \propto T)/G_{k}$ $C.f.$ Steinberg
 $[g,v] \sim ([g,v], [g', 6T'g^{-1}]) = (G,v], [i, gv])$ variety

The Grubhition product on A should be thought of
as coming from "
$$HGr(T \times T)$$
." Moreover, for $v \in Nk$
expect, c.f. Springer theory,
 $H_{\cdot}^{Grk}(T \times T) \in H_{\cdot}^{stab(v)}(\mu^{-1}(v))$

Theorem (HKW, in prep.)

$$A (\mathcal{V} H^{stabo(w)} (\mu^{-1} (\omega)) \cong H.(M_{\nu})$$

 $M_{\nu} := (G_{\kappa}.\nu) \cap No/G_{0}$