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Philosophy :

Geometry of e near (ooo) encodes information about L .
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Note :

They also conjecture about the higher degree , these
m,
inte]

are determined by of higher moduli spaces & .
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For torus knots ( f - xn- th , gcdcniekl) this can be taken

further
.
Let Ho be the stun spherical Cherednik

algebra :
generators : X r y

s s s

loch) as "] Glee ]

relations : i) r XT' = rcx)
ii) r yr

-I = rly)

iii) [x.y] = Sy , x 's - c Sy, a>Mx > Sa

standard modules :

rep. of Sn

M (t ) = Lf ④
t
y y .v=o

c
'
GET ④ ECHT

T

Theorem:(Barest - Etingof - Ginzburg)
Nc (t) has a finite dimensional simple quotient iff

⇐ kin for n
,
k comprime

ad either

i ) T -- trivial , k 20 ii ) b- = sign ,
ko
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Conjecture : (Gorsky - Oblomkou - Rasmussen- Shende)
There exists a filtration

F on Lma such that

reduced, triply -

Hui
.
( '"III') = Homs. ( e ,grF L * ) graded Honeyhomology

Note :
There are higher a- degree versions

of these statements

given by replacing ① by HQ .
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Results (GK , in prep .) s - inerrant✓ t

Let fcxit) be of x- degree n
,
etfe the spherical

subalgebra of the glu rational Cherednik algebra HT .

Note :

eHTeEeHceqo@cx.yVcx.y's - n)

Theorem :

There is an action of effete on

H:(e.g . nice'M .

In particular, for f- = x"- th (n , k) coprime

H:(e
"' ) I Ina .

Remark :

There is a natural generalization
to higher a- degree

agreeingwith the above conjectures .
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Physics (DGHOR,in prep .)
- 3d f- 4 Gauge theory

G -_ Gun , N -
- green. ④ on a ¥8

→ No Eµµ= Hilbnfe)

Ffa Is subalgebra of the glue

y

'III!:/ cherednie algebra

'E'f÷¥a←a¥: a?÷.ie?hksylo.BdHsusyfD,BsIEHm.n( L )
+ higher degree versions
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Coutances
Choose G complex reductive, NE Rep G . Denote

= EKED ,
K= #l .

The spaceoftro.pl# R is (as a set)

R =/ @DE Gkgx
.

No I g- ' ve No}- Gkxg.NET
u

think : {IN v.gu
c- No}

Theorem : ( Braverman , Finkelberg , Nakajima)
"

A := Ha:(R) has the structure of a
commutative

g-' v u

think : -Ey*p=IWalgebra ( over Q) . ④it -w

Mc : = Spect
"

Coulomb Branch
"
H"
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Note :

A has a
natural quantization and admits a

family of " flavor
" deformations given by

1 → G → I → Te → I

fort a torus such that EPN .

← scales t

AT := HE:*:-( R)
Ex :
- G = ex

,
N - al

→ A = www.wT/Cuv=we),UoEQY7Ee
a

- G = Gun, al N = geln, e) ⑦ an , 8=9×08,
'Technica

→ Eat ettme
,
NE Hilbncez )
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BFNSpringertheory-fth.bnwme-uy.mn#zu)
Choose ve Nk and set V. ⇒ (GTIXQEot.vn No , where

§ ,! is the preimage of (Tf)oc(Te)k in 8k .

Note :

If Tv = stabggxa.fr )
and Spv : = {⑨ E Gr : g

-'

v c- No}

then Vifgo = Spf think :
ed

}g-
i

Theorem:(HKW)
~

~

There is an Aa - module structure on ht:(Spu) .

Note:
The deformation and quantization parameters may be forced to

obey (linear) relations depending on Tv .
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(et e = Spee
GE"⇒¥×*D be the germ of at

plane curve singularity .

Without loss , assume tha

fcx.tl = x
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x
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-

-
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Then far G -

-Gun , al , N - glenoid
"

e
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:= ↳ em E Spu

arrears
. at :÷÷÷÷÷

.

"

÷)
Gr :
H¥fe

" ) admits an action of ettce for some
c
.
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Sketch of Proof :

first note that af
.
Lusztig -Smelt

E' - { eEI÷¥. tear } # t:ttm%frhconf :X

Using A → Cg] one finds 1=67*5' EX if

① 67*5's y
't

② 07*5'rg=rrgang=@y*
} ⇒ 5.Yea ,Hero

Similarly ,
if g

':(e.Hero then
*

g-
'
E X

.
Thus

,

CHEX E Spr .
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Remark :
For f- = x" - th ,

n ,
k coprime , we find Iv E e

"
has isolated

fixed points labelled by monomial ideals .. Moreover,
it requires

c=
- heh !

In the fixed -point basis we
can show :

Lemma : (GK, in prep . )
⇒As a module for ethyne ,

HE (e
"

has a unique

singular vector. (⇒ Hitech.nl =
acid ④ M

,
MeRep ethene
simple )

ii) grdim Me:( Ein) = test it , (⇒ dim .cn. 'aint'll
Theorem / Cor : ( GK, in prep . )
H:

"

Cec E ELI
Proof :

Only one such module satisfying it
,
ii ) exists.



Conclusions✓ for

① @
Cd is a generalized affine Springer

fiber (gasp )

C any plane
curve singularity .



Conclusions✓ for

① @
Ed is a generalized affine Springer

fiber (gasp )

C any plane
curve singularity .

② Using a construction
due to HKW ,

this gives an action

L

of etta e on H .
(e
")

.

-



Conclusions✓ for

① @
CD is a generalized affine Springer

fiber (gasp )

C any plane
curve singularity .

② Using a construction
due to HKW ,

this gives an action

L

of etta e on H .
(e
")

.

③ For E = ecn.ie, corresponding to a torus knot
,
we have

nice: Zeta .
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1) Geometrically realize differential leading to KR homology

2) Replace RCA by cyclotonic RCA for 3d Mirror)

vs other invariants ?

3) Other colorings ?



Thank
you

!
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Is Gong
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R Js T
^

t f

r
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- 'flour)→ glp- '(RxRhs R

Theorem : ( Braverman , Finkelberg , Nakajima)
C
, DG : = cnn.gl#op*(GDxc4 gives A :'-(Ha:(R) , O )

the structure of a commutative algebra (
over e) .
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"
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ttkw
Consider

((g.u] , v ) a Csn ) ↳ Csi → gu

Tx Not GKXNO Is GKY.NO I Nk
^

t f

R
! No ← p

- ' flax → qlp- '(Rx#→ No

→ similar story to BFN

Note :

Using the map in :T → Nk ,
[9.DNT form T x T

Nk
'

then RIGon ftp..TT/Gk C- f
. Steinberg

GNI - (G.is , Cgi, gist is , a. guy
variety



The convolution product on A should be thought of

as coming from
"HGk(p ×µT) .

"

Moreover, for u E NK

expect , c.f . Springer theory,

Ha :( t.x.tl e test:
"' le-yuh

Theorem (HKW ,
in prep .)

A flit:b
" futile t.lu. )

Mv : = (Gia . vlnNo/g
,


