Coulomb Branches and Plane Curve Singularities

Niklas Garner
UC Davis April 1st 2020

Motivation

Consider $e:=\{f(x, t)=0\} \subset \mathbb{C}^{2}$ a plane curve that is singular at $(0,0)$. The intersection of $S_{r}^{3} \leq \mathbb{C}^{2}$, for $r \ll 1$, and C is a link $\mathcal{S} \subset \mathbb{S}^{3}$.

Motivation

Consider $e:=\{f(x, t)=0\} \subset \mathbb{C}^{2}$ a plane curve that is singular at $(0,0)$. The intersection of $S_{r}^{3} \subseteq \mathbb{C}^{2}$, for $r \ll 1$, and e is a link $\mathcal{L} \subset \mathbb{S}^{3}$.

e.g. $f(x, t)=x^{2}-t^{3}$
\leadsto trefoil

Only depends on the type of singularity!

Motivation

Consider $C:=\{f(x, t)=0\} \subset \mathbb{C}^{2}$ a plane curve that is singular at $(0,0)$. The intersection of $S_{r}^{3} \leq \mathbb{C}^{2}$, for $r \ll 1$, and e is a link $L<\Phi^{3}$.

e.g. $f(x, t)=x^{2}-t^{3}$
\leadsto trefoil

Only depends on the type of singularity!

Philosophy:
Geometry of C near (0,0) encodes information about \mathcal{L}.

Denote $R=\mathbb{C}[[x, t]] / f(x, t)$ and $e^{\text {cans }}:=\{$ colength in ideals $I<R\}$

Denote $R=\mathbb{C}[[x, t]] / f(x, t)$ and $e^{[m]}:=\{$ colength m ideals $I<R\}$

Conjecture: (Oblomko-Rasmussen-Sheade)
For singularity with Minor number $\mu\left(:=\operatorname{dim}_{⿷} \mathbb{C}[(x,+]] /\left(a_{x} f, a_{\varepsilon} f\right)\right)$

$$
\bar{P}_{\min }(\mathcal{L})=\left(\frac{1}{q}\right)^{\mu-1} \sum_{m \geq 0} q^{2 m} w\left(e^{[m]}\right)
$$

$w(x)=$ weight polynomial of $X \sim$ graded of euler character
$\overline{P_{m i n}}:$ graded character of the lowest "a-degree"
(unreduced) triply graded HOMFLY homology

Denote $R=\mathbb{C}[[x, t]] / f(x, t)$ and $e^{[m]}:=\{$ colength m ideals $I<R\}$

Conjecture: (Oblomko-Rasmussen-Sheade)
For singularity with Minor number $\mu\left(:=\operatorname{dim}_{⿷} \mathbb{C}[(x,+]] /\left(a_{x} f, a_{\varepsilon} f\right)\right)$

$$
\bar{P}_{\min }(\mathcal{L})=\left(\frac{1}{q}\right)^{n-1} \sum_{m=0} q^{2 m} w\left(e^{[m]}\right)
$$

$w(X)=$ weight polynomial of $X \sim$ graded of euler character
$\bar{P}_{\text {min }}:=$ graded character of the lowest "a-degree"
(unreduced) triply graded HOMFLY homology

Note:
They also conjecture about the higher degree, these are determined by of higher moduli spaces $e^{[m, m+e]}$.

For torn knots $\left(f=x^{n}-t^{k}, \operatorname{gad}(n, k)=1\right)$ this can be taken fur the.

For torus knots $\left(f=x^{n}-t^{k}, \operatorname{gad}(n, k)=1\right)$ this can be taken further. Let l_{c} be the sen spherical Cherednile algebra:
$\begin{array}{lccc}\text { generators: } & x & \sigma & y \\ & s & s & s \\ & \mathbb{C}[h] & \mathbb{C}\left[S^{n}\right] & \mathbb{C}\left[h^{*}\right]\end{array}$
relations: i) $\sigma \times \sigma^{-1}=\sigma(x)$
ii) $\sigma y \sigma^{-1}=\sigma(y)$
iii) $[x, y]=\langle y, x\rangle-c \sum_{\text {:ic ic }}\langle y, \alpha\rangle\left\langle\alpha^{v}, x\right\rangle S_{\alpha}$

For torus knots $\left(f=x^{n}-t^{k}, \operatorname{gad}(n, k)=1\right)$ this can be taken further. Let l_{c} be the sen spherical Cherednile algebra:

$$
\begin{array}{cccc}
\text { generators: } & x & \sigma & y \\
& s & s & s \\
& \mathbb{C}[h] & \mathbb{C}\left[S^{n}\right] & \mathbb{C}\left[h^{*}\right]
\end{array}
$$

relations: i) $\sigma \times \sigma^{-1}=\sigma(x)$
ii) $\sigma y \sigma^{-1}=\sigma(y)$

$$
\text { iii) }[x, y]=\langle y, x\rangle-c \sum_{\substack{\text { ias }}}\langle y, \alpha\rangle\left\langle\alpha^{v}, x\right\rangle S_{\alpha}
$$

Standard modules:

$$
M_{c}(\tau)=M_{c}{\mathbb{C}\left(S_{n}\right] \otimes \mathbb{C}[k]}_{\otimes}^{t^{\text {rep. of } S_{n}}} \begin{aligned}
& \text { wy } y \cdot v=0
\end{aligned}
$$

For torus knots $\left(f=x^{n}-t^{k}, \operatorname{gad}(n, k)=1\right)$ this can be taken further. Let l_{c} be the sen spherical Cherednile algebra:

generators:	x	σ	y
	s	s	s
	$\mathbb{C}[h]$	$\mathbb{C}\left[S^{n}\right]$	$\mathbb{C}\left[h^{*}\right]$

relations: i) $\sigma \times \sigma^{-1}=\sigma(x)$
ii) $\sigma y \sigma^{-1}=\sigma(y)$
iii) $[x, y]=\langle y, x\rangle-c \sum_{\text {in cos }}\langle y, \alpha\rangle\left\langle\alpha^{v}, x\right\rangle S_{\alpha}$

Standard modules:

$$
M_{c}(\tau)=M_{c}{\mathbb{C}\left[S_{n}\right] \otimes \mathbb{C}\left[k^{-}\right]}_{\otimes}^{t^{\text {rep. of } S_{n}}} \begin{aligned}
& \text { wy } y \cdot v=0
\end{aligned}
$$

Theorem: (Berest-Etingof-Ginzburg)
$\mu_{c}(\tau)$ has a finite dimensional simple quotient if $c=k / n$ for n, k comprime and either
i) $\bar{\tau}=$ trivial, $k>0$
ii) $\tau=\operatorname{sign}, k<0$

Note:
The algebra \mathcal{L}_{c} has an inner $\operatorname{se}(2,4)$ action with carton generator h.

Note:
The algebra \mathcal{H}_{c} has an inner $\mathcal{E}(2, \mathbb{C})$ action with Carton generator h.

Prop: (Gorsky-Oblomkou-Rasmussen-Shende)
reduced, doubly-

$$
P_{\text {min }}\left(\begin{array}{c}
(n k k)-\text { tons } \\
k
\end{array} \text { of } n_{n}\right)=\operatorname{tr}\left(q^{h} ; \operatorname{Hom}_{s^{n}}\left(\mathbb{C}, L_{k / n}\right)\right)
$$

Note:
The algebra \mathcal{H}_{c} has an inner $\mathcal{P}(2, \mathbb{4})$ action with carton generator h.

Prop: (Gorsky-Oblomkou-Rasmussen-Shende)

$$
P_{\text {min }}\left(\begin{array}{c}
(n, k)-\text { tons } \\
k
\end{array} \text { of } n=\operatorname{tr}\left(q^{h} ; \operatorname{Hom}_{s^{n}}\left(\mathbb{C}, L_{k / n}^{k}\right)\right)\right.
$$

reduced, doublygraded HOMFLY polynomial
Conjecture: (Gorsky-Oblomkou-Rasmussen-Shende)
There exists a filtration \mathcal{F} on $L_{m / n}$ such that

$$
H_{\min }\binom{(n, k) \text {-torus }}{k n o t} \cong \operatorname{Hom}_{S^{n}}\left(\mathbb{C}, g^{F} L_{k / n}\right) \begin{aligned}
& \text { reduced, triply- } \\
& \text { graded HOMFLY } \\
& \text { homology }
\end{aligned}
$$

Note:
The algebra \mathcal{H}_{c} has an inner $\mathcal{P}(2, \mathbb{4})$ action with carton generator h.

Prop: (Gorsky-Oblomkou-Rasmussen-Shende)

$$
\left.P_{\min (}^{(n, k)-\text { tons }} \begin{array}{c}
k
\end{array}\right)=\operatorname{tr}\left(q_{n}^{h} ; \operatorname{Hom}_{s^{n}}\left(\mathbb{C}, L_{k / n}\right)\right)
$$

reduced, doublygraded HOMFLY polynomial
Conjecture: (Gorsky-Oblomkou-Rasmussen-Shende)
There exists a filtration \mathcal{F} on $L_{\mathrm{m} / \mathrm{n}}$ such that

$$
H_{\min }\binom{(n, k) \text {-torus }}{k n o t} \cong \operatorname{Hom}_{S^{n}}\left(\mathbb{C}, g^{F} L_{k / n}\right) \begin{aligned}
& \text { reduced triply- } \\
& \text { graded HOMFLY } \\
& \text { homology }
\end{aligned}
$$

Note:
There are higher a-degree versions of these statements given by replacing \mathbb{C} by $\Lambda^{l} \mathbb{C}$.

Results (GK, in pere)
Let $f(x, t)$ be of x-degree $n, e{\overline{\rho_{c}} e \text { the spherical }}^{\text {Le }}$ subalgebre of the gen rational chereduik algebra Ll_{c}.
(Results (GK, in pres)
Let $f(x, t)$ be of x-degree $n, \overline{\alpha l}_{c} e$ the spherical subalgebra of the gen rational cherednik algebra $\overline{2 l c}_{c}$.

Note:

$$
\begin{aligned}
& \text { Note: } \\
& e \overline{L l}_{c} e
\end{aligned} e \mu_{c} e \bigotimes_{\mathbb{C}}^{\otimes}(\mathbb{C}[x, y] /[x, y]=n)
$$

(Results (GK, in pup)
Let $f(x, t)$ be of x-degree $n, e \bar{\mu}_{c} e$ the spherical subalgebra of the gen rational cherednik algebra $\overline{~_{c}}$.

Note:

$$
\begin{aligned}
& \text { Note: } \\
& e \overline{L l}_{c} e
\end{aligned} e \mu_{c} e \bigotimes_{\mathbb{C}}^{\otimes}(\mathbb{C}[x, y] /[x, y]=n)
$$

Theorem:
There is an action of $\overline{\mathrm{L}}_{c} e$ on

$$
H^{L} \cdot\left(e^{[0]}\right)=\underset{m \geqslant 0}{\oplus} H_{.}^{L}\left(e^{[m]}\right)
$$

In particular, for $f=x^{n}-t^{k} \quad(n, k)$ coprime

$$
H_{0}^{L}\left(e^{[\cdot]}\right) \cong e^{-k / n}
$$

(Results (GK, in pup)
Let $f(x, t)$ be of x-degree $n, \overline{\mathscr{l}}_{c} e$ the spherical subalgebra of the gen rational Cherednik algebra $\overline{\mathrm{Ll}_{c}}$.

Note:

$$
\frac{\text { Note: }}{e \mathscr{L}_{c} e} \cong e \mu_{c} e{\underset{c}{\otimes}}_{\otimes}^{\otimes}(\mathbb{C}[x, y] /[x, y]=n)
$$

Theorem:
There is an action of $e \overline{P l}_{c} e$ on

$$
H^{L}\left(e^{[0]}\right)=\underset{m \geqslant 0}{\oplus} H_{0}^{L}\left(e^{[m]}\right) .
$$

In particular, for $f=x^{n}-t^{k}(n, k)$ coprime

$$
H_{0}^{L}\left(e^{[\cdot]}\right) \cong e^{-k / n}
$$

Remark:
There is a natural generalization to higher a-degree agreeingwith the above conjectures.

Physics (DGHOR,in prep.)
$-3 \& \quad r=4$ Gange theory

$$
G=G L(n, \mathbb{C}) \quad N=g l(n, \mathbb{C}) \oplus \mathbb{C}^{n} \Leftrightarrow(n)
$$

Physics (DGHOR,in prep.)
-3d $r=4$ Gayye theory

$$
\begin{aligned}
G=G L(n, \mathbb{C}) \quad N & =g l(n, \mathbb{C}) \oplus \mathbb{C}^{n} \leadsto Q \\
\leadsto & M_{c} \cong M_{H}=H i l b^{n}\left(\mathbb{C}^{2}\right)
\end{aligned}
$$

Physics (DGHOR,in prep.)
$-3 \& \quad r=4$ Gange theory

$$
\begin{aligned}
& G=G L(n, \mathbb{C}) \quad N=g l(n, \mathbb{C}) \oplus \mathbb{C}^{n} \leadsto \\
& \leadsto M_{c} \cong M_{H}=\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)
\end{aligned}
$$

$\tilde{A}_{\hbar} \cong$ spherical subalgebra of the gen rational Cherednix algebra

Physics (DGHOR,in prep.)
$-3 d \mathcal{N}=4$ Gange theory

$$
\begin{aligned}
& G=G L(n, \mathbb{C}) \quad N=g l(n, \mathbb{C}) \oplus \mathbb{C}^{n} \leadsto \\
& \leadsto M_{c} \cong M_{H}=\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)
\end{aligned}
$$

$\tilde{A}_{\hbar} \cong$ spherical subalgebra of the gen rational Cherednix algebra

(Physics (DGHOR,in prep.)
-3d $\quad r=4$ Gange theory

$$
\begin{aligned}
G & =G L(n, \mathbb{C}) \quad N \\
& =g l(n, \mathbb{C}) \oplus \mathbb{C}^{n} \leadsto \\
\leadsto M_{c} \cong M_{H} & =H i b^{n}\left(\mathbb{C}^{2}\right)
\end{aligned}
$$

$\widetilde{A}_{\hbar} \cong$ spherical subalgebra of the gln rational Cherednik algebra

$$
\tilde{A}_{\hbar} \because \mathcal{L}_{\text {susy }}\left(D, B_{2}\right)
$$

(Physics (DGHOR,in prep.)
-3d $\mathcal{K}=4$ Gauge theory

$$
\begin{aligned}
G & =G L(n, \mathbb{C}) \quad N=g l(n, \mathbb{C}) \oplus \mathbb{C}^{n} \leadsto \\
\leadsto M_{c} \cong M_{H} & =H \cdot l b^{n}\left(\mathbb{C}^{2}\right)
\end{aligned}
$$

$\tilde{A}_{\hbar} \cong$ spherical subalgebra of the glen rational Cherednic algebra

$$
\tilde{A}_{\hbar} \subset \mathcal{L}_{\text {suss }}\left(D, B_{2}\right)
$$

Conjecture:

$$
\operatorname{l}_{\text {suss }}\left(D, B_{2}\right) \cong H_{\text {min }}(\alpha)
$$

thigher degree versions

Coulomb Branches
Choose G complex reductive, $N \in R e p G$. Denote $O=\mathbb{C}[(t)], K=\mathbb{C}((t))$.
(Coulomb Branches
Choose G complex reductive, $N \in \operatorname{Rep} G$. Denote

$$
0=\mathbb{C}[(t)], K=\mathbb{C}((t)) \text {. }
$$

The space of triples R is (as a set)

$$
Q=\left\{[g, T] \in G_{k} \times{ }_{G_{0}} N_{0} \mid v^{\prime}=g \cdot v \in N_{0}\right\} \subset G_{k} \times_{G_{0}} N_{0}=: \tau
$$

(Coulomb Branches
Choose G complex reductive, $N \in \operatorname{Rep} G$. Denote

$$
0=\mathbb{C}[(t)], K=\mathbb{C}((t)) \text {. }
$$

The space of triples R is (as a set)

$$
R=\left\{[g,] \in G_{k} \times N_{G_{0}} N_{0} \mid v^{\prime}=g \cdot v \in N_{0}\right\} \subset G_{K} \times{ }_{G_{0}} N_{0}=: \tau
$$

think: $\left\{\underset{\sim}{\sim} \frac{g v}{3 v} \quad v, g v \in N_{0}\right\}$
(Coulomb Branches
Choose G complex reductive, $N \in \operatorname{Rep} G$. Denote $O=\mathbb{C}[(t]], K=\mathbb{C}((t))$.
The space of triples R is (as a set)

$$
\begin{aligned}
& R=\left\{[g,] \in G_{k} \times{ }_{G_{0}} N_{0} \mid v^{\prime}=g \cdot v \in N_{0}\right\} \subset G_{k} \times_{G_{0}} N_{0}=: \tau \\
& \text { think: }\{\underset{\sim}{\substack{3 v}} \text { v,gveNo }\}
\end{aligned}
$$

Theorem: (Braverman, Finkelberg, Nake jima) $A:=H^{a_{0}}(R)$ has the structure of a commutative algebra (over \mathbb{C}).

Coulomb Branches
Choose G complex reductive, $N \in \operatorname{Rep} G$. Denote $0=\mathbb{C}[(t)], K=\mathbb{C}((t))$.
The space of triples R is (as a set)

$$
\begin{aligned}
& R=\left\{[g,] \in G_{k} \times N_{G_{0}} N_{0} \mid v^{\prime}=g \cdot v \in N_{0}\right\} \subset G_{k} \times_{G_{0}} N_{0}=: \tau \\
& \text { think: }\left\{\underset{\sim}{-3 v} \quad v, g v \in N_{0}\right\}
\end{aligned}
$$

Theorem: (Braverman, Finkelbery, Nake jima) $A:=H^{a_{0}}(R)$ has the structure of a commutative algebra (over \mathbb{C}). think:

Coulomb Branches
Choose G complex reductive, $N \in \operatorname{Rep} G$. Denote $0=\mathbb{C}[[t]], K=\mathbb{C}((t))$.
The space of triples R is (as a set)

$$
\begin{aligned}
& \left.R=\{[g,]] \in G_{k} \times{ }_{G_{0}} N_{0} \mid \quad g^{-1} v \in N_{v}\right\} \subset G_{K} \times_{G_{0}} N_{0}=: T \\
& \text { think: }\left\{\frac{g^{-N}}{\stackrel{v}{v}} v, g^{\prime \prime} v \in N_{0}\right\}
\end{aligned}
$$

Theorem: (Braverman, Finkelberg, Nake jima) $A_{0}:=H^{a_{0}}(R)$ has the structure of a commutative algebra (over \mathbb{C}). think:

$\mu_{c}:=\operatorname{Spec} A$ "Coulomb Branch"

Note:
A has a natural quantization and admits a family of "flavor" deformations given by

$$
1 \rightarrow G \rightarrow \widetilde{G} \rightarrow T_{F} \rightarrow 1
$$

for T_{F} a torus such that $\widetilde{G} C N$.

$$
\widetilde{A}_{\hbar}:=H^{\tilde{G}_{0} \times C_{1}^{x}}(\Omega)
$$

Note:
A has a natural quantization and admits a family of "flavor" deformations given by

$$
1 \rightarrow G \rightarrow \widetilde{G} \rightarrow T_{F} \rightarrow 1
$$

for T_{F} a torus such that $\tilde{G} C N$. scales

$$
\widetilde{A}_{\hbar}:=H^{\tilde{G}_{0} \times 0_{i n t}^{x_{n}^{x}}}(R)^{\text {scales }}
$$

Ex:

$$
\begin{aligned}
-G= & \mathbb{C}^{x}, N=\mathbb{C}^{l} \\
& \leadsto A=\mathbb{C}[u, v, w] /\left(u v=w^{l}\right), M_{c} \cong \mathbb{C}^{2} / \mathbb{Z}_{l}
\end{aligned}
$$

Note:
A has a natural quantization and admits a family of "flavor" deformations given by

$$
1 \rightarrow G \rightarrow \widetilde{G} \rightarrow T_{F} \rightarrow 1
$$

for T_{F} a torus such that $\tilde{G} C N$.
scales

$$
\widetilde{A}_{n}:=H^{\tilde{G}_{0} x c_{c a t}^{\boxed{\varepsilon}}}(\mathbb{R})
$$

Ex:

$$
\begin{aligned}
-G & =\mathbb{C}^{x}, N=\mathbb{C}^{l} \\
& \leadsto A=\mathbb{C}[u, v, w] /\left(u v=w^{e}\right), \mu_{c} \cong \mathbb{C}^{2} / \mathbb{E}_{l} \\
-G & =G L(n, \mathbb{C}) \quad N=g e(n, \mathbb{c}) \oplus \mathbb{C}^{n}, \widetilde{G}=G \times \mathbb{C}_{\text {di }}^{x} \begin{array}{c}
\text { scales } \\
\text { gl e }(n, c)
\end{array} \\
& \left.\leadsto \tilde{A}_{\hbar}\right|_{\hbar=1} \cong e \overline{\mathcal{P}_{m}} e, \widetilde{\mu}_{c} \cong H_{i} \mid b^{n}\left(\mathbb{C}^{2}\right)
\end{aligned}
$$

(BFN Springer Theory (Hilbum-Kemnitzer)
Choose $v \in N_{K}$ and set $V_{v}:=\left(\tilde{G}_{K}^{0} \ngtr \mathbb{C}_{\text {rot. }}^{x}\right) \cap N_{O}$, where \tilde{G}_{K}^{0} is the preimege of $\left(T_{F}\right)_{0} \subset\left(T_{F}\right)_{K}$ in \tilde{G}_{K}.
(BFN Springer Theory (Hilbom-Kemniteer)
Choose we N_{k} and set $V_{0}:=\left(\widetilde{G}_{k}^{0} \otimes \mathbb{C}_{\text {rot. }}^{x}\right) \cap N_{0}$, where \tilde{G}_{K}^{0} is the preimege of $\left(T_{F}\right)_{O} \subset\left(T_{F}\right)_{K}$ in \tilde{G}_{K}.
Note:
If $\tau_{v}=\operatorname{stab} \tilde{G}_{q_{x}^{p} \times C^{x}}(v)$ and $\left.S_{p_{v}}:=\{g] \in G_{r}: g^{-0} \cup \in N O\right\}$
then $\quad v_{v} / G_{G}=S_{p v} / L_{v}$
(BFN Springer Theory (Hilbum-Kemnitzer)
Choose we N_{k} and set $V_{0}:=\left(\widetilde{G}_{k}^{0} \otimes \mathbb{C}_{\text {rot. }}^{x}\right) \cap N_{0}$, where \tilde{G}_{K}^{0} is the preimege of $\left(T_{F}\right)_{O} \subset\left(T_{F}\right)_{K}$ in \tilde{G}_{K}.
Note:
If $\tau_{v}=\operatorname{stab} \tilde{G}_{q_{0}^{p} \times \mathbb{C}^{x}}(v)$ and $\left.S_{p_{v}}:=\{g] \in G_{r}: g^{-0} \cup \in N_{0}\right\}$

(BFN Springer Theory (Milbum-Kemnitzer)
Choose ven N_{k} and set $V_{0}:=\left(\widetilde{G}_{k}^{0} \rtimes \mathbb{C}_{\text {rot }, v}^{x}\right) \cap N_{0}$, where \tilde{G}_{K}^{0} is the preimege of $\left(T_{F}\right)_{O} \subset\left(T_{F}\right)_{K}$ in \tilde{G}_{K}.
Note:
If $\tau_{v}=\operatorname{stab} \tilde{G}_{G_{w} \times C^{x}}(v)$ and $\left.S_{p_{v}}:=\{g] \in G_{r}: g^{-v} \cup \in N 0\right\}$

Theorem: (HKW)
There is an \tilde{A}_{k}-module structure on $H^{〔}$. (S $S_{\rho_{0}}$).
(BFN Springer Theory ($\left.\begin{array}{c}\text { Bilbo- Kemmiter } \\ \text { Weever }\end{array}\right)$
Choose $v \in N_{k}$ and set $V_{v}:=\left(\tilde{G}_{k}^{0} \nsucc \mathbb{C}_{\text {rot }}^{x} v\right) \cap N_{O}$, where \tilde{G}_{K}^{0} is the preimege of $\left(T_{F}\right)_{0} \subset\left(T_{F}\right)_{K}$ in $\tilde{G K}$.
Note:
If $\tau_{v}=\operatorname{sta}{\tilde{G}_{k} \times \mathbb{E}^{*}}(v)$ and $S_{p v}:=\left\{[g] \in G_{r}: g^{-1} v \in N_{0}\right\}$
then $\quad v_{v / G O}=S_{P_{v}} / L_{v}$

Theorem: (HKW)
There is an \tilde{A}_{\hbar}-module structure on $H^{\tilde{L}_{v}} \cdot\left(S_{P_{\nu}}\right)$.
Note:
The deformation and quantization parameters may be forced to obey (linear) relations depending on \tilde{L}_{v}.
(Back to Hilbert Schemes
Theorem: ($G K$, in prep)
Let $e=\operatorname{Spec} \mathbb{C}[x, t]] /(f(x, t))$ be the germ of at plane curve singularity. Without loss, assume the

$$
f(x, t)=x^{n}-f_{n-1} x^{n-1}-\ldots-f_{0} .\binom{\text { Weierstranss }}{\text { preparation }}
$$

(Back to Hilbert Schemes
Theorem: (GK, in prep)
Let $e=\operatorname{Spec} \mathbb{C}[[x, t]] /(f(x, t))$ be the germ of at plane curve singularity. Without loss, assume the

$$
f(x, t)=x^{n}-f_{n-1} x^{n-1}-\ldots-f_{0} \cdot\binom{\text { Meier strauss }}{\text { preparation }}
$$

Then for $G=G L(n, 0), \quad N=g \ln \oplus \mathbb{C}^{n}$

$$
e^{[\cdot]}:=\bigsqcup_{m \geqslant 0} e^{[m]} \cong S_{p v}
$$

(Back to Hilbert Schemes
Theorem: ($G K$, in prep)
Let $e=\operatorname{Spec} \mathbb{C}[[x, t]] /(f(x, t))$ be the germ of at plane curve singularity. Without loss, assume the

$$
f(x, t)=x^{n}-f_{n-1} x^{n-1}-\ldots-f_{0} \cdot\binom{\text { Meier strauss }}{\text { preparation }}
$$

Then for $G=G L(n, 0), \quad N=g \ln \oplus \mathbb{C}^{n}$

$$
e^{[\cdot]}:=L_{m \geqslant 0} e^{[m]} \cong S_{p v}
$$

for $v=(e, \gamma), \quad \gamma=\left(\begin{array}{ccccc}f_{n-1} & f_{n-2} & \cdots & f_{1} & f_{0} \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0\end{array}\right)$
(Back to Hilbert Schemes
Theorem: ($G K$, in prep)
Let $e=\operatorname{Spec} \mathbb{C}[[x, t]] /(f(x, t))$ be the germ of at plane curve singularity. Without loss, assume the

$$
f(x, t)=x^{n}-f_{n-1} x^{n-1}-\ldots-f_{0} \cdot\binom{\text { Weer strauss }}{\text { preparation }}
$$

Then for $G=G L(n, 0), N=g \ln \oplus \mathbb{C}^{n}$

$$
e^{[\cdot]}:=L_{m \geqslant 0} e^{[m]} \cong S_{p v}
$$

for $v=(e, \gamma), \quad \gamma=\left(\begin{array}{ccccc}f_{n-1} & f_{n-2} & \cdots & f_{1} & f_{0} \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0\end{array}\right)$
Cor:
$H_{*}^{\tilde{T v}_{v}}\left(e^{(\cdot \cdot)}\right)$ admits an action of $e \bar{H}_{c} e$ for some c.

Sketch of Proof:
First note that
c.f. Lusztig-Smelt

$$
e^{[\cdot]}=\{\underset{\substack{\text { nonzero } \\
\text { ideational } I}}{ } \mid I \subset R\} \cong\left\{\left.\begin{array}{l}
\text { c.f. Lusztig-Smelt } \\
\text { lattices } \Lambda \\
\text { closed under } \gamma
\end{array} \right\rvert\, \wedge c\left(O^{\wedge}\right)^{*}\right\}=: X
$$

Sketch of Proof:
First note that
c.f. Lusztig-Smelt

$$
e^{[\cdot]}=\{\underset{\substack{\text { nonzero n } \\
\text { ideational } I}}{\operatorname{mon}} \mid I<R\} \cong\left\{\left.\begin{array}{l}
\text { lattices } \Lambda \\
\text { closed under } \gamma
\end{array} \right\rvert\, \wedge c\left(O^{\wedge}\right)^{*}\right\}=: X
$$

Using $\Lambda \leftrightarrow[g]$ one finds $\Lambda=\left(O^{n}\right)^{*} g^{-1} \in X$ if
(1) $\left(O^{n}\right)^{*} g^{-1} \subseteq\left(O^{n}\right)^{*}$
(2) $\left(O^{n}\right)^{*} g^{-1} \gamma g=\wedge^{\gamma} g<\wedge g=\left(O^{n}\right)^{*}$

Sketch of Proof:
First note that
c.f. Lusztig-Smelt

$$
C^{[\cdot]}=\left\{\left.\begin{array}{c}
\text { nonzero } \\
\text { fractional } \\
\text { ideals } I
\end{array} \right\rvert\, I \subset R\right\} \cong\left\{\left.\begin{array}{l}
\text { lattices } \Lambda \\
\text { closed under } \gamma
\end{array} \right\rvert\, \wedge \subset\left(O^{\wedge} \wedge^{\star}\right\}=: X\right.
$$

Using $\Lambda \leftrightarrow[g]$ one finds $\Lambda=\left(O^{n}\right)^{*} g^{-1} \in X$ if
$\left.\begin{array}{l}\text { (1) }\left(O^{n}\right)^{*} g^{-1} \subseteq\left(O^{n}\right)^{*} \\ \text { (2) }\left(O^{n}\right)^{*} g^{-1} \gamma g=\Lambda r g<\Lambda g=\left(O^{n}\right)^{*}\end{array}\right\} \Rightarrow g^{-1} \cdot\left(e_{1}, \gamma\right) \in N_{0}$

Sketch of Proof:
First note that
c.f. Lusztig-Smelt

$$
C^{[\cdot]}=\left\{\left.\begin{array}{c}
\text { nonzero } \\
\text { fractional } I \\
\text { ideals } I
\end{array} \right\rvert\, I<R\right\} \cong\left\{\left.\begin{array}{l}
\text { lattices } \Lambda \\
\text { closed under } \gamma
\end{array} \right\rvert\, \wedge \subset\left(O^{\wedge}\right)^{*}\right\}=: X
$$

Using $\Lambda \leftrightarrow[g]$ one finds $\Lambda=\left(O^{n}\right)^{*} g^{-1} \in X$ if
$\left.\begin{array}{l}\text { (1) }\left(O^{n}\right)^{*} g^{-1} \subseteq\left(O^{n}\right)^{*} \\ \text { (2) }\left(O^{n}\right)^{*} g^{-1} \gamma g=\Lambda r g<\Lambda g=\left(O^{n}\right)^{*}\end{array}\right\} \Rightarrow g^{-1} \cdot\left(e_{1}, \gamma\right) \in N_{0}$
Similarly, if $g^{-1} \cdot\left(e_{1}, \gamma\right) \in \mathcal{N}_{0}$ then $\left(O^{n}\right)^{*} g^{-1} \in X$. Thus,

$$
e^{[\cdot]} \cong X \cong S_{p_{v}} .
$$

Remark:
For $f=x^{n}-t^{k}, n, k$ coprime, we find $\tau_{v} \cong \mathbb{C}^{x}$ has isolated fixed points labelled by monomial ideals. Moreover, it requires $c=-6 / n!$

Remark:
For $f=x^{n}-t^{k}, n, k$ coprime, we find $\tau_{v} \cong \mathbb{C}^{x}$ has isolated fixed points labelled by monomial ideals. Moreover, it requires $c=-6 / n$!
In the fixed-point basis we can show:

Remark:
For $f=x^{n}-t^{k}, n, k$ coprime, we find $\tau_{v} \cong \mathbb{C}^{x}$ has isolated fixed points labelled by monomial ideals. Moreover, it requires $c=-6 / n$!
In the fixed-point basis we can show:
Lemma: (GK, in prep.)
i) As a module for $e \overline{\mathscr{M}_{-1 / n}} e, H^{\mathbb{C}^{x}} \cdot\left(e_{(n, k)}^{(\cdot \cdot)}\right)$ has a unique singular vector. $\left(\Rightarrow H^{\mathbb{C}^{x}}\left(e_{(1, x)}^{[\cdot]}\right) \cong \mathbb{C}[x] \otimes M, M \in \operatorname{Rep} e d x_{x / n}^{e}\right.$ simple)

Remark:
For $f=x^{n}-t^{k}, n, k$ coprime, we find $\tau_{v} \cong \mathbb{C}^{x}$ has isolated fixed points labelled by monomial ideals. Moreover, it requires $c=-6 / n!$
In the fixed-point basis we can show:
Lemma: (GK, in prep.)
i) As a module for $e \overline{\mathscr{M}_{-1 / n}} e, H^{\Phi^{x}} \cdot\left(e_{(n, k)}^{(\cdot-3)}\right)$ has a unique singular vector. $\left(\Rightarrow H^{\mathbb{C}^{x}}\left(e_{(n, k)}^{[\cdot]}\right) \cong \mathbb{C}[x] \otimes M, M \in \operatorname{Rep} e d x x_{x / n}^{e}\right.$
ii) $\operatorname{grdim} H^{C^{x}} .\left(e_{(n, 2)}^{(\sqrt{1})}\right)=\frac{1}{1-q^{n}}\left[\begin{array}{c}n-1+1 \\ n-1\end{array}\right]_{q}\left(\Rightarrow \operatorname{dim} \mathbb{C} M=\frac{1}{n}\binom{n+k-1}{n-1}\right)$

Remark:
For $f=x^{n}-t^{k}, n, k$ coprime, we find $\tau_{v} \cong \mathbb{C}^{x}$ has isolated fixed points labelled by monomial ideals. Moreover, it requires $c=-6 / n$!
In the fixed-point basis we can show:
Lemma: (GK, in prep.)
i) As a module for $e \overline{X_{-i / n}} e, H^{c^{x}} \cdot\left(e_{(0,0)}^{c_{3}}\right)$ has a unique singular vector. $\left(\Rightarrow H^{\mathbb{C}^{x}}\left(e_{(, x, x)}^{[3]}\right) \cong \mathbb{C}[x] \otimes M, M \in \operatorname{Rep} e+l_{x=n}^{e}\right.$
ii) $\operatorname{grdim} H^{\alpha^{C}} \cdot\left(e_{(n, 2)}^{(n)}\right)=\frac{1}{1-G^{(2}}\left[\begin{array}{c}n-1+1 \\ n-1\end{array}\right]_{q} \quad\left(\Rightarrow \operatorname{dim} c M=\frac{1}{n}\binom{n+k-1}{n-1}\right)$

Theorem/Cor: (GK, in prep.)

$$
H^{c^{k}} \cdot\left(e_{(0, k)}^{(\mathrm{cJ}}\right) \cong \bar{e}_{-v / n}
$$

Remark:
For $f=x^{n}-t^{k}, n, k$ coprime, we find $\tau_{v} \cong \mathbb{C}^{x}$ has isolated fixed points labelled by monomial ideals. Moreover, it requires $c=-6 / n$!
In the fixed-point basis we can show:
Lemma: (GK, in prep.)
i) As a module for $e \overline{\prod_{-1 / n}} e, H^{c^{k}} \cdot\left(e_{(n, x)}^{[\cdot]}\right)$ has a unique singular vector. $\left(\Rightarrow H^{\mathbb{C}^{x}}\left(e_{(1, k)}^{[\cdot]}\right) \cong \mathbb{C}[x] \otimes M, M \in \operatorname{Rep} e d x x_{l n}^{e}\right.$ simple)
ii) $\operatorname{grdim} H^{\mathbb{C}^{\alpha}} .\left(e_{(n, k)}^{(\sqrt{n})}\right)=\frac{1}{1-q^{[}}\left[\begin{array}{c}n-1+1 \\ n-1\end{array}\right]_{q}\left(\Rightarrow \operatorname{dim} \mathbb{C} M=\frac{1}{n}\binom{n+k-1}{n-1}\right)$

Theorem/Cor: (GK, in prep.)

$$
H^{\mathbb{C}^{k}} \cdot\left(e_{(n, k)}^{(\cdot 3)}\right) \cong \bar{e}_{-2 / n}
$$

Proof:
Only one such module satisfying i), ii) exists.

Conclusions
(1) $e^{[\cdot]}$ is a generalized affine S pringer fiber (GASF) for e any plane curve singularity.

Conclusions
(1) $e^{[\cdot]}$ is a generalized affine Springer fiber (GASF) for e any plane curve singularity.
(2) Using a construction due to HKW, this gives an action of $e \bar{X}_{c} e$ on $H^{L} \cdot\left(e^{\left(l^{7}\right)}\right)$.

Conclusions
(1) $e^{[\cdot]}$ is a generalized affine Springer fiber (GASF) for e any plane curve singularity.
(2) Using a construction due to HKW, this gives an action of $e \overline{X l}_{c} e$ on $H_{0}^{L}\left(e^{t^{[7}}\right)$.
(3) For $e=e_{(n, k)}$ corresponding to a torus knot, we have

$$
H^{d^{x}},\left(e_{(n, k)}^{[\cdot]}\right) \cong \bar{e} \overline{L-k / n} .
$$

Future Directions

1) Geometrically realize differential leading to KR homology

Future Directions

1) Geometrically realize differential leading to KR homology
2) Replace RCA by Cyclotomic RCA (or Bd Mir roo) \leadsto other invariants?

Future Directions

1) Geometrically realize differential leading to KR homology
2) Replace RCA by Cyclotomic RCA (or Sd Mirror) \leadsto other invariants?
3) Other colorings?

Thank you!
$B F N$
Consider

$$
\begin{aligned}
& \left(\left[g_{2,}, g_{n}\right],\left[g_{1, v}\right]\right) \longleftrightarrow\left(g_{2},\left[g_{1}, v\right]\right) \mapsto\left[g_{2},\left[g_{1}, v\right]\right] \rightarrow\left[g_{2} g_{1}, v\right]
\end{aligned}
$$

$$
\begin{aligned}
& R \times R \longleftarrow P^{-1}(R \times R) \rightarrow q\left(p^{-1}(R \times R)\right) \rightarrow R
\end{aligned}
$$

Theorem: (Braverman, Finkelbery, Nakejima)

$$
C_{1} \not C_{2}:=(m \circ q)_{*} \circ p^{*}\left(c_{1} \otimes C_{2}\right) \text { gives } A^{0}:=\left(H^{a_{0}} \cdot(R), \otimes\right)
$$

the structure of a commutative algebra (over \mathbb{C}). $M_{c}:=\operatorname{Spec} A$ "Coulomb Branch"

HEW
Consider

$$
\begin{aligned}
& ([g, v], v) \longleftrightarrow(g, v) \mapsto g, v] \rightarrow g v \\
& \underset{\uparrow}{\tau \times N_{0}} \stackrel{p}{\stackrel{G}{k} \times N_{0}} \xrightarrow{q} \underset{\mathcal{q}_{k} \times N_{0}}{G_{0}} \xrightarrow{m} N_{k} \\
& R \times N_{0} \longleftarrow p^{-1}\left(R \times N_{0}\right) \rightarrow q\left(P^{-1}\left(R \times N_{0}\right)\right) \rightarrow N_{0}
\end{aligned}
$$

\rightarrow similes story to BFN
Note:
Using the map $\mu: \tau \rightarrow N_{k},[g, \nu] \mapsto g V$ form $T \underset{N_{k}}{\times} \tau$, then

$$
\begin{aligned}
& R / G_{0} \sim(\tau \underset{v k}{\times} \tau) / G_{k} \quad \text { c.f. Steinberg } \\
& {[g, v] } \sim([g, v],[g, G T \cdot[J]) \equiv(g, v],[1, g, v) \\
& \text { variety }
\end{aligned}
$$

The convolution product on A should be thought of as coming from " $H^{G / k}\left(\tau x_{N k} \tau\right)$." Moreover, for $v \in N_{k}$ expect, c.f. Springer theory,

$$
H^{G k} \cdot\left(\tau \underset{N_{k}}{G^{2}} \tau\right) \quad \therefore H_{0}^{\operatorname{stab}(v)}\left(\mu^{-1}(v)\right)
$$

Theorem (HKW, in prep.)

$$
\begin{gathered}
A \subset H^{\operatorname{stan}(v)} \cdot\left(\mu^{-1}(v)\right) \cong H_{\cdot}\left(M_{v}\right) \\
M_{v}:=\left(G_{k} \cdot v\right) \cap N_{0} / G_{0}
\end{gathered}
$$

