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Grassmannians |

We are interested in the cohomology pullback of

Gr(k,2n) :={V c C?" | dim V = k} = GLp,/P

T

SpGr(k,2n) :={V C C2"| dim V =k, V C V*} = Spon/(P N Spzn)
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Grassmannians |

We are interested in the cohomology pullback of

Gr(k,2n) :={V c C?" | dim V = k} = GLp,/P
SpGr(k,2n) :={V C C2"| dim V =k, V C V*} = Spon/(P N Spzn)
General setup: partial flag varieties

@ G algebraic group/C, Tc Bc G, W = N(T)/T,
@ For B c P aparabolic, (G/P)T = Wp\W = W/Wp.

For G of type A, B, C, D and P maximal, G/P is a Grassmannian.
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Schubert classes

Schubert classes For 7 € Wp\W, the corresp. Schubert class is

Sy :=|B 7 'P/P| € Hy(G/P).
Then {Sq}rew,\w freely generate H;(G/P) as an Hy(pt)-module.

Classical question: Determine the structure constants,

Si-8= )¢S
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Schubert classes

Schubert classes For 7 € Wp\W, the corresp. Schubert class is

S = [B—n—1 P/P] € H:(G/P).

Then {Sq}rew,\w freely generate H;(G/P) as an Hy(pt)-module.

Classical question: Determine the structure constants,

Si-8= )¢S

Note: if G/P = Gr(k, n), then (in H*, not H7) the ¢} are the

acy

Littlewood-Richardson coefficients for GLx : V@ V, = P, V, ™
E.g. In Gr(2,4), (Hz(pt) = Z[y1, y2, ys. ya]):

SD'SD:SDH+SH+(Y2—,V3)SD (in Hr)



Background and motivation
[eJe] le]

Grassmannians Il

Involution: o : GLop — Glap, X +— J~1(X7)'Y,
J = Antidiag(-1,...,-1,1,...,1).

Spzn = GLS,, P = Pg,, parabolic of type (k,2n — k), (k < n).
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Grassmannians |l

Involution: o : GLop — Glap, X +— J~1(X7)'Y,
J = Antidiag(-1,...,-1,1,...,1).

Spzn = GLS,, P = Pg,, parabolic of type (k,2n — k), (k < n).

Consider the involution A — A reversing A and switching 0 < 1.
Fori(v) := (vv with 10’s turned into 1’s).

(v € (10)"k{0, 1)K} = (SpGr(k,2n))™" < SpGr(k,2n)

[

(1€ 0K12mKy = (Gr(k,2n))T" —" % Gr(k,2n)

ek

Note: We interchangeably consider binary strings 7 € 0127 (i.e.
in We\W) and n~' € W/Wp.
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Cohomology Rings

In equivariant cohomology, we get:

H:,(SpGr(k,2n)T") A Hz,(SpGr(k,2n))

H:,(Gr(k,2n)™") ¢ Hp.(Gr(k.2n))
1

and since each f is injective (Kirwan), to understand * we can
instead compute in the left column.
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Grassmannian (type A) Puzzles

A puzzle of size 2n, ZX for A, i, v € 0K12"K s a tiling by the
puzzle pieces:

ﬁ A ﬁ,their rotations, and <,>(the equivariant piece).

’.‘: Y ]
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Grassmannian (type A) Puzzles

A puzzle of size 2n, ZX for A, i, v € 0K12"K s a tiling by the
puzzle pieces:

ﬁ A ﬁ,their rotations, and <,>(the equivariant piece).

’.‘: Y ]

Example:
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Schubert calculus

Theorem (Knutson-Tao ‘03, many extensions since)

For A,u € 0¥12"k  the product of S, and S, in H;(Gr(k,2n)) is
given by

S-S, = Z [Z {v(P) . puzzles P with boundary ﬁ}] S,

veok12n-k \ P

4
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Schubert calculus

Theorem (Knutson-Tao ‘03, many extensions since)

For A,u € 0¥12"k  the product of S, and S, in H;(Gr(k,2n)) is

given by

S-S, = Z [Z {V(P) . puzzles P with boundary ﬁ}] S,
veoki2n-k \ P

4

where v(P) = []pep v(p), and for the individual pieces
o V(YY) =1,
° v( <>) =Yi— Y €Z[y1,...,Yon] = H*T(pt), if the rhombus

]
sides face the i-th and j-th positions at the bottom of the
puzzle.
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Example: Sp101 * So101 = Sot10 + S1001 + (Y2 — ¥3)So1o1

CATTANSANAVA A
AAVAN NATAVAYA A‘VA AVA\
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Example: Sp101 * So101 = Sot10 + S1001 + (Y2 — ¥3)So1o1

Grassmann duality
There is a ring isomorphism (from a homeom. of Grassmannians):

H7(Gr(k,2n)) = Hy(Gr(2n - k,2n)), Sy~ S
S18u S-S

AX Dual Z;i reflect though vertical axis
—> =
and swap 0 and 1
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For instance,

Question: What do self-dual puzzles count?
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Branching from A to B/C

Let P, P’ be the maximal parabolics of type (k,2n — k) in GL2, and
(k,2n+ 1 — k) in GLapt1 resp. Consider the Grassmannians:

SP2n/(SPan N Pe2n) = SpGr(k, 2n) —> Gr(k,2n) = GLon/P
O2n11/(Oans1 N P') = OGr(k,2n+1) <> Gr(k,2n + 1) = Glon1 /P’
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Branching from A to B/C

Let P, P’ be the maximal parabolics of type (k,2n — k) in GL2, and
(k,2n+ 1 — k) in GLapt1 resp. Consider the Grassmannians:

SP2n/(SPan N Pe2n) = SpGr(k, 2n) —> Gr(k,2n) = GLon/P
O2n11/(Oans1 N P') = OGr(k,2n+1) <> Gr(k,2n + 1) = Glon1 /P’

H:(Gr(k.2n)) = H:(SpGr(k,2n))

HA(Gr(k.2n + 1)) = H-(OGr(k,2n + 1))

Main question: | (5, ,(S2) = X, ¢;'S,

cl =7

@ Pragacz '00: (building on work of Stembridge) positive tableau
formulee for H*(Gr(n,2n)) — H*(SpGr(n,2n))

@ Coskun '11: positive geometric rule for H*(Gr(k, 2n))
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A combinatorial rule

Theorem (H-Knutson—Zinn-Justin '18)

oS = D [ D] ]ve)|s.

veW/Wp Peé peP

where v(p) € Hz(pt) = Z[y1...., yn] is given by v( Kk) =

-y jsn
) = .
Yi+ Yont1-, N <J

E)_ 2, G = Span, (X,Y)=(0,1)
77 11 otherwise

1,




A branching rule
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Examples and Goals

Remark: The values of v are given by R—and K—matrices in the
5-vertex model in statistical mechanics.

Example: L*(S11o101) = (yg — y3)810,1,o + 310,1,1 + 81,10,0




A branching rule

ooe

Examples and Goals

Remark: The values of v are given by R—and K—matrices in the
5-vertex model in statistical mechanics.

Example: L*(S11o101) = (yg — y3)810,1,o + 310,1,1 + 81,10,0

Goals: generalize to the 6—vertex model,
understand the underlying geometry,
obtain a generalized puzzle rule.
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Tensor calculus

Idea of proof:

Consider the puzzle labels {0,10,1} as
indexing bases for C%,C3,, C3.

We get a scattering diagram as the graph
dual of a half-puzzle diagram, with
assigned “spectral parameters”’on the NW:

y1,---,}/n,_yn,---,_y1-
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Associate:
@ to a crossing with parameters a and b, a linear map

Reo(a - b) ,><( 3 eCd — 3 eCe;

@ to a wall-bounce of a strand with parameter a,
c

Kc(a) = >E :C%L > C%, (anda - -a);
D
@ to a trivalent vertex with both parameters a,

U(a) = {;Cgmg — C3.

Gluing strands corresponds to composition, so the scattering
diagram gives a linear map ¢ : (C3)®2" — (C3)®".
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Relations

We ask that these maps satisfy the following identities:

U4 u: u: u

u2
YBE
us u2 Uy uz? uf U
Ui, W2 1 > w12 Y,
ST
Uz u

uz u

E.g. KB(U1) o UGH(U1) o (|d ®KG(—U1)) g: UGR(—U1) o (|d ®KG(U1)) o RGG(2U1)
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The AJS/Billey formula (’94,97)

Puzzle values: Let P range among all (self-dual) half-puzzles with
labels 4, where 4 € 012" and v € (10)"7{0, 1}*. Then,

the (v, 1) matrix entry of ® = Yp v(P) (Goal:"“ =¢!").

v
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The AJS/Billey formula ('94,97)

Puzzle values: Let P range among all (self-dual) half-puzzles with
labels 4, where 4 € 012" and v € (10)"7{0, 1}*. Then,

the (v, 1) matrix entry of ® = Yp v(P) (Goal:"“ =¢!").

v

Next, computing restriction to T-fixed points:

Proposition (AJS/Billey using scattering diagrams)

Let A,u € Wp\W (strings in {0,10,1}), where W is of type A or C,
and P maximal. To compute S,|,:

@ Make a scattering diagram by taking a reduced word for the
shortest lift i~

@ Replace crossings with Rgg and reflections with Kg.

Then S,|, is the (idg,p, A) matrix entry of the resulting map.
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(Rea(y1 — y3) ® Id) o (1d®2 ® Kg(y2)) o (Id®@Raa(y2 — ¥3)) :
(C3)®® — (C})=°

For A, u,v € Wp\W as above, we denote

t \ _ the (v, 1) matrix entry for the map
'ff l coming from a reduced word for .

By the proposition, when v = idg,p this gives S,|,.
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Theorem proof (sketch) |

In H7(pt), we have the following equality

In the second and fourth equality, the strings i and v have content
0k127-K and (10)"* {0, 1}¥ respectively, and all other terms of the
sum vanish.
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Theorem proof (sketch) Il

The third equality above follows from the following operations on
scattering diagrams:
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Lagrangian correspondences

A Lagrangian correspondence L between two symplectic
manifolds A and B, A < B, is:

A Lagrangian cycle L in (-A) x B
(equivalently L in A x (-B)).

If T~ A,Band L is T—invariant, then

HA) 22 s By 2 pea x By Y22 1By = Hi(B)

Note: In our setting, will work with T*G/P.
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Examples

@ Symplectic reduction
For T € G ~ X Hamiltonian action, have a moment map
x5 g*. Take a regular point a for u s.t. a € (g*)¢ Let
Z=u'(a), Y=u1a)//G. Then X < Z » Y.
[Marsden-Weinstein '74] 3! symplectic structure on Y s.t.
Z C (—X) x Y is Lagrangian.

@ Maulik—Okounkov stable envelopes
Suppose S ~ X is a sympl. res. with a circle action.
Let C be a fixed point component.
The stable envelope construction produces a certain
Lagrangian cycle L = Attr(C) +...in (-C) x X.
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Maulik—Okounkov classes

For a regular circle action S ~ T*G/P and a fixed pt. 1 € W/Wp,
the stable envelope construction produces an MO cycle

MO, = @/1 + Z a,l,#@#, ayu € Z>0
usa
BB, = Attr(1) = CX{ := conormal bundle of the Bruhat cell X¢.

This in turn gives a class [MO,] € Hz., .(T*G/P) = H;(G/P)[n].
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Maulik—Okounkov classes

For a regular circle action S ~ T*G/P and a fixed pt. 1 € W/Wp,
the stable envelope construction produces an MO cycle

MO, = BB, + Z a1uBBy, i € Zso
usa

BB, = Attr(1) = CX{ := conormal bundle of the Bruhat cell X¢.
This in turn gives a class [MO;] € H, .(T*G/P) = Hy(G/P)[A].
Segre—Schwartz—MacPherson:

[MO;] —
M, = — 2l g
Soth [zero section] € Hyox(T°G/P)

= SSM, = 'S, +lot(n) =8, = Jim (SSM; - R‘)y

Structure constants: ¢}, = hlim (% A=)
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The Spo,, case

Theorem in progress (H-Knutson—Zinn-Justin '20)
There are Lagrangian correspondences

PN T*Gr(k,2n) & T*OGr(k,4n) &, T*SpGr(k, 2n)

that compute the restriction of SSM classes, and together with the
6-vertex R- and K-matrices realize a puzzle rule.

@ L = MOj, is the stable envelope for the circle action
Sy = Diag(t, t?,...,t2").
@ L, = Attr(T*Gr(k,2n)) is the stable envelope for the circle
So = Diag(t,....t,t7',...,t7").

@ L3 is obtained by symplectic reduction.
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Construction details 1/2

Consider the parabolic P given by o(4n) 2 p = [< rad(p), as below

_|A B _— A o]y ([A o 00
peefe ol oxexv=of={c ol o sl)-{c o)
where J is the form given by, for J* = Antidiag(1,...,1,-1,...,-1),

0o J
J—[(Jz)tr 0}

O(4n) ~ T*OGr(k,4n) ’, o(4n)* — rad(p)* = o(4n)/p

(xz[é g],V)r—)XHB

This gives a P—equivariant and Rad(P)-invariant map,

wu: T*OGr(k,4n) — o(4n)/p.
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Construction details 2/2

The Levi L = GL(2n) has a subgroup Sp(2n) that preserves the
fiber {B = 1} of u, and we get

Sp(2n) ~ u~'(1)/Rad(P) = T*SpGr(k,2n)

The isomorphism is obtained from:

(1) —— T*SpGr(k,2n)

ls I

o(4n)* 2 Im(¢) —— Im(y) € sp(2n)*

A B

f:X:[C D

}HA—FD.
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Thank you!
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