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Part I: Place Cells and Convex Codes



Place Cells

1971: O’Keefe and Dostrovsky describe place cells in the
hippocampus of rats.

2019 video: https://youtu.be/puCV1grkdJA

Main idea: Each place cell fires in a particular region. They
“know” where the rat is. How much do they know?

https://youtu.be/puCV1grkdJA


Mathematical Model of Place Cells

2013: Curto et al introduce convex neural codes.

Index your place cells (neurons) by [n]
def
= {1, 2, . . . , n}.

Each neuron i ∈ [n] fires when rat is in convex open Ui in Rd.

As rat moves, multiple neurons may fire at same time. Write
down all the sets of neurons that fire together and get a
convex neural code C ⊆ 2[n].

Example with 3 neurons in R2:



Formal Definitions

Definition

A code is any subset of 2[n]. Elements of a code are codewords.

Definition

Let U = {U1, . . . , Un} be a collection of convex open sets in Rd.
The code of U is

code(U)
def
=

{
σ ⊆ [n]

∣∣∣∣There is p ∈ Rd with p ∈ Ui ⇔ i ∈ σ
}
.

The collection U is called a convex realization. Codes that have
convex realizations are called convex.

Notice! If the Ui correspond to place cells, we can compute
code(U) from the brain directly (if the rat explores sufficiently...)



Terminology in Practice

Below, U = {U1, U2, U3} is a convex realization of
C = {123, 12, 23, 2, 3, ∅}. Therefore C is a convex code.

Can you realize {123, 1, 2, 3, ∅} in R2? How about R1?

Cannot be realized in R1!



The Big Picture

Question: When can we find a convex realization of a given C?
How much does C tell us about this realization?

Motivation: How much can place cells “know” about a rat’s
environment?

This Talk: How much can n place cells tell us about the
dimension of the space that the rat is perceiving?

Motivation: Higher dimensional stimulus like smell, sound, etc.
Also, interesting discrete geometry theory!



Part II: Open Embedding Dimension

and Past Results



Formalizing the Dimension Question

Definition

Let C ⊆ 2[n] be a code. The open embedding dimension of C is

odim(C) def
= min{d | C has a convex realization in Rd}.

When no realization exists odim(C) =∞.

Example: Recall we can realize C = {123, 12, 23, 2, 3, ∅} in R2.
In fact, odim(C) = 1 since we can “flatten” our realization.



Formalizing the Dimension Question

Definition

Let C ⊆ 2[n] be a code. The open embedding dimension of C is

odim(C) def
= min{d | C has a convex realization in Rd}.

When no realization exists odim(C) =∞.

Example: Recall that C = {123, 1, 2, 3, ∅} has a realization in R2

but not R1. Thus odim(C) = 2 in this case.



Formalizing the Dimension Question

Definition

Let C ⊆ 2[n] be a code. The open embedding dimension of C is

odim(C) def
= min{d | C has a convex realization in Rd}.

When no realization exists odim(C) =∞.

Example: Let C = {12, 23, ∅}. In any realization, U2 is the
disjoint union of U1 and U3. This is impossible with open sets.
Thus odim(C) =∞.



Past Results
[Curto et al. 17] Many examples with odim(C) =∞ based
on topological arguments.

[CGIK16] Upper bound: If C is convex then odim(C) ≤
number of inclusion-maximal codewords.

Lower bounds: None larger than n. For example, [CV16]
looks for nonzero Betti numbers.

Definition

C is intersection complete if c1, c2 ∈ C implies c1 ∩ c2 ∈ C.

[CGIK16] If C is intersection complete, odim(C) <∞.

This talk: Among all intersection complete codes C ⊆ 2[n], what
is the largest embedding dimension (in terms of n)?

Topological intuition and “general position” reasoning indicate the
answer should be n...



Part III: Sunflowers of Convex Open Sets



Sunflowers of Convex Open Sets

Notation: If σ ⊆ [n], then Uσ =
⋂
i∈σ Ui.

Definition

U is a sunflower if code(U) = {[n], singletons, ∅}. The Ui are called
petals and U[n] is called the center.



Rigidity in Sunflowers

Lemma (LSW15)

If U = {U1, U2, U3} is a sunflower in R2, and pi ∈ Ui, then
conv{p1, p2, p3} contains a point in the center of U .
This fails in R3.

Consequence: C with odim(C) =∞ for non-topological reasons.



Rigidity in General

Theorem (J18)

If U = {U1, U2, . . . , Ud+1} is a sunflower in Rd, and pi ∈ Ui, then
conv{p1, p2, . . . , pd+1} contains a point in the center of U .
This fails in Rd+1.

A word on the proof: Original proof quite messy. A nicer proof
uses Radon’s theorem, as suggested by Zvi Rosen.

Note: Result fails badly when the sets are not open.



Application to Codes

Theorem (J19)

Let Sn ⊆ 2[n+1] be the code whose codewords are every singleton,
every 2-set containing n+ 1, the empty set, and [n]. Then
odim(Sn) = n.

Proof.

The sets U1, . . . , Un form a sunflower. The set Un+1 touches every
petal but not the center. Impossible when d < n. On the other
hand, can get a realization in Rn by thickening coordinate axes
and hyperplane with normal vector 1.

Example: S3 in R3.

Still smaller than number of neurons. Where’s the surprise?



Part IV: Code Minors and Exponential

Embedding Dimension



Morphisms of Codes

Definition (J18)

Let C ⊆ 2[n] and σ ⊆ [n]. The trunk of σ in C is

TkC(σ)
def
= {c ∈ C | σ ⊆ c}.

Geometric note: Codewords in TkC(σ) come from points in Uσ.

Definition (J18)

A function f : C → D is called a morphism if the preimage of
every trunk in D is a trunk in C.



Morphism Example

Not Convex

Note: Morphisms should not be thought of as simply “continuous,”
          the trunks here generate the same topology.

Morphism

Convex

Not a 

morphism



Minors of Codes

Definition (J18)

We say C is a minor of D if there is a surjective morphism
f : D → C. Codes can be partially ordered by “is a minor of” in a
poset PCode.

Note: We are really partially ordering isomorphism classes.

Theorem (J18)

If C is a minor of D, then odim(C) ≤ odim(D).

Proof idea: Every morphism f : D → C corresponds to a
collection of trunks in D. These correspond geometrically to
various Uσ, and it turns out C is the code of these various Uσ.

Main point: PCode is totally combinatorial, but its structure can
inform us about geometry, namely odim(C).



PCode Visually



Back to Sunflowers

Definition (J19)

Let ∆ ⊆ 2[n] be a simplicial complex. Define a code S∆ ⊆ 2[n+1] by

S∆
def
=
(
∆ ∗ (n+ 1)

)
∪ {[n]}.

Theorem (J19)

If ∆ has m facets, then Sm is a minor of S∆. Moreover, S∆ is
intersection complete.



Embedding Dimension for S∆

Corollary (J19)

If ∆ has m facets, then odim(S∆) = m.

Proof.

Results of [CGIK16] let us construct a realization of S∆ in Rm.
On the other hand, odim(S∆) ≥ odim(Sm) = m.



Exponential Embedding Dimension

Corollary (J19)

Open embedding dimension may grow exponentially in terms of
number of neurons n, as large as

(
n−1

b(n−1)/2c

)
. Surprising!

What’s behind this? Number of neurons varies wildly
throughout layers of PCode.



Part V: A Generalization and

an Open Problem



Beyond Sunflowers

Definition

U = {U1, . . . , Un} is called a k-flexible sunflower if

code(U) = {[n], codewords containing ≤ k neurons, ∅}.

Note: When k = 1, these are usual sunflowers.

Example: A 2-flexible sunflower with 5 petals in R2.



Flexible Sunflower Theorem

Theorem (J19)

Let U = {U1, . . . , Un} be a k-flexible sunflower in Rd. For i ∈ [n],
let pi ∈ Ui. Then conv{p1, . . . , pn} contains a point in the center
of U as long as n ≥ dk + 1.

About the proof: Uses Tverberg’s theorem. When k = 1
Tverberg’s theorem becomes Radon’s theorem, and we have the
original sunflower result.

Example:



What’s Special About Open Sets?

Key observation: Supporting hyperplanes on the center of a
k-flexible sunflower “cut off” at most k petals. Below k = 3.



Tangled Sunflower Codes

Definition (J19)

Let Tn ⊆ 2[2n] be the code

Tn
def
= {{odds}, {evens}, 12, 34, . . . , (2n− 1)(2n), all singletons, ∅}.

That is, Tn describes two n-petal sunflowers with touching petals.

Define tn
def
= odim(Tn).

Examples:

T1 = {12, 1, 2, ∅}.
T2 = {13, 24, 12, 34, 1, 2, 3, 4, ∅}.
T3 = {135, 246, 12, 34, 56, 1, 2, 3, 4, 5, 6, ∅}.



What can we say about tn?

For small n, we can find tn by brute force:

Moreover, t5 = 4. If you can figure out t6, let me know!

Theorem (J19)

For all n:

tn ≤ tn+1 ≤ tn + 1, and

dn
2
e ≤ tn ≤ n.
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Part VI (Bonus): Closed Convexity and More



Closed Convexity

Definition

We may consider realizations using closed convex sets, and define
closed embedding dimension cdim(C) for codes.

Theorem (J19)

For all examples in this talk C ⊆ 2[n], we have cdim(C) ≤ n.

Open question: Is cdim(C) ever larger than n?

Theorem (J19)

For intersection complete codes, cdim(C) ≤ odim(C).

Open question: Can you find C with odim(C) < cdim(C) <∞?



The Terrain for Future Work

Theorem

If C is a minor of D, then cdim(C) ≤ cdim(D).


