GENERALIZED SLICES FOR MINUSCULE COCHARACTERS

VASILY KRYLOV

This talk is based on the joint work in progress with Ivan Perunov (see [KP19]).

1. DEFINITIONS AND MOTIVATIONS

Let us start from some definitions. We fix a triple G D B D T, consisting of a
connected reductive algebraic group over C, a Borel subgroup B and a maximal torus
T; g O b D tare their Lie algebras. We denote by B_ D T the opposite Borel subgroup
of G. We denote by A the coweight lattice of (T,G) and by AT C A the submonoid
of dominant coweights. We denote by AY (resp. A) the set of roots (resp. coroots) of
(T,G) and by AY (resp. Aj) the set of positive roots (resp. coroots) with respect to
the Borel subgroup B C G. We also denote by I € A (resp. IV C AY) the set of
simple coroots (resp. roots). We will denote by W the Weyl group of (T, G) and by
wo € W the longest element of W (with respect to B).

1.1. Affine Grassmannian.

Definition 1.1 (Affine Grassmannian)
Let Grg be the moduli space of G-bundles P over P! with a trivialization o outside 0,
(o2 g)trzv|Pl\{0} S ?|P1\{0}'

Set K := C((2)), O := C[[2]] and denote D := Spec®, D := Spec K. One can think
about D as about a formal disk around a point 0 € P! and D C D is a punctured
(formal) neighbourhood of 0 € P!. The following proposition was proved by Beauville-
Laszlo:

Proposition 1.2
Grg coincides with the moduli space of G-bundles Pp on D together with a trivializa-
tion o, of Pp being restricted to D.

Proof. 1t is clear that a point (P,0) € Grg defines us a vector bundle Pp with a
trivialization o, as follows: Pp := P|p, o := 0.

In the opposite direction if we have a pair (Pp,op) we can then glue vector bun-
dles Pp and Tm”]P1\{0} using the trivialization oz, and obtain the desired bundle P.
To obtain the trivialization o it remains to note that by the construction P|p1\ (o =
?triv’]]ml\{o}. O

It follows from Proposition that the space Grg is just the quotient G(X)/G(0).
Any cocharacter A € A defines us an element of Map(C*,G) = G(C|z,271]) so gives
rise to an element of Grg to be denoted by z*. The group G(0O) acts on Grg via left

multiplication.
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For A € A", denote by Gré the G(O)-orbit of z*. We have the following decomposi-
tions:
Grg = |_| Grp, Gry = |_| Grf, (1.1)
AEAT B
where < is the standard dominance order (u < A if their difference is the linear combi-
nation of positive coroots).

Remark 1.3
One can think about this decomposition as about the (parabolic) Bruhat decomposition
corresponding to a parabolic subgroup G(0) C G(X).

For any A € A space @g is a projective algebraic variety of dimension (2p", \) and
Gr)c‘; - @g is an open smooth subvariety, here 2p" is the sum of positive roots. We
see that Grg = lim @é‘; is an ind-projective scheme.

H

We have an action C* ~ Grg via loop rotation:
t-g:=(z+g(tz)), t € C*, g(z) € G(X).

The fixed points of C* ~ Grg are UueA+ GzH.
It is easy to see that

Grfy = {z € Grg | im0t -z € G2/}
so in other words Gré is attractor to Gz* w.r.t. the loop rotation.

1.2. Transversal slices in Grg. Variety Grg has another decomposition (“opposite”
to ([1.1))) corresponding to G[z~!]-orbits.

For any pu € AT set Grg,, := G[z7!] - 2#. Then it follows from the Grothendieck-
Birkhoff theorem (see also [Ram83]) about classification of G-bundles on P! and using
that G[z71\G(X)/G(0) = Bung(P!) we obtain

GI“G = |_| GTG,A .
AEAT
Directly by the definitions

Graa = {z € Grg | im0t -7 € GZA}, GI"G#ﬁGr‘é = Gz,

Let us denote by G[z!]; C G[z7!] the kernel of the natural evaluation at infinity
homomorphism G[z7!] — G.
We set W, := G[z"!]; - z#. By the definitions

W, ={z € Grg | limyso0 t - = 2}, W, N Grl = {2/}
We can now finally define transversal slices as follows.

Definition 1.4 (Transversal slices)
For \ > u (otherwise Wﬁ will be empty), \, u € AT we set

W) = Grd W, W, := Griy N W,..

Example 1.5. For u = A\ we have Wi = {2}
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Remark 1.6
Note that in the definition it is not necessary to assume that p € A*. If we take some

oA . . . . . oA
and define W), as above then it will be isomorphic to the variety W, +, where puteWp
is the dominant representative of . Indeed the isomorphism is given by the conjugation
by an element w € W such that wpu = u™.

Variety W), is an affine variety of dimension (2p¥, X\ — ) equipped with a contracting
. Ao . .

action of C*, W/’) C W, is an open smooth subvariety.

Remark 1.7

W, is affine since it is a closed subvariety of an (ind-)affine scheme W,,.

Remark 1.8 o
Variety W), is a transversal slice to Grf, inside Gré‘; at the point z" in the following

. . Ao -
sence: there exists an open subset U C Grg and an open embedding U x W, — Grg
such that the following diagram is commutative:

U x {z''} —— Gr, x{z"}

| l

7A JR—
U xW, Gry.

1.3. Moduli definition of slices and generalization. Let us now try to find a

moduli definition of Wz (in the spirit of the definition of Grg), we follow [BE14] Proof of
Theorem 2.8]. For simplicity we assume that u is regular (i.e. (o, u) # 0, Va¥ € AY).
In this case we have an isomorphism G - z# ~ G/B_ (since the stabilizer of z* in G is
B_).

By the definition we have
o

W

ey
u GI‘G N WN

so to find the moduli description of W: it is enough to find moduli descriptions of
T, W,

First of all recall that @g parametrizes pairs (P, o) such that o has pole of order
< A at the point 0.

Remark 1.9

Trivialization o of P out of 0 has pole < A at 0 if for any irreducible highest weight
representation V' of G the pole (mazimum of poles of matriz elements) of the induced
trivialization o,v of P xqg V1 at 0is < (nV, \).

Let us now deal with W, = G[z71]; - 2# C G[z7!] - 2. Note that G[z!] - z* C Grg
parametrizes pairs (P, o) as above such that P has type p (i.e. P ~ O(u)), here O(p)
is a G-bundle corresponding to a point z# € Grg (for G = GLy, p = (ai,...,ay) we
have O(p) = O(a1) ® ... ® O(an)).
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Let us now give the moduli description of a subspace W,, = G[z71]1-2# C G[z71]- 2~
Recall that we have an evaluation at infinity morphism

eVoo: Gz7Y -2 - G- 2 ~ G/B_

and W, is the fiber ev!(z"). Recall also that p is regular and dominant so any vector
bundle P of type u has a canonical B_-structure PP~ C P of degree u that comes
from a Harder-Narasimhan filtration. We conclude from the definitions that W, is a
moduli space of pairs (P, o) such that P has type p and moreover the fiber of the Harder-
Narasimhan B_-structure P5- at co coincides with the fiber of the Harder-Narasimhan
B_-structure of z* at co so equals to B (w.r.t. o).

Remark 1.10
Recall that to any B-bundle & we can associate its degree deg & € A which is the degree
of the T-bundle & xg T, where B acts on T via the natural surjection B — T.

Recall again that p is dominant and regular so if some vector bundle P has a B_-
structure of degree u then P must have type p and the B_-structure in P of degree u
is unique (think about the embeddings of vector bundles O(m) < O(n) ® O(—n) with
m,n = 0).

It follows that W, is a moduli space of triples (P, o, PB-) such that P, o are as above
and PB- is a B_-structure in P such that the fiber of P~ at co is B (w.r.t. o).

So we come to the following (equivalent) moduli definition of transversal slices (we
follow the notations of [BFN16| Section 2(ii)]):

Definition 1.11 (Generalized transversal slices)

Wﬁ is the moduli space of triples (P, o, ¢), where P is a G-bundle on P!, ¢ is a trivial-
ization of P outside 0 with pole at 0 of order < X\ and ¢ is a B-structure in P of degree
wop and such that ¢l = B_.

Remark 1.12

One technical detail — we have seen that in the definition of Wz one gets naturally
B_-structures in P of degree . If we want to pass to B-structures then the degree will
be wopu since B = woB_wyg.

Remark 1.13
One can rewrite this definition as follows:

AN A wop
W, = Grg X/ Bung Bung™,

where ' Bung is the moduli space of G-bundles on P' together with a trivialization at

oo and Bung™ is the moduli space of B-bundles on P! of degree wopt.

. e . .. Ao
Note now that for this definition u does not need to be dominant! Varieties W), for
nondominant are called generalized transversal slices.

. . A - .. . .
We still have a natural morphism p: W, — Grg but it is not an embedding in gen-
eral. This happens because for nondominat p there can be many different B-structures

in a fixed G-bundle P. Variety Wz is still affine of dimension 2(p¥, A — u).
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Example 1.14. Consider the case “opposite” to the case when p is dominant: \ =
0, u < 0. Then the order of pole of o at 0 is < 0, hence, o extends to a trivialization
of P. We see that Wz is the moduli space of B-structures of degree wou in the trivial
bundle P, Note that a B-structure in P is the same as a section of P /B i.e.
a morphism P* — G /B of degree wopu. We obtain the so-called open Zastava space.

For G = SLy we have G/B ~ P! and p just corresponds to some number —n € Z<
so wop = n € Zso so we are considering maps P! — P! of degree n and this is a
complement of a hypersurface in P?".

Remark 1.15
In general we have a locally closed embedding

L Wi s Gry x Zz7wo=n),

1.4. Relation of slices Wz to the representation theory.

Definition 1.16 (Action of T')

oA . . T
T acts on W, Grg via changing the trivialization.

Proposition 1.17

The set of T-fixed points (Wﬁ)T consists of one element if ;1 is a weight of V* (the
irreducible representation of the Langlands dual group GV with the highest weight \)
and is empty otherwise. We denote the corresponding fixed point by z*.

Proof. Follows from [Kryl8, Lemma 2.8]. O

Definition 1.18 (Repellents and Attractors)
The repellent (resp. attractor) to the (unique) T-fixed point z* € Wﬁ is defined as

L A s
Ri‘b = {x € W,|lim;,00 2p(t) - z = 2"} (vesp. Af; = {r € W,[lim;02p(t) - z = 2"'}),
where 2p € A is the sum of positive coroots.

The following theorem (see [Kryl8|, can be deduced from the results of Braverman-

Gaitsgory) relates varieties Wu with representation theory.

Theorem 1.19

The set B(A) == |,en Irrtop(in‘L) has a crystal structure over GV of a highest weight A,
here Irrtop(fRﬁ) is the set of top-dimensional irreducible components of Rf;. Moreover
Irrtop(le);) is the subset of crystal B(\) of weight p.

Remark 1.20
Note that it is crucial in Theorem[1.19 that i may be nondominant.

Corollary 1.21
For any p € A the dimension of the p-weight space Vﬁ\ coincides with the number of
top dimensional irreducible components of iR;).
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Remark 1.22

Recall that A GV -crystal is a set B together with maps:
(1) wt:B = A, g, p; : B—ZUo.
(2) e, f; : B— BU{O}
such that for each i € I we have a)-c):
(a) For each b € B, ¢i(b) =&;(b) + (wt(b), o).
(b) Let b € B. Ife;-b € B for some i, then

wt(ei b) = ’U)t(b) + o, 5i(ei b) = €l(b) — 1, goi(ei b) = gﬁl(b) + 1.
If f;-b € B for some i, then

wt(fi b) = wt(b) — Oy, €z(fz b) = €z(b) + 1, QDZ(fZ b) = (pz(b) —1.
(c) For allb,b e B, ¢;-b=Db if and only if b = f; -b.

Remark 1.23
Actually one has more then just a crystal structure on every B(X). One can also prove
that projection morphisms B(/\l) ®B()\2) — B(A1+A2)U{0} are induced by the natural

multiplication morphisms W L X W Wuiiuz which we do not discuss in this talk.
1.5. Some motivation. Set \* := —wp), p* := —wop. In paper [BENI6] authors

have proved that in typeb ADE (there is a generalization of this fact to other types,

see [NW19]) varieties W . are isomorphic to (framed) Coulomb branches corresponding
to a quiver @ (of type ADE) and dimension vectors v and framing w such that

A= Zwiwm p= Zwiwi — Zviaia
K3 K3 3
where w; are fundamental coweights of G and «; are simple coroots.
In the same paper authors conjectured that symplectically dual varieties to Coulomb
branches are quiver varieties for (), dimension vector v and framing w.
From the representation-theoretic point of view the simplest dominant A € A™ are
so-called minuscule coweights. Let us recall the definition.

Definition 1.24 (Minuscule coweights)
A coweight A € AT is called minuscule if for any coweight u € A, such that V#A # {0}

we have u € WAX. Here V? is the irreducible representation of the Langlands dual
group GV with the highest weight X\ and W is the Weyl group of G".

Example 1.25. In type A any fundamental coweight is minuscule (since the corre-
sponding representations are wedge powers of the standard representation). In general
any minuscule coweight is fundamental but the opposite implication is wrong, the set of
minuscule coweights is a subset of the set of fundamental coweights.

It is clear from li that for a minuscule A we have @’C\; = Gré, hence, WZ = Wi;

SO W# is actually smooth and symplectic (symplectic form comes from its description
as a Coulomb branch).
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At the symplectic dual side we obtain quiver varieties (v, w). Recall that
A= Z w;Ws
i
and recall also that A must be fundamental (since it is minuscule). It follows that
A = wy, for some k, hence, w = (0,0,...,0,1,0,0,...,0) with 1 standing on k-th place.

Lemma 1.26
Let A be minuscule and X\ > p be a weight of V* (i.e. u € WX). Then if v, w are such

that
A= Zwiwi, n = A— Zviai
) i

then the Nakajima quiver variety (v, d) consists of one point:

M(v, w) = pt.

Proof. Recall that the dimension of M (v, d) equals to (C' is the Cartan matrix for g)

v (2w—Cv) = 2(2 viai,ijwj) — (Z Uiai,Zvjaj) =
i j i j

=2MA =) = (A= A —p) = (A A) = (1, ).
It remains to recall that u € WA so
dim M(v, w) = (A, A) = (1, p) = 0.

It now follows from the fact that y is a weight of V* that M(v,w) # @. The variety
M (v, w) is connected so we conclude that M (v, w) consists of one point. O

We see that symplectically dual varieties to (generalized) transversal slices Wz with
@ € WX and X minuscule are points. Recall also that dimWi = 2(pY, A — ). Tt is
natural to conjecture then that Wﬁ is “as simple as possible”:

Conjecture 1.27
. . Ao
With the assumptions as above we have W, ~ A2 A—n)

Remark 1.28
The proof of this conjecture was known to Nakajima in type A. The proof uses the

identification of WZ with so-called bow varieties introduced by Nakajima and Takayama
in the paper [NT17]. Such an identification exists only in type A.

2. MAIN RESULTS

Theorem 2.29
For a minuscule A € At and i € W\, we have

A v A— A VA=) 0N o pA A
Ry o APTATH AN o APTATI AT~ R X A

: =)
In particular we have W, ~ AP A=),
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Let AX,— C AY be a subset of the set of negative roots consisting of a such that
(o, ) <0, we also set A, := —AY _. Tt follows from the proof of Theorem that
there are natural coordinates {ys |8 € Ay _}, {za|a € Ay} on the affine spaces in;

oA . . .
and Aﬁ. Recall also that W), is a Coulomb branch of a certain framed quiver gauge
theory so it has a symplectic structure defined by some symplectic form w.

Proposition 2.30
Recall the isomorphism Wz ~ Aﬁ X Rf). The symplectic form w is ) AY, dxo Ndy_q

for some §j_q of the form §_o = y_o + P with P € (y)?, where (yg)? is the square of
the ideal generated by {yg, 8 € A} _}.

Proposition 2.31
The character of T acting on Wﬁ equals t0 Y e () >0 (¢*+q7%).

Remark 2.32 N
Note that the formula for T-character of W, does not depend on A but there is no
contradiction here since X\ = u™, the unique dominant element of W p.

3. IDEA OF THE PROOF

3.1. Main steps of the proof.

Definition 3.33 (Loop rotation action)

We have the natural C*-action on W:, Grg, Z%, which is induced from the following
action on P!: (x :y) — (tz :y), here co = (0: 1).

It follows from the fact that A is minuscule that we have
Grpy =Grj =G -2\

It follows that @)C‘; is C*-pointwise invariant w.r.t. the loop rotation action.
We have the natural C*-equivariant morphism

7A JR—
p: W, — Gry.

The following proposition is proved in [Kry18, Theorem 3.1 (1)] (here we do not need
A to be minuscule).

Proposition 3.34
The map p restricted to CR/); induces an isomorphism

Ry =5 U_(X) - 2" N Gry.

Proof. Use modular or matrix descriptions of Rf;. O

oA .. . . .
We conclude that Rf; C W, is C*-fixed and is isomorphic to a certain Bruhat cell in
@f‘; = G - 2" ~ G/ Py, hence, is an affine space.
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Lemma 373/\5

We have (W,,)" = R)\.

Proof. Follows from the matrix description of Wﬁ O
Lemma 3.36

The C*-action on Al); via loop rotation contracts it to the point z* (here we do not
need \ to be minuscule).

Proof. Matrix description. O
Lemma 3.37 (Key lemma)

. . . oA
For a minuscule A and p € W the loop rotation action contracts W, to fRi‘L.

Proof. Can be deduced from previous lemmas using dimensions estimations and the
Ao . . . . .
fact that W), is an affine variety, hence, attractor with respect to the loop rotation is a

closed subvariety of Wf; O

Corollary 3.38
The image of the morphism p: Wﬁ — @g = Grg coincides with p(ﬂ%ﬁ) ~ Rﬁ. In other

. o . =)
words the morphism p Is just a contraction of W,, to fRﬁ ~ APV A—m)

It remains to note that there exists a certain involution (to be called Cartan involu-
tion, see [BEN16, Section 2(vii)]) ¢: W: L)Wz that identifies IR;\L with A;\L so they are
both are A=) Note also that p is a locally trivial fibration over fRf; = AP’ A=)
with fiber flﬁ = AP A=) hence, it is trivial and we must have

Wi ~
This observation finishes the proof.

A A o A2(pV A=
R x A o2 AMPTATH)

Remark 3.39 N
Using the natural action U_ ~ W, the trivialization and isomorphisms above can be
made canonical.

3.2. Main technical tool — matrix description of (generalized) slices. For a
complex algebraic group H, we set H[z] := H(C[2]), H[[z"1]] := H(C[[z7!]]) and
denote by H[[z7!]]; the kernel (preimage of 1 € H) of the natural evaluation at oo
morphism eve,: H[[z71]] — H.

In [BEN16, Section 2(xi)], the following isomorphism was constructed:

Wi W), = (Ul )12#B_[[= "'l (| GG,
where the right hand side is considered as a locally closed subvariety in the ind-scheme
G((z71)) = G(C((z"1))-
3.3. Gly example of slices. Let G = GL2, A = (N,0) = Nw; and p = (N —m,m) =
Nwi — may. It follows from [BEN16| Section 2(xii)] that Wi: identifies with the space
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C D
degree m, while the degrees of B and C are strictly less than m, and det M = 2.

Mf; C Mataxo[z] of matrices M = (A B) such that A is a monic polynomial of
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