
GENERALIZED SLICES FOR MINUSCULE COCHARACTERS

VASILY KRYLOV

This talk is based on the joint work in progress with Ivan Perunov (see [KP19]).

1. Definitions and motivations

Let us start from some definitions. We fix a triple G ⊃ B ⊃ T , consisting of a
connected reductive algebraic group over C, a Borel subgroup B and a maximal torus
T ; g ⊃ b ⊃ t are their Lie algebras. We denote by B− ⊃ T the opposite Borel subgroup
of G. We denote by Λ the coweight lattice of (T,G) and by Λ+ ⊂ Λ the submonoid
of dominant coweights. We denote by ∆∨ (resp. ∆) the set of roots (resp. coroots) of
(T,G) and by ∆∨+ (resp. ∆+) the set of positive roots (resp. coroots) with respect to
the Borel subgroup B ⊂ G. We also denote by I ⊂ ∆+ (resp. I∨ ⊂ ∆∨+) the set of
simple coroots (resp. roots). We will denote by W the Weyl group of (T,G) and by
w0 ∈W the longest element of W (with respect to B).

1.1. Affine Grassmannian.

Definition 1.1 (Affine Grassmannian)
Let GrG be the moduli space of G-bundles P over P1 with a trivialization σ outside 0,

σ : Ptriv|P1\{0}
∼−→P|P1\{0}.

Set K := C((z)), O := C[[z]] and denote D := SpecO, D̊ := SpecK. One can think

about D as about a formal disk around a point 0 ∈ P1 and D̊ ⊂ D is a punctured
(formal) neighbourhood of 0 ∈ P1. The following proposition was proved by Beauville-
Laszlo:

Proposition 1.2
GrG coincides with the moduli space of G-bundles PD on D together with a trivializa-
tion σD̊ of PD being restricted to D̊.

Proof. It is clear that a point (P, σ) ∈ GrG defines us a vector bundle PD with a
trivialization σD̊ as follows: PD := P|D, σD̊ := σ|D̊.

In the opposite direction if we have a pair (PD, σD̊) we can then glue vector bun-

dles PD and Ptriv|P1\{0} using the trivialization σD̊ and obtain the desired bundle P.
To obtain the trivialization σ it remains to note that by the construction P|P1\{0} =

Ptriv|P1\{0}. �

It follows from Proposition 1.2 that the space GrG is just the quotient G(K)/G(O).
Any cocharacter λ ∈ Λ defines us an element of Map(C×, G) = G(C[z, z−1]) so gives
rise to an element of GrG to be denoted by zλ. The group G(O) acts on GrG via left
multiplication.
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For λ ∈ Λ+, denote by GrλG the G(O)-orbit of zλ. We have the following decomposi-
tions:

GrG =
⊔
λ∈Λ+

GrλG, GrλG =
⊔
µ6λ

GrµG, (1.1)

where 6 is the standard dominance order (µ 6 λ if their difference is the linear combi-
nation of positive coroots).

Remark 1.3
One can think about this decomposition as about the (parabolic) Bruhat decomposition
corresponding to a parabolic subgroup G(O) ⊂ G(K).

For any λ ∈ Λ+ space GrλG is a projective algebraic variety of dimension 〈2ρ∨, λ〉 and

GrλG ⊂ GrλG is an open smooth subvariety, here 2ρ∨ is the sum of positive roots. We

see that GrG = lim
−→

GrλG is an ind-projective scheme.

We have an action C× y GrG via loop rotation:

t · g := (z 7→ g(tz)), t ∈ C×, g(z) ∈ G(K).

The fixed points of C× y GrG are
⊔
µ∈Λ+ Gzµ.

It is easy to see that

GrµG = {x ∈ GrG | limt→0 t · x ∈ Gzµ}
so in other words GrµG is attractor to Gzµ w.r.t. the loop rotation.

1.2. Transversal slices in GrG. Variety GrG has another decomposition (“opposite”
to (1.1)) corresponding to G[z−1]-orbits.

For any µ ∈ Λ+ set GrG,µ := G[z−1] · zµ. Then it follows from the Grothendieck-
Birkhoff theorem (see also [Ram83]) about classification of G-bundles on P1 and using
that G[z−1]\G(K)/G(O) = BunG(P1) we obtain

GrG =
⊔
λ∈Λ+

GrG,λ .

Directly by the definitions

GrG,λ = {x ∈ GrG | limt→∞ t · x ∈ Gzλ}, GrG,µ ∩GrµG = Gzµ.

Let us denote by G[z−1]1 ⊂ G[z−1] the kernel of the natural evaluation at infinity
homomorphism G[z−1]→ G.

We set Wµ := G[z−1]1 · zµ. By the definitions

Wµ = {x ∈ GrG | limt→∞ t · x = zµ}, Wµ ∩GrµG = {zµ}.
We can now finally define transversal slices as follows.

Definition 1.4 (Transversal slices)

For λ > µ (otherwise W
λ
µ will be empty), λ, µ ∈ Λ+ we set

Wλ
µ := GrλG ∩Wµ, W

λ
µ := GrλG ∩Wµ.

Example 1.5. For µ = λ we have W
λ
λ = {zλ}.
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Remark 1.6
Note that in the definition it is not necessary to assume that µ ∈ Λ+. If we take some µ

and define W
λ
µ as above then it will be isomorphic to the variety W

λ
µ+, where µ+ ∈Wµ

is the dominant representative of µ. Indeed the isomorphism is given by the conjugation
by an element w ∈W such that wµ = µ+.

Variety W
λ
µ is an affine variety of dimension 〈2ρ∨, λ−µ〉 equipped with a contracting

action of C×, Wλ
µ ⊂W

λ
µ is an open smooth subvariety.

Remark 1.7
W
λ
µ is affine since it is a closed subvariety of an (ind-)affine scheme Wµ.

Remark 1.8
Variety W

λ
µ is a transversal slice to GrµG inside GrλG at the point zµ in the following

sence: there exists an open subset U ⊂ GrµG and an open embedding U ×W
λ
µ ↪→ GrλG

such that the following diagram is commutative:

U × {zµ} //

��

GrµG×{zµ}

��
U ×W

λ
µ

// GrλG.

1.3. Moduli definition of slices and generalization. Let us now try to find a

moduli definition of W
λ
µ (in the spirit of the definition of GrG), we follow [BF14, Proof of

Theorem 2.8]. For simplicity we assume that µ is regular (i.e. 〈α∨, µ〉 6= 0, ∀α∨ ∈ ∆∨).
In this case we have an isomorphism G · zµ ' G/B− (since the stabilizer of zµ in G is
B−).

By the definition we have

W
λ
µ = GrλG ∩Wµ

so to find the moduli description of W
λ
µ it is enough to find moduli descriptions of

GrλG, Wµ.

First of all recall that GrλG parametrizes pairs (P, σ) such that σ has pole of order
6 λ at the point 0.

Remark 1.9
Trivialization σ of P out of 0 has pole 6 λ at 0 if for any irreducible highest weight
representation V η∨ of G the pole (maximum of poles of matrix elements) of the induced

trivialization σV η∨ of P×G V η∨ at 0 is 6 〈η∨, λ〉.

Let us now deal with Wµ = G[z−1]1 · zµ ⊂ G[z−1] · zµ. Note that G[z−1] · zµ ⊂ GrG
parametrizes pairs (P, σ) as above such that P has type µ (i.e. P ' O(µ)), here O(µ)
is a G-bundle corresponding to a point zµ ∈ GrG (for G = GLN , µ = (a1, . . . , aN ) we
have O(µ) = O(a1)⊕ . . .⊕ O(aN )).
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Let us now give the moduli description of a subspace Wµ = G[z−1]1 ·zµ ⊂ G[z−1] ·zµ.
Recall that we have an evaluation at infinity morphism

ev∞ : G[z−1] · zµ � G · zµ ' G/B−
and Wµ is the fiber ev−1

∞ (zµ). Recall also that µ is regular and dominant so any vector
bundle P of type µ has a canonical B−-structure PB− ⊂ P of degree µ that comes
from a Harder-Narasimhan filtration. We conclude from the definitions that Wµ is a
moduli space of pairs (P, σ) such that P has type µ and moreover the fiber of the Harder-
Narasimhan B−-structure PB− at∞ coincides with the fiber of the Harder-Narasimhan
B−-structure of zµ at ∞ so equals to B (w.r.t. σ).

Remark 1.10
Recall that to any B-bundle E we can associate its degree degE ∈ Λ which is the degree
of the T -bundle E×B T , where B acts on T via the natural surjection B � T .

Recall again that µ is dominant and regular so if some vector bundle P has a B−-
structure of degree µ then P must have type µ and the B−-structure in P of degree µ
is unique (think about the embeddings of vector bundles O(m) ↪→ O(n) ⊕ O(−n) with
m,n > 0).

It follows that Wµ is a moduli space of triples (P, σ,PB−) such that P, σ are as above
and PB− is a B−-structure in P such that the fiber of PB− at ∞ is B (w.r.t. σ).

So we come to the following (equivalent) moduli definition of transversal slices (we
follow the notations of [BFN16, Section 2(ii)]):

Definition 1.11 (Generalized transversal slices)

W
λ
µ is the moduli space of triples (P, σ, φ), where P is a G-bundle on P1, σ is a trivial-

ization of P outside 0 with pole at 0 of order 6 λ and φ is a B-structure in P of degree
w0µ and such that φ|∞ = B−.

Remark 1.12
One technical detail – we have seen that in the definition of W

λ
µ one gets naturally

B−-structures in P of degree µ. If we want to pass to B-structures then the degree will
be w0µ since B = w0B−w0.

Remark 1.13
One can rewrite this definition as follows:

W
λ
µ = GrλG ×′ BunG Bunw0µ

B ,

where ′BunG is the moduli space of G-bundles on P1 together with a trivialization at
∞ and Bunw0µ

B is the moduli space of B-bundles on P1 of degree w0µ.

Note now that for this definition µ does not need to be dominant! Varieties W
λ
µ for

nondominant are called generalized transversal slices.

We still have a natural morphism p : W
λ
µ → GrλG but it is not an embedding in gen-

eral. This happens because for nondominat µ there can be many different B-structures

in a fixed G-bundle P. Variety W
λ
µ is still affine of dimension 2〈ρ∨, λ− µ〉.
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Example 1.14. Consider the case “opposite” to the case when µ is dominant: λ =
0, µ 6 0. Then the order of pole of σ at 0 is 6 0, hence, σ extends to a trivialization

of P. We see that W
0
µ is the moduli space of B-structures of degree w0µ in the trivial

bundle Ptriv. Note that a B-structure in Ptriv is the same as a section of Ptriv/B i.e.
a morphism P1 → G/B of degree w0µ. We obtain the so-called open Zastava space.

For G = SL2 we have G/B ' P1 and µ just corresponds to some number −n ∈ Z60

so w0µ = n ∈ Z>0 so we are considering maps P1 → P1 of degree n and this is a
complement of a hypersurface in P2n.

Remark 1.15
In general we have a locally closed embedding

ι : W
λ
µ ↪→ GrλG × Z−w0(λ−µ).

1.4. Relation of slices W
λ
µ to the representation theory.

Definition 1.16 (Action of T )

T acts on W
λ
µ, GrG via changing the trivialization.

Proposition 1.17

The set of T -fixed points (W
λ
µ)T consists of one element if µ is a weight of V λ (the

irreducible representation of the Langlands dual group G∨ with the highest weight λ)
and is empty otherwise. We denote the corresponding fixed point by zµ.

Proof. Follows from [Kry18, Lemma 2.8]. �

Definition 1.18 (Repellents and Attractors)

The repellent (resp. attractor) to the (unique) T -fixed point zµ ∈W
λ
µ is defined as

Rλµ := {x ∈W
λ
µ| limt→∞ 2ρ(t) · x = zµ} (resp . Aλ

µ := {x ∈W
λ
µ| limt→0 2ρ(t) · x = zµ}),

where 2ρ ∈ Λ is the sum of positive coroots.

The following theorem (see [Kry18], can be deduced from the results of Braverman-

Gaitsgory) relates varieties W
λ
µ with representation theory.

Theorem 1.19
The set B(λ) :=

⊔
µ∈Λ Irrtop(R

λ
µ) has a crystal structure over G∨ of a highest weight λ,

here Irrtop(R
λ
µ) is the set of top-dimensional irreducible components of Rλµ. Moreover

Irrtop(R
λ
µ) is the subset of crystal B(λ) of weight µ.

Remark 1.20
Note that it is crucial in Theorem 1.19 that µ may be nondominant.

Corollary 1.21
For any µ ∈ Λ the dimension of the µ-weight space V λ

µ coincides with the number of

top dimensional irreducible components of Rλµ.
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Remark 1.22
Recall that A G∨-crystal is a set B together with maps:

(1) wt : B→ Λ, εi, ϕi : B→ Z ∪∞.
(2) ei, fi : B→ B ∪ {0}.
such that for each i ∈ I we have a)–c):
(a) For each b ∈ B, ϕi(b) = εi(b) + 〈wt(b), α∨i 〉.
(b) Let b ∈ B. If ei ·b ∈ B for some i, then

wt(ei ·b) = wt(b) + αi, εi(ei ·b) = εi(b)− 1, ϕi(ei ·b) = ϕi(b) + 1.

If fi ·b ∈ B for some i, then

wt(fi ·b) = wt(b)− αi, εi(fi ·b) = εi(b) + 1, ϕi(fi ·b) = ϕi(b)− 1.

(c) For all b, b̂ ∈ B, ei ·b = b̂ if and only if b = fi ·b̂.

Remark 1.23
Actually one has more then just a crystal structure on every B(λ). One can also prove
that projection morphisms B(λ1)⊗B(λ2)� B(λ1 +λ2)∪{0} are induced by the natural

multiplication morphisms W
λ1
µ1×W

λ2
µ2 →W

λ1+λ2
µ1+µ2 which we do not discuss in this talk.

1.5. Some motivation. Set λ∗ := −w0λ, µ
∗ := −w0µ. In paper [BFN16] authors

have proved that in types ADE (there is a generalization of this fact to other types,

see [NW19]) varieties W
λ∗

µ∗ are isomorphic to (framed) Coulomb branches corresponding
to a quiver Q (of type ADE) and dimension vectors v and framing w such that

λ =
∑
i

wiωi, µ =
∑
i

wiωi −
∑
i

viαi,

where ωi are fundamental coweights of G and αi are simple coroots.
In the same paper authors conjectured that symplectically dual varieties to Coulomb

branches are quiver varieties for Q, dimension vector v and framing w.
From the representation-theoretic point of view the simplest dominant λ ∈ Λ+ are

so-called minuscule coweights. Let us recall the definition.

Definition 1.24 (Minuscule coweights)
A coweight λ ∈ Λ+ is called minuscule if for any coweight µ ∈ Λ, such that V λ

µ 6= {0}
we have µ ∈ Wλ. Here V λ is the irreducible representation of the Langlands dual
group G∨ with the highest weight λ and W is the Weyl group of G∨.

Example 1.25. In type A any fundamental coweight is minuscule (since the corre-
sponding representations are wedge powers of the standard representation). In general
any minuscule coweight is fundamental but the opposite implication is wrong, the set of
minuscule coweights is a subset of the set of fundamental coweights.

It is clear from (1.1) that for a minuscule λ we have GrλG = GrλG, hence, W
λ
µ = Wλ

µ

so W
λ
µ is actually smooth and symplectic (symplectic form comes from its description

as a Coulomb branch).
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At the symplectic dual side we obtain quiver varieties M(v, w). Recall that

λ =
∑
i

wiωi

and recall also that λ must be fundamental (since it is minuscule). It follows that
λ = ωk for some k, hence, w = (0, 0, . . . , 0, 1, 0, 0, . . . , 0) with 1 standing on k-th place.

Lemma 1.26
Let λ be minuscule and λ > µ be a weight of V λ (i.e. µ ∈Wλ). Then if v, w are such
that

λ =
∑
i

wiωi, µ = λ−
∑
i

viαi

then the Nakajima quiver variety M(v, d) consists of one point:

M(v, w) = pt .

Proof. Recall that the dimension of M(v, d) equals to (C is the Cartan matrix for g)

v · (2w − Cv) = 2(
∑
i

viαi,
∑
j

wjωj)− (
∑
i

viαi,
∑
j

vjαj) =

= 2(λ, λ− µ)− (λ− µ, λ− µ) = (λ, λ)− (µ, µ).

It remains to recall that µ ∈Wλ so

dimM(v, w) = (λ, λ)− (µ, µ) = 0.

It now follows from the fact that µ is a weight of V λ that M(v, w) 6= ∅. The variety
M(v, w) is connected so we conclude that M(v, w) consists of one point. �

We see that symplectically dual varieties to (generalized) transversal slices W
λ
µ with

µ ∈ Wλ and λ minuscule are points. Recall also that dimW
λ
µ = 2〈ρ∨, λ − µ〉. It is

natural to conjecture then that W
λ
µ is “as simple as possible”:

Conjecture 1.27

With the assumptions as above we have W
λ
µ ' A2〈ρ∨,λ−µ〉.

Remark 1.28
The proof of this conjecture was known to Nakajima in type A. The proof uses the

identification of W
λ
µ with so-called bow varieties introduced by Nakajima and Takayama

in the paper [NT17]. Such an identification exists only in type A.

2. Main results

Theorem 2.29
For a minuscule λ ∈ Λ+ and µ ∈Wλ, we have

Rλµ ' A〈ρ
∨,λ−µ〉, Aλ

µ ' A〈ρ
∨,λ−µ〉, W

λ
µ ' Rλµ ×Aλ

µ.

In particular we have W
λ
µ ' A2〈ρ∨,λ−µ〉.
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Let ∆∨µ,− ⊂ ∆∨− be a subset of the set of negative roots consisting of α such that
〈α, µ〉 < 0, we also set ∆∨µ,+ := −∆∨µ,−. It follows from the proof of Theorem 2.29 that

there are natural coordinates {yβ |β ∈ ∆∨µ,−}, {xα |α ∈ ∆∨µ,+} on the affine spaces Rλµ

and Aλ
µ. Recall also that W

λ
µ is a Coulomb branch of a certain framed quiver gauge

theory so it has a symplectic structure defined by some symplectic form ω.

Proposition 2.30

Recall the isomorphism W
λ
µ ' Aλ

µ×Rλµ. The symplectic form ω is
∑

α∈∆∨µ,+
dxα∧dŷ−α

for some ŷ−α of the form ŷ−α = y−α + P with P ∈ (yβ)2, where (yβ)2 is the square of
the ideal generated by {yβ, β ∈ ∆∨µ,−}.

Proposition 2.31

The character of T acting on W
λ
µ equals to

∑
α∈∆−, 〈α,µ〉>0(qα + q−α).

Remark 2.32
Note that the formula for T -character of W

λ
µ does not depend on λ but there is no

contradiction here since λ = µ+, the unique dominant element of Wµ.

3. Idea of the proof

3.1. Main steps of the proof.

Definition 3.33 (Loop rotation action)

We have the natural C×-action on W
λ
µ,GrG, Z

α, which is induced from the following

action on P1: (x : y) 7→ (tx : y), here ∞ = (0 : 1).

It follows from the fact that λ is minuscule that we have

GrλG = GrλG = G · zλ.

It follows that GrλG is C×-pointwise invariant w.r.t. the loop rotation action.
We have the natural C×-equivariant morphism

p : W
λ
µ → GrλG.

The following proposition is proved in [Kry18, Theorem 3.1 (1)] (here we do not need
λ to be minuscule).

Proposition 3.34
The map p restricted to Rλµ induces an isomorphism

Rλµ
∼−→U−(K) · zµ ∩GrλG.

Proof. Use modular or matrix descriptions of Rλµ. �

We conclude that Rλµ ⊂W
λ
µ is C×-fixed and is isomorphic to a certain Bruhat cell in

GrλG = G · zλ ' G/Pλ, hence, is an affine space.
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Lemma 3.35
We have (W

λ
µ)C

×
= Rλµ.

Proof. Follows from the matrix description of W
λ
µ. �

Lemma 3.36
The C×-action on Aλ

µ via loop rotation contracts it to the point zµ (here we do not
need λ to be minuscule).

Proof. Matrix description. �

Lemma 3.37 (Key lemma)

For a minuscule λ and µ ∈Wλ the loop rotation action contracts W
λ
µ to Rλµ.

Proof. Can be deduced from previous lemmas using dimensions estimations and the

fact that W
λ
µ is an affine variety, hence, attractor with respect to the loop rotation is a

closed subvariety of W
λ
µ. �

Corollary 3.38

The image of the morphism p : W
λ
µ → GrλG = GrλG coincides with p(Rλµ) ' Rλµ. In other

words the morphism p is just a contraction of W
λ
µ to Rλµ ' A〈ρ∨,λ−µ〉.

It remains to note that there exists a certain involution (to be called Cartan involu-

tion, see [BFN16, Section 2(vii)]) ι : W
λ
µ
∼−→W

λ
µ that identifies Rλµ with Aλ

µ so they are

both are A〈ρ∨,λ−µ〉. Note also that p is a locally trivial fibration over Rλµ = A〈ρ∨,λ−µ〉

with fiber Aλ
µ = A〈ρ∨,λ−µ〉, hence, it is trivial and we must have

W
λ
µ ' Rλµ ×Aλ

µ ' A2〈ρ∨,λ−µ〉.

This observation finishes the proof.

Remark 3.39
Using the natural action U− y W

λ
µ the trivialization and isomorphisms above can be

made canonical.

3.2. Main technical tool – matrix description of (generalized) slices. For a
complex algebraic group H, we set H[z] := H(C[z]), H[[z−1]] := H(C[[z−1]]) and
denote by H[[z−1]]1 the kernel (preimage of 1 ∈ H) of the natural evaluation at ∞
morphism ev∞ : H[[z−1]] 7→ H.

In [BFN16, Section 2(xi)], the following isomorphism was constructed:

Ψ: W
λ
µ ' (U [[z−1]]1z

µB−[[z−1]]1
⋂
G[z]zλG[z]),

where the right hand side is considered as a locally closed subvariety in the ind-scheme
G((z−1)) := G(C((z−1))).

3.3. Gl2 example of slices. Let G = GL2, λ = (N, 0) = Nω1 and µ = (N −m,m) =

Nω1 −mα1. It follows from [BFN16, Section 2(xii)] that W
λ
µ identifies with the space
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Mλ
µ ⊂ Mat2×2[z] of matrices M =

(
A B
C D

)
such that A is a monic polynomial of

degree m, while the degrees of B and C are strictly less than m, and det M = zN .

References

[BF14] A. Braverman and M. Finkelberg. Semi-infinite schubert varieties and quantum K-theory of
flag manifolds. Journal of the American Mathematical Society, 27(4):1147–1168, 2014.

[BFN16] A. Braverman, M. Finkelberg, and H. Nakajima. Coulomb branches of 3d N = 4 quiver gauge
theories and slices in the affine Grassmannian. arXiv:1604.03625, 2016.

[KP19] V Krylov and I Perunov. Generalized Slices for Minuscule Cocharacters. arXiv:1903.08277,
2019.

[Kry18] V. Krylov. Integrable crystals and restriction to Levi via generalized slices in the affine Grass-
mannian. Functional Analysis and Its Applications, 52:113—-133, 2018.

[NT17] H. Nakajima and Y. Takayama. Cherkis bow varieties and Coulomb branches of quiver gauge
theories of affine type A. Selecta Mathematica, 23(4):2553–2633, 2017.

[NW19] H. Nakajima and A. Weekes. Coulomb branches of quiver gauge theories with symmetrizers.
2019.

[Ram83] A Ramanathan. Deformations of principal bundles on the projective line. Invent. Math.,
(71):165–191, 1983.


	1. Definitions and motivations
	1.1. Affine Grassmannian
	1.2. Transversal slices in GrG
	1.3. Moduli definition of slices and generalization
	1.4. Relation of slices W to the representation theory
	1.5. Some motivation

	2. Main results
	3. Idea of the proof
	3.1. Main steps of the proof
	3.2. Main technical tool – matrix description of (generalized) slices
	3.3. Gl2 example of slices

	References

