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Symmetric tensor categories

Representation categories

Base field: k = k̄
Given a (finite) group G we can form
Rep(G ) = {all finite dimensional representations of G}

What kind of mathematical object is Rep(G )?

• Rep(G ) – abelian category
• Rep(G ) has a bifunctor ⊗
• ⊗ is associative, commutative, unital ← structures
• we have duality X ∗ ← property of ⊗ and associativity
• we have forgetful tensor functor Rep(G )→ Vec

Thus Rep(G ) is a rigid symmetric tensor category equipped with a
(symmetric) tensor functor to Vec

Victor Ostrik (U of O) Incompressible categories April 27 2 / 17



Symmetric tensor categories

Representation categories

Base field: k = k̄
Given a (finite) group G we can form
Rep(G ) = {all finite dimensional representations of G}

What kind of mathematical object is Rep(G )?

• Rep(G ) – abelian category
• Rep(G ) has a bifunctor ⊗
• ⊗ is associative, commutative, unital ← structures
• we have duality X ∗ ← property of ⊗ and associativity
• we have forgetful tensor functor Rep(G )→ Vec

Thus Rep(G ) is a rigid symmetric tensor category equipped with a
(symmetric) tensor functor to Vec

Victor Ostrik (U of O) Incompressible categories April 27 2 / 17



Symmetric tensor categories

Representation categories

Base field: k = k̄
Given a (finite) group G we can form
Rep(G ) = {all finite dimensional representations of G}

What kind of mathematical object is Rep(G )?

• Rep(G ) – abelian category
• Rep(G ) has a bifunctor ⊗
• ⊗ is associative, commutative, unital ← structures
• we have duality X ∗ ← property of ⊗ and associativity
• we have forgetful tensor functor Rep(G )→ Vec

Thus Rep(G ) is a rigid symmetric tensor category equipped with a
(symmetric) tensor functor to Vec

Victor Ostrik (U of O) Incompressible categories April 27 2 / 17



Symmetric tensor categories

Representation categories

Base field: k = k̄
Given a (finite) group G we can form
Rep(G ) = {all finite dimensional representations of G}

What kind of mathematical object is Rep(G )?

• Rep(G ) – abelian category

• Rep(G ) has a bifunctor ⊗
• ⊗ is associative, commutative, unital ← structures
• we have duality X ∗ ← property of ⊗ and associativity
• we have forgetful tensor functor Rep(G )→ Vec

Thus Rep(G ) is a rigid symmetric tensor category equipped with a
(symmetric) tensor functor to Vec

Victor Ostrik (U of O) Incompressible categories April 27 2 / 17



Symmetric tensor categories

Representation categories

Base field: k = k̄
Given a (finite) group G we can form
Rep(G ) = {all finite dimensional representations of G}

What kind of mathematical object is Rep(G )?

• Rep(G ) – abelian category
• Rep(G ) has a bifunctor ⊗

• ⊗ is associative, commutative, unital ← structures
• we have duality X ∗ ← property of ⊗ and associativity
• we have forgetful tensor functor Rep(G )→ Vec

Thus Rep(G ) is a rigid symmetric tensor category equipped with a
(symmetric) tensor functor to Vec

Victor Ostrik (U of O) Incompressible categories April 27 2 / 17



Symmetric tensor categories

Representation categories

Base field: k = k̄
Given a (finite) group G we can form
Rep(G ) = {all finite dimensional representations of G}

What kind of mathematical object is Rep(G )?

• Rep(G ) – abelian category
• Rep(G ) has a bifunctor ⊗
• ⊗ is associative, commutative, unital

← structures
• we have duality X ∗ ← property of ⊗ and associativity
• we have forgetful tensor functor Rep(G )→ Vec

Thus Rep(G ) is a rigid symmetric tensor category equipped with a
(symmetric) tensor functor to Vec

Victor Ostrik (U of O) Incompressible categories April 27 2 / 17



Symmetric tensor categories

Representation categories

Base field: k = k̄
Given a (finite) group G we can form
Rep(G ) = {all finite dimensional representations of G}

What kind of mathematical object is Rep(G )?

• Rep(G ) – abelian category
• Rep(G ) has a bifunctor ⊗
• ⊗ is associative, commutative, unital ← structures

• we have duality X ∗ ← property of ⊗ and associativity
• we have forgetful tensor functor Rep(G )→ Vec

Thus Rep(G ) is a rigid symmetric tensor category equipped with a
(symmetric) tensor functor to Vec

Victor Ostrik (U of O) Incompressible categories April 27 2 / 17



Symmetric tensor categories

Representation categories

Base field: k = k̄
Given a (finite) group G we can form
Rep(G ) = {all finite dimensional representations of G}

What kind of mathematical object is Rep(G )?

• Rep(G ) – abelian category
• Rep(G ) has a bifunctor ⊗
• ⊗ is associative, commutative, unital ← structures
• we have duality X ∗

← property of ⊗ and associativity
• we have forgetful tensor functor Rep(G )→ Vec

Thus Rep(G ) is a rigid symmetric tensor category equipped with a
(symmetric) tensor functor to Vec

Victor Ostrik (U of O) Incompressible categories April 27 2 / 17



Symmetric tensor categories

Representation categories

Base field: k = k̄
Given a (finite) group G we can form
Rep(G ) = {all finite dimensional representations of G}

What kind of mathematical object is Rep(G )?

• Rep(G ) – abelian category
• Rep(G ) has a bifunctor ⊗
• ⊗ is associative, commutative, unital ← structures
• we have duality X ∗ ← property of ⊗ and associativity

• we have forgetful tensor functor Rep(G )→ Vec

Thus Rep(G ) is a rigid symmetric tensor category equipped with a
(symmetric) tensor functor to Vec

Victor Ostrik (U of O) Incompressible categories April 27 2 / 17



Symmetric tensor categories

Representation categories

Base field: k = k̄
Given a (finite) group G we can form
Rep(G ) = {all finite dimensional representations of G}

What kind of mathematical object is Rep(G )?

• Rep(G ) – abelian category
• Rep(G ) has a bifunctor ⊗
• ⊗ is associative, commutative, unital ← structures
• we have duality X ∗ ← property of ⊗ and associativity
• we have forgetful tensor functor Rep(G )→ Vec

Thus Rep(G ) is a rigid symmetric tensor category equipped with a
(symmetric) tensor functor to Vec

Victor Ostrik (U of O) Incompressible categories April 27 2 / 17



Symmetric tensor categories

Representation categories

Base field: k = k̄
Given a (finite) group G we can form
Rep(G ) = {all finite dimensional representations of G}

What kind of mathematical object is Rep(G )?

• Rep(G ) – abelian category
• Rep(G ) has a bifunctor ⊗
• ⊗ is associative, commutative, unital ← structures
• we have duality X ∗ ← property of ⊗ and associativity
• we have forgetful tensor functor Rep(G )→ Vec

Thus Rep(G ) is a rigid symmetric tensor category equipped with a
(symmetric) tensor functor to Vec

Victor Ostrik (U of O) Incompressible categories April 27 2 / 17



Tannakian theory

Pre-Tannakian categories

C: k−linear rigid symmetric ⊗ category satisfying

• C is abelian
• dim Hom(X ,Y ) <∞
• length (X ) <∞
• 1 is simple

Definition

Fiber functor: exact symmetric ⊗ functor C → Vec
C is Tannakian if it is pre-Tannakian and admits a fiber functor.

Theorem (Grothendieck, Saavedra Rivano, Deligne-Milne)

Assume C is Tannakian. Then C = Rep(G ) for some (unique)
affine group scheme G.
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super Tannakian categories

Example

sVec – pre-Tannakian but not Tannakian

Reminder: sVec = Rep(Z/2) but with modified commutativity constraint

Definition

super fiber functor: exact symmetric ⊗ functor C → sVec
C is super Tannakian: pre-Tannakian and admits a super fiber functor.

Example

G affine super group scheme (= super commutative Hopf algebra)
then Rep(G ) is super Tannakian
More generally: z ∈ G , z2 = 1, Ad(z) =parity automorphism of G
Rep(G , z) = { objects of Rep(G ) such that the action of z is the parity
automorphism of G}
then Rep(G , z) is super Tannakian
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super Tannakian theory and generalization

Theorem (Deligne)

Assume C is super Tannakian. Then C = Rep(G , z) for some
affine super group scheme G and z as above.

Generalization

Let F : C → D be an exact symmetric ⊗ functor.
Then C = Rep(G , π) where G is an affine group scheme in D
π is the fundamental group of D
In other words, C can be expressed in terms of “group theory in D”.

Question: What are categories which can’t be expressed in terms of
“group theory” in smaller categories?
Equivalently, which categories do not admit ⊗ functors to smaller
categories?
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Incompressible categories

Surjective functors

Exact ⊗ functor F : C → D is surjective if any object of D is a
subquotient of F (X )
Any functor F : C → D factorizes C → Im(F )→ D where C → Im(F ) is
surjective and Im(F )→ D is an embedding.

Definition

A pre-Tannakian C is incompressible if any surjective ⊗ functor F : C → D
is an equivalence for any pre-Tannakian D

Equivalently, C is incompressible if any exact ⊗ functor F : C → D is an
embedding

Example

Vec sVec

Any more examples?
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Characteristic zero

Definition

We say that C is of sub-exponential growth if for any X ∈ C there is
aX ∈ R such that length(X⊗n) ≤ anX .

Theorem (Deligne)

Assume char k = 0 and let C be pre-Tannakian of sub-exponential growth.
Then C is super Tannakian. In particular, Vec and sVec are the only
incompressible categories of sub-exponential growth.

Example

Deligne categories Rep(GLt),Rep(Ot),Rep(St) (t ∈ k) are categories of
super-exponential growth.
They typically admit surjective functors like Rep(St)→ Rep(St−1).

Conjecture: No more incompressible categories in characteristic zero.
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Semisimplification

Let T be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that f : X → Y is negligible if for any g : Y → X we have
Tr(fg) = 0.
Negligible morphisms form a ⊗ ideal N .
Define T : the same objects as in T but HomT (X ,Y ) = HomT (X ,Y )/N .
T is again rigid symmetric monoidal category

Theorem (U. Jannsen)

Assume dim Hom(X ,Y ) <∞ and any nilpotent endomorphism in T has
trace zero. Then T is semisimple (and so abelian). Moreover

Irreducibles of T ↔ Indecomposables of T of nonzero dimension.

Remark: assume F : T → C is a ⊗ functor to abelian C. Then any
nilpotent endomorphism in T has trace zero.
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Semisimple Verlinde categories

Assume char k = p > 0.

S. Gelfand-Kazhdan and Georgiev-Mathieu

G – semisimple group, e.g. G = SLn
Let T = { tilting G−modules }
Then Ver(G ) := T is a nice ⊗ category; it has finitely many irreducibles
provided p ≥ Coxeter number of G (e.g. h(SLn) = n)

Example

Verp := Ver(SL2)
Simple objects L1 = 1, L2, . . . , Lp−1
L2 ⊗ Li = Li−1 ⊕ Li+1 with convention L0 = Lp = 0
This implies: Lp−1 ⊗ Lp−1 = 1 and 〈1, Lp−1〉 = sVec.
For p = 5: L3 ⊗ L3 = 1⊕ L3 Fibonacci category Fib
Ver2 = Vec; Ver3 = sVec; Ver5 = Fib� sVec

Alternatively Verp = semisimplification of Rep(Z/p)
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Fact: the category Verp is incompressible.

Theorem (V.O.)

For any pre-Tannakian C which is semisimple with finitely many
irreducibles there exists a ⊗ functor C → Verp. In particular there are no
other incompressible fusion categories.

Conjecture: there are no other semisimple incompressible categories (at
least of sub-exponential growth).
What about non-semisimple examples?

Example

For p = 2 Venkatesh constructed an example V by modifying the
commutativity constraint in Rep(Z/2)

Benson-Etingof

p = 2 sequence C0 = Vec ⊂ C1 = V ⊂ C2 = T (SL2)/I2 ⊂ C3 ⊂ . . .
Technology: Hopf algebras (in categories) and graded extensions
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p > 2

More on tilting modules for SL2
V – tautological 2-dimensional representation of SL2
T (SL2) := additive ⊗ category generated by V
{indecomposables of T (SL2)} = {indecomposable summands of V⊗n}
Fact: indecomposables are classified by highest weight
Thus we have T0 = 1,T1 = V ,T2,T3, . . .
Steinberg modules: T0,Tp−1,Tp2−1, . . . ,Str = Tpr−1, . . .
Each Str generates a (thick) tensor ideal Pr = 〈Tpr−1,Tpr ,Tpr+1, . . .〉
Each thick tensor ideal above gives tensor ideal Ir : I0 ⊃ I1 ⊃ I2 ⊃ . . .
Fact: Any tensor ideal in T (SL2) is one of Ir

Quotients

Define Tp,r := T (SL2)/Ir , e.g. Tp,1 = Verp
Tp,r is non-semisimple and non-abelian for r > 1 (except r = 2 and p = 2)
Tp,r contains tensor ideal Pr−1 (and Ir−1 = Ir−1/Ir )
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Main Theorem

Observation: (Benson-Etingof): their category C2r contains T2,r ;

{ the ideal Pr−1} = { subcategory of projective objects in C2r}

Theorem (Benson-Etingof-O., Coulembier)

There exists a unique pre-Tannakian category Verpn containing Tp,n and
such that Pn−1 coincides with the ideal of projective objects. The category
Verpn is incompressible.

Split morphisms

A morphism (in additive category) f : X → Y is split if it is projection to a
direct summand followed by an inclusion of a direct summand

Example

If X and Y are indecomposable, f is split ⇔ f is an isomorphism or f = 0

Exercise. Let P be a projective object and f : X → Y be any morphism
Then idP ⊗ f : P ⊗ X → P ⊗ Y is split
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Splitting ideals

Let T be a rigid symmetric monoidal category (perhaps non-abelian),
dim Hom(X ,Y ) <∞
Let P ⊂ T be a thick tensor ideal
We say that P is splitting ideal if for any morphism f : X → Y in T and
P ∈ P the morphism idP ⊗ f is split

General construction

Given splitting ideal P ⊂ T as above we construct abelian rigid tensor
category C ⊃ P such that P is subcategory of projective objects
Hint on construction of C: complexes of objects of P
Some challenges: What is unit object of C?
Why C is rigid?

Key Lemma

The ideal Pn−1 ⊂ Tp,n is splitting

Wanted: more examples of splitting tensor ideals!
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Properties of Verpn

Projectives and Cartan matrix

Projective objects: Ti with pn−1 − 1 ≤ i < pn − 1; # = pn − pn−1

We set Pi = Ti−1 where i = [i1i2 . . . in]p has precisely n digits (i1 6= 0!)
Cartan matrix Cij := dim Hom(Pi ,Pj)
Negative digits game: make some digits negative
[23045]p  2(−3)0(−4)5 = 2p4 − 3p3 − 4p + 5
Descendants of i : all positive numbers you get in this way
E.g. [23045]p has 23 = 8 descendants
Tubbenhauer-Wedrich: Cij = |{descendants of i} ∩ {descendants of j}|
Exercise: Cij = 0 or power of 2
Exercise: detCij = power of p

Embeddings

We have Verp ⊂ Verp2 ⊂ Verp3 ⊂ . . .
For p > 2, Verpn = Ver+pn � sVec
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Tubbenhauer-Wedrich: Cij = |{descendants of i} ∩ {descendants of j}|
Exercise: Cij = 0 or power of 2
Exercise: detCij = power of p

Embeddings

We have Verp ⊂ Verp2 ⊂ Verp3 ⊂ . . .

For p > 2, Verpn = Ver+pn � sVec
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More properties of Verpn

Grothendieck ring (p > 2)

K (Ver+pn) = Z[ξ + ξ−1] where ξ is a primitive pn−th root of 1

K (Verpn) = Z[ξ + ξ−1][Z/2]

Simples

Some simples: T0 = 1,T1, . . . ,Tp−1 are simples T
[n]
i in Verpn (n > 1)

Tensor Product Theorem: for i = [i1 . . . in] with i1 6= p − 1

Li = T
[1]
i1
⊗ T

[2]
i2
. . .T

[n]
in

is simple (and this is a complete list)
P(Li ) = Ps where s = [(i1 + 1)i∗2 . . . i

∗
n ] where i∗ = p − 1− i

Extensions (p > 2): Ext1(Li , Lj) = 0 or k
Ext1(Li , Lj) 6= 0 ⇔ i and j differ only in two consecutive digits, of which
the first ones differ by 1 and the second ones add up to p − 2
Blocks: n(p − 1) of them of sizes 1, p − 1, p2 − p, . . . , pn−1 − pn−2

Verpn is a mod p reduction of semisimple category in characteristic zero

Corollary: C = DDT where D is the decomposition matrix
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Some open questions

Module categories

Question 1. What are exact module categories over Verpn?

Extensions

Question 2. What is Ext•(1, 1)?

More examples?

Question 3. Are there any other incompressible categories?

Universality

Let Verp∞ = ∪nVerpn

Let C be a pre-Tannakian category of sub-exponential growth
Question 4. Is there an exact tensor functor C → Verp∞?
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Thanks for listening!
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