

Incompressible symmetric tensor categories

Victor Ostrik

University of Oregon and MSRI

vostrik@uoregon.edu

April 27

arxiv: 2003.10499
(jt with Dave Benson and Pavel Etingof)

Symmetric tensor categories

Representation categories

Base field: $k = \bar{k}$

Given a (finite) group G we can form

$\text{Rep}(G) = \{\text{all finite dimensional representations of } G\}$

Symmetric tensor categories

Representation categories

Base field: $k = \bar{k}$

Given a (finite) group G we can form

$\text{Rep}(G) = \{\text{all finite dimensional representations of } G\}$

What kind of mathematical object is $\text{Rep}(G)$?

Symmetric tensor categories

Representation categories

Base field: $k = \bar{k}$

Given a (finite) group G we can form

$\text{Rep}(G) = \{\text{all finite dimensional representations of } G\}$

What kind of mathematical object is $\text{Rep}(G)$?

- $\text{Rep}(G)$ – abelian category

Symmetric tensor categories

Representation categories

Base field: $k = \bar{k}$

Given a (finite) group G we can form

$\text{Rep}(G) = \{\text{all finite dimensional representations of } G\}$

What kind of mathematical object is $\text{Rep}(G)$?

- $\text{Rep}(G)$ – abelian category
- $\text{Rep}(G)$ has a bifunctor \otimes

Symmetric tensor categories

Representation categories

Base field: $k = \bar{k}$

Given a (finite) group G we can form

$\text{Rep}(G) = \{\text{all finite dimensional representations of } G\}$

What kind of mathematical object is $\text{Rep}(G)$?

- $\text{Rep}(G)$ – abelian category
- $\text{Rep}(G)$ has a bifunctor \otimes
- \otimes is associative, commutative, unital

Symmetric tensor categories

Representation categories

Base field: $k = \bar{k}$

Given a (finite) group G we can form

$\text{Rep}(G) = \{\text{all finite dimensional representations of } G\}$

What kind of mathematical object is $\text{Rep}(G)$?

- $\text{Rep}(G)$ – abelian category
- $\text{Rep}(G)$ has a bifunctor \otimes
- \otimes is associative, commutative, unital ← **structures**

Symmetric tensor categories

Representation categories

Base field: $k = \bar{k}$

Given a (finite) group G we can form

$\text{Rep}(G) = \{\text{all finite dimensional representations of } G\}$

What kind of mathematical object is $\text{Rep}(G)$?

- $\text{Rep}(G)$ – abelian category
- $\text{Rep}(G)$ has a bifunctor \otimes
- \otimes is associative, commutative, unital \leftarrow **structures**
- we have duality X^*

Symmetric tensor categories

Representation categories

Base field: $k = \bar{k}$

Given a (finite) group G we can form

$\text{Rep}(G) = \{\text{all finite dimensional representations of } G\}$

What kind of mathematical object is $\text{Rep}(G)$?

- $\text{Rep}(G)$ – abelian category
- $\text{Rep}(G)$ has a bifunctor \otimes
- \otimes is associative, commutative, unital \leftarrow structures
- we have duality X^* \leftarrow property of \otimes and associativity

Symmetric tensor categories

Representation categories

Base field: $k = \bar{k}$

Given a (finite) group G we can form

$\text{Rep}(G) = \{\text{all finite dimensional representations of } G\}$

What kind of mathematical object is $\text{Rep}(G)$?

- $\text{Rep}(G)$ – abelian category
- $\text{Rep}(G)$ has a bifunctor \otimes
- \otimes is associative, commutative, unital \leftarrow structures
- we have duality X^* \leftarrow property of \otimes and associativity
- we have forgetful tensor functor $\text{Rep}(G) \rightarrow \text{Vec}$

Symmetric tensor categories

Representation categories

Base field: $k = \bar{k}$

Given a (finite) group G we can form

$\text{Rep}(G) = \{\text{all finite dimensional representations of } G\}$

What kind of mathematical object is $\text{Rep}(G)$?

- $\text{Rep}(G)$ – abelian category
- $\text{Rep}(G)$ has a bifunctor \otimes
- \otimes is associative, commutative, unital \leftarrow structures
- we have duality X^* \leftarrow property of \otimes and associativity
- we have forgetful tensor functor $\text{Rep}(G) \rightarrow \text{Vec}$

Thus $\text{Rep}(G)$ is a rigid symmetric tensor category equipped with a (symmetric) tensor functor to Vec

Tannakian theory

Pre-Tannakian categories

\mathcal{C} : k –linear rigid symmetric \otimes category satisfying

Tannakian theory

Pre-Tannakian categories

\mathcal{C} : k –linear rigid symmetric \otimes category satisfying

- \mathcal{C} is abelian

Tannakian theory

Pre-Tannakian categories

\mathcal{C} : k –linear rigid symmetric \otimes category satisfying

- \mathcal{C} is abelian
- $\dim \text{Hom}(X, Y) < \infty$

Pre-Tannakian categories

\mathcal{C} : k –linear rigid symmetric \otimes category satisfying

- \mathcal{C} is abelian
- $\dim \text{Hom}(X, Y) < \infty$
- length $(X) < \infty$

Pre-Tannakian categories

\mathcal{C} : k –linear rigid symmetric \otimes category satisfying

- \mathcal{C} is abelian
- $\dim \text{Hom}(X, Y) < \infty$
- $\text{length } (X) < \infty$
- **1** is simple

Tannakian theory

Pre-Tannakian categories

\mathcal{C} : k –linear rigid symmetric \otimes category satisfying

- \mathcal{C} is abelian
- $\dim \text{Hom}(X, Y) < \infty$
- $\text{length } (X) < \infty$
- $\mathbf{1}$ is simple

Definition

Fiber functor: exact symmetric \otimes functor $\mathcal{C} \rightarrow \text{Vec}$

Tannakian theory

Pre-Tannakian categories

\mathcal{C} : k –linear rigid symmetric \otimes category satisfying

- \mathcal{C} is abelian
- $\dim \text{Hom}(X, Y) < \infty$
- $\text{length}(X) < \infty$
- $\mathbf{1}$ is simple

Definition

Fiber functor: exact symmetric \otimes functor $\mathcal{C} \rightarrow \text{Vec}$

\mathcal{C} is **Tannakian** if it is pre-Tannakian and admits a fiber functor.

Tannakian theory

Pre-Tannakian categories

\mathcal{C} : k –linear rigid symmetric \otimes category satisfying

- \mathcal{C} is abelian
- $\dim \text{Hom}(X, Y) < \infty$
- $\text{length}(X) < \infty$
- $\mathbf{1}$ is simple

Definition

Fiber functor: exact symmetric \otimes functor $\mathcal{C} \rightarrow \text{Vec}$

\mathcal{C} is **Tannakian** if it is pre-Tannakian and admits a fiber functor.

Theorem (Grothendieck, Saavedra Rivano, Deligne–Milne)

Assume \mathcal{C} is Tannakian. Then $\mathcal{C} = \text{Rep}(G)$ for some (unique) affine group scheme G .

super Tannakian categories

Example

$s\text{Vec}$ – pre-Tannakian but not Tannakian

super Tannakian categories

Example

$s\text{Vec}$ – pre-Tannakian but not Tannakian

Reminder: $s\text{Vec} = \text{Rep}(\mathbb{Z}/2)$ but with modified commutativity constraint

super Tannakian categories

Example

$s\text{Vec}$ – pre-Tannakian but not Tannakian

Reminder: $s\text{Vec} = \text{Rep}(\mathbb{Z}/2)$ but with modified commutativity constraint

Definition

super fiber functor: exact symmetric \otimes functor $\mathcal{C} \rightarrow s\text{Vec}$

super Tannakian categories

Example

$s\text{Vec}$ – pre-Tannakian but not Tannakian

Reminder: $s\text{Vec} = \text{Rep}(\mathbb{Z}/2)$ but with modified commutativity constraint

Definition

super fiber functor: exact symmetric \otimes functor $\mathcal{C} \rightarrow s\text{Vec}$

\mathcal{C} is **super Tannakian**: pre-Tannakian and admits a super fiber functor.

super Tannakian categories

Example

$s\text{Vec}$ – pre-Tannakian but not Tannakian

Reminder: $s\text{Vec} = \text{Rep}(\mathbb{Z}/2)$ but with modified commutativity constraint

Definition

super fiber functor: exact symmetric \otimes functor $\mathcal{C} \rightarrow s\text{Vec}$

\mathcal{C} is **super Tannakian**: pre-Tannakian and admits a super fiber functor.

Example

G affine super group scheme (= super commutative Hopf algebra)

super Tannakian categories

Example

$s\text{Vec}$ – pre-Tannakian but not Tannakian

Reminder: $s\text{Vec} = \text{Rep}(\mathbb{Z}/2)$ but with modified commutativity constraint

Definition

super fiber functor: exact symmetric \otimes functor $\mathcal{C} \rightarrow s\text{Vec}$

\mathcal{C} is **super Tannakian**: pre-Tannakian and admits a super fiber functor.

Example

G affine super group scheme (= super commutative Hopf algebra)

then $\text{Rep}(G)$ is super Tannakian

super Tannakian categories

Example

$s\text{Vec}$ – pre-Tannakian but not Tannakian

Reminder: $s\text{Vec} = \text{Rep}(\mathbb{Z}/2)$ but with modified commutativity constraint

Definition

super fiber functor: exact symmetric \otimes functor $\mathcal{C} \rightarrow s\text{Vec}$

\mathcal{C} is **super Tannakian**: pre-Tannakian and admits a super fiber functor.

Example

G affine super group scheme (= super commutative Hopf algebra)

then $\text{Rep}(G)$ is super Tannakian

More generally: $z \in G$, $z^2 = 1$, $\text{Ad}(z)$ = parity automorphism of G

super Tannakian categories

Example

$s\text{Vec}$ – pre-Tannakian but not Tannakian

Reminder: $s\text{Vec} = \text{Rep}(\mathbb{Z}/2)$ but with modified commutativity constraint

Definition

super fiber functor: exact symmetric \otimes functor $\mathcal{C} \rightarrow s\text{Vec}$

\mathcal{C} is **super Tannakian**: pre-Tannakian and admits a super fiber functor.

Example

G affine super group scheme (= super commutative Hopf algebra)

then $\text{Rep}(G)$ is super Tannakian

More generally: $z \in G$, $z^2 = 1$, $\text{Ad}(z)$ = parity automorphism of G

$\text{Rep}(G, z) = \{ \text{ objects of } \text{Rep}(G) \text{ such that the action of } z \text{ is the parity automorphism of } G \}$

super Tannakian categories

Example

$s\text{Vec}$ – pre-Tannakian but not Tannakian

Reminder: $s\text{Vec} = \text{Rep}(\mathbb{Z}/2)$ but with modified commutativity constraint

Definition

super fiber functor: exact symmetric \otimes functor $\mathcal{C} \rightarrow s\text{Vec}$

\mathcal{C} is **super Tannakian**: pre-Tannakian and admits a super fiber functor.

Example

G affine super group scheme (= super commutative Hopf algebra)

then $\text{Rep}(G)$ is super Tannakian

More generally: $z \in G$, $z^2 = 1$, $\text{Ad}(z)$ = parity automorphism of G

$\text{Rep}(G, z) = \{ \text{ objects of } \text{Rep}(G) \text{ such that the action of } z \text{ is the parity automorphism of } G \}$

then $\text{Rep}(G, z)$ is super Tannakian

super Tannakian theory and generalization

Theorem (Deligne)

Assume \mathcal{C} is super Tannakian. Then $\mathcal{C} = \text{Rep}(G, z)$ for some affine super group scheme G and z as above.

super Tannakian theory and generalization

Theorem (Deligne)

Assume \mathcal{C} is super Tannakian. Then $\mathcal{C} = \text{Rep}(G, z)$ for some affine super group scheme G and z as above.

Generalization

Let $F : \mathcal{C} \rightarrow \mathcal{D}$ be an exact symmetric \otimes functor.

super Tannakian theory and generalization

Theorem (Deligne)

Assume \mathcal{C} is super Tannakian. Then $\mathcal{C} = \text{Rep}(G, z)$ for some affine super group scheme G and z as above.

Generalization

Let $F : \mathcal{C} \rightarrow \mathcal{D}$ be an exact symmetric \otimes functor.

Then $\mathcal{C} = \text{Rep}(G, \pi)$ where G is an affine group scheme in \mathcal{D}
 π is the fundamental group of \mathcal{D}

super Tannakian theory and generalization

Theorem (Deligne)

Assume \mathcal{C} is super Tannakian. Then $\mathcal{C} = \text{Rep}(G, z)$ for some affine super group scheme G and z as above.

Generalization

Let $F : \mathcal{C} \rightarrow \mathcal{D}$ be an exact symmetric \otimes functor.

Then $\mathcal{C} = \text{Rep}(G, \pi)$ where G is an affine group scheme in \mathcal{D}

π is the fundamental group of \mathcal{D}

In other words, \mathcal{C} can be expressed in terms of “group theory in \mathcal{D} ”.

super Tannakian theory and generalization

Theorem (Deligne)

Assume \mathcal{C} is super Tannakian. Then $\mathcal{C} = \text{Rep}(G, z)$ for some affine super group scheme G and z as above.

Generalization

Let $F : \mathcal{C} \rightarrow \mathcal{D}$ be an exact symmetric \otimes functor.

Then $\mathcal{C} = \text{Rep}(G, \pi)$ where G is an affine group scheme in \mathcal{D}

π is the fundamental group of \mathcal{D}

In other words, \mathcal{C} can be expressed in terms of “group theory in \mathcal{D} ”.

Question: What are categories which can't be expressed in terms of “group theory” in smaller categories?

super Tannakian theory and generalization

Theorem (Deligne)

Assume \mathcal{C} is super Tannakian. Then $\mathcal{C} = \text{Rep}(G, z)$ for some affine super group scheme G and z as above.

Generalization

Let $F : \mathcal{C} \rightarrow \mathcal{D}$ be an exact symmetric \otimes functor.

Then $\mathcal{C} = \text{Rep}(G, \pi)$ where G is an affine group scheme in \mathcal{D}

π is the fundamental group of \mathcal{D}

In other words, \mathcal{C} can be expressed in terms of “group theory in \mathcal{D} ”.

Question: What are categories which can't be expressed in terms of “group theory” in smaller categories?

Equivalently, which categories do not admit \otimes functors to smaller categories?

Incompressible categories

Surjective functors

Exact \otimes functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is **surjective** if any object of \mathcal{D} is a subquotient of $F(X)$

Surjective functors

Exact \otimes functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is **surjective** if any object of \mathcal{D} is a subquotient of $F(X)$

Any functor $F : \mathcal{C} \rightarrow \mathcal{D}$ factorizes $\mathcal{C} \rightarrow \text{Im}(F) \rightarrow \mathcal{D}$ where $\mathcal{C} \rightarrow \text{Im}(F)$ is surjective and $\text{Im}(F) \rightarrow \mathcal{D}$ is an embedding.

Incompressible categories

Surjective functors

Exact \otimes functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is **surjective** if any object of \mathcal{D} is a subquotient of $F(X)$

Any functor $F : \mathcal{C} \rightarrow \mathcal{D}$ factorizes $\mathcal{C} \rightarrow \text{Im}(F) \rightarrow \mathcal{D}$ where $\mathcal{C} \rightarrow \text{Im}(F)$ is surjective and $\text{Im}(F) \rightarrow \mathcal{D}$ is an embedding.

Definition

A pre-Tannakian \mathcal{C} is **incompressible** if any surjective \otimes functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence for any pre-Tannakian \mathcal{D}

Incompressible categories

Surjective functors

Exact \otimes functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is **surjective** if any object of \mathcal{D} is a subquotient of $F(X)$

Any functor $F : \mathcal{C} \rightarrow \mathcal{D}$ factorizes $\mathcal{C} \rightarrow \text{Im}(F) \rightarrow \mathcal{D}$ where $\mathcal{C} \rightarrow \text{Im}(F)$ is surjective and $\text{Im}(F) \rightarrow \mathcal{D}$ is an embedding.

Definition

A pre-Tannakian \mathcal{C} is **incompressible** if any surjective \otimes functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence for any pre-Tannakian \mathcal{D}

Equivalently, \mathcal{C} is incompressible if any exact \otimes functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is an embedding

Incompressible categories

Surjective functors

Exact \otimes functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is **surjective** if any object of \mathcal{D} is a subquotient of $F(X)$

Any functor $F : \mathcal{C} \rightarrow \mathcal{D}$ factorizes $\mathcal{C} \rightarrow \text{Im}(F) \rightarrow \mathcal{D}$ where $\mathcal{C} \rightarrow \text{Im}(F)$ is surjective and $\text{Im}(F) \rightarrow \mathcal{D}$ is an embedding.

Definition

A pre-Tannakian \mathcal{C} is **incompressible** if any surjective \otimes functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence for any pre-Tannakian \mathcal{D}

Equivalently, \mathcal{C} is incompressible if any exact \otimes functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is an embedding

Example

Vec $s\text{Vec}$

Incompressible categories

Surjective functors

Exact \otimes functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is **surjective** if any object of \mathcal{D} is a subquotient of $F(X)$

Any functor $F : \mathcal{C} \rightarrow \mathcal{D}$ factorizes $\mathcal{C} \rightarrow \text{Im}(F) \rightarrow \mathcal{D}$ where $\mathcal{C} \rightarrow \text{Im}(F)$ is surjective and $\text{Im}(F) \rightarrow \mathcal{D}$ is an embedding.

Definition

A pre-Tannakian \mathcal{C} is **incompressible** if any surjective \otimes functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence for any pre-Tannakian \mathcal{D}

Equivalently, \mathcal{C} is incompressible if any exact \otimes functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is an embedding

Example

Vec $s\text{Vec}$

Any more examples?

Characteristic zero

Characteristic zero

Definition

We say that \mathcal{C} is of sub-exponential growth if for any $X \in \mathcal{C}$ there is $a_X \in \mathbb{R}$ such that $\text{length}(X^{\otimes n}) \leq a_X^n$.

Characteristic zero

Definition

We say that \mathcal{C} is of sub-exponential growth if for any $X \in \mathcal{C}$ there is $a_X \in \mathbb{R}$ such that $\text{length}(X^{\otimes n}) \leq a_X^n$.

Theorem (Deligne)

Assume $\text{char } k = 0$ and let \mathcal{C} be pre-Tannakian of sub-exponential growth. Then \mathcal{C} is super Tannakian. In particular, Vec and $s\text{Vec}$ are the only incompressible categories of sub-exponential growth.

Characteristic zero

Definition

We say that \mathcal{C} is of sub-exponential growth if for any $X \in \mathcal{C}$ there is $a_X \in \mathbb{R}$ such that $\text{length}(X^{\otimes n}) \leq a_X^n$.

Theorem (Deligne)

Assume $\text{char } k = 0$ and let \mathcal{C} be pre-Tannakian of sub-exponential growth. Then \mathcal{C} is super Tannakian. In particular, Vec and $s\text{Vec}$ are the only incompressible categories of sub-exponential growth.

Example

Deligne categories $\text{Rep}(GL_t)$, $\text{Rep}(O_t)$, $\text{Rep}(S_t)$ ($t \in k$) are categories of super-exponential growth.

Characteristic zero

Definition

We say that \mathcal{C} is of sub-exponential growth if for any $X \in \mathcal{C}$ there is $a_X \in \mathbb{R}$ such that $\text{length}(X^{\otimes n}) \leq a_X^n$.

Theorem (Deligne)

Assume $\text{char } k = 0$ and let \mathcal{C} be pre-Tannakian of sub-exponential growth. Then \mathcal{C} is super Tannakian. In particular, Vec and $s\text{Vec}$ are the only incompressible categories of sub-exponential growth.

Example

Deligne categories $\text{Rep}(GL_t)$, $\text{Rep}(O_t)$, $\text{Rep}(S_t)$ ($t \in k$) are categories of super-exponential growth.

They typically admit surjective functors like $\text{Rep}(S_t) \rightarrow \text{Rep}(S_{t-1})$.

Characteristic zero

Definition

We say that \mathcal{C} is of sub-exponential growth if for any $X \in \mathcal{C}$ there is $a_X \in \mathbb{R}$ such that $\text{length}(X^{\otimes n}) \leq a_X^n$.

Theorem (Deligne)

Assume $\text{char } k = 0$ and let \mathcal{C} be pre-Tannakian of sub-exponential growth. Then \mathcal{C} is super Tannakian. In particular, Vec and $s\text{Vec}$ are the only incompressible categories of sub-exponential growth.

Example

Deligne categories $\text{Rep}(GL_t)$, $\text{Rep}(O_t)$, $\text{Rep}(S_t)$ ($t \in k$) are categories of super-exponential growth.

They typically admit surjective functors like $\text{Rep}(S_t) \rightarrow \text{Rep}(S_{t-1})$.

Conjecture: No more incompressible categories in characteristic zero.

Semisimplification

Semisimplification

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Semisimplification

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f : X \rightarrow Y$ is **negligible** if for any $g : Y \rightarrow X$ we have $\text{Tr}(fg) = 0$.

Semisimplification

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f : X \rightarrow Y$ is **negligible** if for any $g : Y \rightarrow X$ we have $\text{Tr}(fg) = 0$.

Negligible morphisms form a \otimes ideal \mathcal{N} .

Semisimplification

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f : X \rightarrow Y$ is **negligible** if for any $g : Y \rightarrow X$ we have $\text{Tr}(fg) = 0$.

Negligible morphisms form a \otimes ideal \mathcal{N} .

Define $\overline{\mathcal{T}}$: the same objects as in \mathcal{T} but $\text{Hom}_{\overline{\mathcal{T}}}(X, Y) = \text{Hom}_{\mathcal{T}}(X, Y)/\mathcal{N}$.

Semisimplification

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f : X \rightarrow Y$ is **negligible** if for any $g : Y \rightarrow X$ we have $\text{Tr}(fg) = 0$.

Negligible morphisms form a \otimes ideal \mathcal{N} .

Define $\overline{\mathcal{T}}$: the same objects as in \mathcal{T} but $\text{Hom}_{\overline{\mathcal{T}}}(X, Y) = \text{Hom}_{\mathcal{T}}(X, Y)/\mathcal{N}$.
 $\overline{\mathcal{T}}$ is again rigid symmetric monoidal category

Semisimplification

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f : X \rightarrow Y$ is **negligible** if for any $g : Y \rightarrow X$ we have $\text{Tr}(fg) = 0$.

Negligible morphisms form a \otimes ideal \mathcal{N} .

Define $\overline{\mathcal{T}}$: the same objects as in \mathcal{T} but $\text{Hom}_{\overline{\mathcal{T}}}(X, Y) = \text{Hom}_{\mathcal{T}}(X, Y)/\mathcal{N}$.
 $\overline{\mathcal{T}}$ is again rigid symmetric monoidal category

Theorem (U. Jannsen)

Assume $\dim \text{Hom}(X, Y) < \infty$ and any nilpotent endomorphism in \mathcal{T} has trace zero. Then $\overline{\mathcal{T}}$ is semisimple (and so abelian). Moreover

Irreducibles of $\overline{\mathcal{T}}$ \leftrightarrow Indecomposables of \mathcal{T} of nonzero dimension.

Semisimplification

Let \mathcal{T} be a rigid symmetric monoidal category (perhaps non-abelian)

Negligible morphisms

We say that $f : X \rightarrow Y$ is **negligible** if for any $g : Y \rightarrow X$ we have $\text{Tr}(fg) = 0$.

Negligible morphisms form a \otimes ideal \mathcal{N} .

Define $\overline{\mathcal{T}}$: the same objects as in \mathcal{T} but $\text{Hom}_{\overline{\mathcal{T}}}(X, Y) = \text{Hom}_{\mathcal{T}}(X, Y)/\mathcal{N}$.
 $\overline{\mathcal{T}}$ is again rigid symmetric monoidal category

Theorem (U. Jannsen)

Assume $\dim \text{Hom}(X, Y) < \infty$ and any nilpotent endomorphism in \mathcal{T} has trace zero. Then $\overline{\mathcal{T}}$ is semisimple (and so abelian). Moreover

Irreducibles of $\overline{\mathcal{T}}$ \leftrightarrow Indecomposables of \mathcal{T} of nonzero dimension.

Remark: assume $F : \mathcal{T} \rightarrow \mathcal{C}$ is a \otimes functor to abelian \mathcal{C} . Then any nilpotent endomorphism in \mathcal{T} has trace zero.

Semisimple Verlinde categories

Assume $\text{char } k = p > 0$.

Semisimple Verlinde categories

Assume $\text{char } k = p > 0$.

S. Gelfand-Kazhdan and Georgiev-Mathieu

G – semisimple group, e.g. $G = SL_n$

Semisimple Verlinde categories

Assume $\text{char } k = p > 0$.

S. Gelfand-Kazhdan and Georgiev-Mathieu

G – semisimple group, e.g. $G = SL_n$

Let $\mathcal{T} = \{ \text{tilting } G\text{-modules} \}$

Semisimple Verlinde categories

Assume $\text{char } k = p > 0$.

S. Gelfand-Kazhdan and Georgiev-Mathieu

G – semisimple group, e.g. $G = SL_n$

Let $\mathcal{T} = \{ \text{tilting } G\text{-modules} \}$

Then $\text{Ver}(G) := \overline{\mathcal{T}}$ is a nice \otimes category; it has finitely many irreducibles provided $p \geq$ Coxeter number of G (e.g. $h(SL_n) = n$)

Semisimple Verlinde categories

Assume $\text{char } k = p > 0$.

S. Gelfand-Kazhdan and Georgiev-Mathieu

G – semisimple group, e.g. $G = SL_n$

Let $\mathcal{T} = \{ \text{tilting } G\text{-modules} \}$

Then $\text{Ver}(G) := \overline{\mathcal{T}}$ is a nice \otimes category; it has finitely many irreducibles provided $p \geq$ Coxeter number of G (e.g. $h(SL_n) = n$)

Example

$\text{Ver}_p := \text{Ver}(SL_2)$

Semisimple Verlinde categories

Assume $\text{char } k = p > 0$.

S. Gelfand-Kazhdan and Georgiev-Mathieu

G – semisimple group, e.g. $G = SL_n$

Let $\mathcal{T} = \{ \text{tilting } G\text{-modules} \}$

Then $\text{Ver}(G) := \overline{\mathcal{T}}$ is a nice \otimes category; it has finitely many irreducibles provided $p \geq \text{Coxeter number of } G$ (e.g. $h(SL_n) = n$)

Example

$\text{Ver}_p := \text{Ver}(SL_2)$

Simple objects $L_1 = \mathbf{1}, L_2, \dots, L_{p-1}$

Semisimple Verlinde categories

Assume $\text{char } k = p > 0$.

S. Gelfand-Kazhdan and Georgiev-Mathieu

G – semisimple group, e.g. $G = SL_n$

Let $\mathcal{T} = \{ \text{tilting } G\text{-modules} \}$

Then $\text{Ver}(G) := \overline{\mathcal{T}}$ is a nice \otimes category; it has finitely many irreducibles provided $p \geq \text{Coxeter number of } G$ (e.g. $h(SL_n) = n$)

Example

$\text{Ver}_p := \text{Ver}(SL_2)$

Simple objects $L_1 = \mathbf{1}, L_2, \dots, L_{p-1}$

$L_2 \otimes L_i = L_{i-1} \oplus L_{i+1}$ with convention $L_0 = L_p = 0$

Semisimple Verlinde categories

Assume $\text{char } k = p > 0$.

S. Gelfand-Kazhdan and Georgiev-Mathieu

G – semisimple group, e.g. $G = SL_n$

Let $\mathcal{T} = \{ \text{tilting } G\text{-modules} \}$

Then $\text{Ver}(G) := \overline{\mathcal{T}}$ is a nice \otimes category; it has finitely many irreducibles provided $p \geq \text{Coxeter number of } G$ (e.g. $h(SL_n) = n$)

Example

$\text{Ver}_p := \text{Ver}(SL_2)$

Simple objects $L_1 = \mathbf{1}, L_2, \dots, L_{p-1}$

$L_2 \otimes L_i = L_{i-1} \oplus L_{i+1}$ with convention $L_0 = L_p = 0$

This implies: $L_{p-1} \otimes L_{p-1} = \mathbf{1}$ and $\langle \mathbf{1}, L_{p-1} \rangle = \text{sVec}$.

Semisimple Verlinde categories

Assume $\text{char } k = p > 0$.

S. Gelfand-Kazhdan and Georgiev-Mathieu

G – semisimple group, e.g. $G = SL_n$

Let $\mathcal{T} = \{ \text{tilting } G\text{-modules} \}$

Then $\text{Ver}(G) := \overline{\mathcal{T}}$ is a nice \otimes category; it has finitely many irreducibles provided $p \geq \text{Coxeter number of } G$ (e.g. $h(SL_n) = n$)

Example

$\text{Ver}_p := \text{Ver}(SL_2)$

Simple objects $L_1 = \mathbf{1}, L_2, \dots, L_{p-1}$

$L_2 \otimes L_i = L_{i-1} \oplus L_{i+1}$ with convention $L_0 = L_p = 0$

This implies: $L_{p-1} \otimes L_{p-1} = \mathbf{1}$ and $\langle \mathbf{1}, L_{p-1} \rangle = \text{sVec}$.

For $p = 5$: $L_3 \otimes L_3 = \mathbf{1} \oplus L_3$ Fibonacci category Fib

Semisimple Verlinde categories

Assume $\text{char } k = p > 0$.

S. Gelfand-Kazhdan and Georgiev-Mathieu

G – semisimple group, e.g. $G = SL_n$

Let $\mathcal{T} = \{ \text{tilting } G\text{-modules} \}$

Then $\text{Ver}(G) := \overline{\mathcal{T}}$ is a nice \otimes category; it has finitely many irreducibles provided $p \geq \text{Coxeter number of } G$ (e.g. $h(SL_n) = n$)

Example

$\text{Ver}_p := \text{Ver}(SL_2)$

Simple objects $L_1 = \mathbf{1}, L_2, \dots, L_{p-1}$

$L_2 \otimes L_i = L_{i-1} \oplus L_{i+1}$ with convention $L_0 = L_p = 0$

This implies: $L_{p-1} \otimes L_{p-1} = \mathbf{1}$ and $\langle \mathbf{1}, L_{p-1} \rangle = \text{sVec}$.

For $p = 5$: $L_3 \otimes L_3 = \mathbf{1} \oplus L_3$ Fibonacci category Fib

$\text{Ver}_2 = \text{Vec}$; $\text{Ver}_3 = \text{sVec}$; $\text{Ver}_5 = \text{Fib} \boxtimes \text{sVec}$

Semisimple Verlinde categories

Assume $\text{char } k = p > 0$.

S. Gelfand-Kazhdan and Georgiev-Mathieu

G – semisimple group, e.g. $G = SL_n$

Let $\mathcal{T} = \{ \text{tilting } G\text{-modules} \}$

Then $\text{Ver}(G) := \overline{\mathcal{T}}$ is a nice \otimes category; it has finitely many irreducibles provided $p \geq \text{Coxeter number of } G$ (e.g. $h(SL_n) = n$)

Example

$\text{Ver}_p := \text{Ver}(SL_2)$

Simple objects $L_1 = \mathbf{1}, L_2, \dots, L_{p-1}$

$L_2 \otimes L_i = L_{i-1} \oplus L_{i+1}$ with convention $L_0 = L_p = 0$

This implies: $L_{p-1} \otimes L_{p-1} = \mathbf{1}$ and $\langle \mathbf{1}, L_{p-1} \rangle = \text{sVec}$.

For $p = 5$: $L_3 \otimes L_3 = \mathbf{1} \oplus L_3$ Fibonacci category Fib

$\text{Ver}_2 = \text{Vec}$; $\text{Ver}_3 = \text{sVec}$; $\text{Ver}_5 = \text{Fib} \boxtimes \text{sVec}$

Alternatively $\text{Ver}_p = \text{semisimplification of } \text{Rep}(\mathbb{Z}/p)$

Fact: the category Ver_p is incompressible.

Fact: the category Ver_p is incompressible.

Theorem (V.O.)

For any pre-Tannakian \mathcal{C} which is semisimple with finitely many irreducibles there exists a \otimes functor $\mathcal{C} \rightarrow \text{Ver}_p$. In particular there are no other incompressible fusion categories.

Fact: the category Ver_p is incompressible.

Theorem (V.O.)

For any pre-Tannakian \mathcal{C} which is semisimple with finitely many irreducibles there exists a \otimes functor $\mathcal{C} \rightarrow \text{Ver}_p$. In particular there are no other incompressible fusion categories.

Conjecture: there are no other semisimple incompressible categories (at least of sub-exponential growth).

Fact: the category Ver_p is incompressible.

Theorem (V.O.)

For any pre-Tannakian \mathcal{C} which is semisimple with finitely many irreducibles there exists a \otimes functor $\mathcal{C} \rightarrow \text{Ver}_p$. In particular there are no other incompressible fusion categories.

Conjecture: there are no other semisimple incompressible categories (at least of sub-exponential growth).

What about non-semisimple examples?

Fact: the category Ver_p is incompressible.

Theorem (V.O.)

For any pre-Tannakian \mathcal{C} which is semisimple with finitely many irreducibles there exists a \otimes functor $\mathcal{C} \rightarrow \text{Ver}_p$. In particular there are no other incompressible fusion categories.

Conjecture: there are no other semisimple incompressible categories (at least of sub-exponential growth).

What about non-semisimple examples?

Example

For $p = 2$ Venkatesh constructed an example \mathcal{V} by modifying the commutativity constraint in $\text{Rep}(\mathbb{Z}/2)$

Fact: the category Ver_p is incompressible.

Theorem (V.O.)

For any pre-Tannakian \mathcal{C} which is semisimple with finitely many irreducibles there exists a \otimes functor $\mathcal{C} \rightarrow \text{Ver}_p$. In particular there are no other incompressible fusion categories.

Conjecture: there are no other semisimple incompressible categories (at least of sub-exponential growth).

What about non-semisimple examples?

Example

For $p = 2$ Venkatesh constructed an example \mathcal{V} by modifying the commutativity constraint in $\text{Rep}(\mathbb{Z}/2)$

Benson-Etingof

$p = 2$ sequence $\mathcal{C}_0 = \text{Vec} \subset \mathcal{C}_1 = \mathcal{V} \subset \mathcal{C}_2 = \mathcal{T}(SL_2)/\mathcal{I}_2 \subset \mathcal{C}_3 \subset \dots$

Fact: the category Ver_p is incompressible.

Theorem (V.O.)

For any pre-Tannakian \mathcal{C} which is semisimple with finitely many irreducibles there exists a \otimes functor $\mathcal{C} \rightarrow \text{Ver}_p$. In particular there are no other incompressible fusion categories.

Conjecture: there are no other semisimple incompressible categories (at least of sub-exponential growth).

What about non-semisimple examples?

Example

For $p = 2$ Venkatesh constructed an example \mathcal{V} by modifying the commutativity constraint in $\text{Rep}(\mathbb{Z}/2)$

Benson-Etingof

$p = 2$ sequence $\mathcal{C}_0 = \text{Vec} \subset \mathcal{C}_1 = \mathcal{V} \subset \mathcal{C}_2 = \mathcal{T}(SL_2)/\mathcal{I}_2 \subset \mathcal{C}_3 \subset \dots$

Technology: Hopf algebras (in categories) and graded extensions

$p > 2$

$$p > 2$$

More on tilting modules for SL_2

V – tautological 2-dimensional representation of SL_2

$$p > 2$$

More on tilting modules for SL_2

V – tautological 2-dimensional representation of SL_2

$\mathcal{T}(SL_2) :=$ additive \otimes category generated by V

$\{\text{indecomposables of } \mathcal{T}(SL_2)\} = \{\text{indecomposable summands of } V^{\otimes n}\}$

$$p > 2$$

More on tilting modules for SL_2

V – tautological 2-dimensional representation of SL_2

$\mathcal{T}(SL_2) :=$ additive \otimes category generated by V

$\{\text{indecomposables of } \mathcal{T}(SL_2)\} = \{\text{indecomposable summands of } V^{\otimes n}\}$

Fact: indecomposables are classified by highest weight

Thus we have $T_0 = \mathbf{1}$, $T_1 = V$, T_2 , T_3, \dots

$$p > 2$$

More on tilting modules for SL_2

V – tautological 2-dimensional representation of SL_2

$\mathcal{T}(SL_2) :=$ additive \otimes category generated by V

$\{\text{indecomposables of } \mathcal{T}(SL_2)\} = \{\text{indecomposable summands of } V^{\otimes n}\}$

Fact: indecomposables are classified by highest weight

Thus we have $T_0 = \mathbf{1}$, $T_1 = V$, T_2 , T_3, \dots

Steinberg modules: $T_0, T_{p-1}, T_{p^2-1}, \dots, \text{St}_r = T_{p^r-1}, \dots$

More on tilting modules for SL_2

V – tautological 2-dimensional representation of SL_2

$\mathcal{T}(SL_2) :=$ additive \otimes category generated by V

$\{\text{indecomposables of } \mathcal{T}(SL_2)\} = \{\text{indecomposable summands of } V^{\otimes n}\}$

Fact: indecomposables are classified by highest weight

Thus we have $T_0 = \mathbf{1}$, $T_1 = V$, T_2 , T_3, \dots

Steinberg modules: $T_0, T_{p-1}, T_{p^2-1}, \dots, \text{St}_r = T_{p^r-1}, \dots$

Each St_r generates a (thick) tensor ideal $\mathcal{P}_r = \langle T_{p^r-1}, T_{p^r}, T_{p^r+1}, \dots \rangle$

Each thick tensor ideal above gives tensor ideal \mathcal{I}_r : $\mathcal{I}_0 \supset \mathcal{I}_1 \supset \mathcal{I}_2 \supset \dots$

Fact: Any tensor ideal in $\mathcal{T}(SL_2)$ is one of \mathcal{I}_r

More on tilting modules for SL_2

V – tautological 2-dimensional representation of SL_2

$\mathcal{T}(SL_2) :=$ additive \otimes category generated by V

$\{\text{indecomposables of } \mathcal{T}(SL_2)\} = \{\text{indecomposable summands of } V^{\otimes n}\}$

Fact: indecomposables are classified by highest weight

Thus we have $T_0 = \mathbf{1}$, $T_1 = V$, T_2 , T_3, \dots

Steinberg modules: $T_0, T_{p-1}, T_{p^2-1}, \dots, \text{St}_r = T_{p^r-1}, \dots$

Each St_r generates a (thick) tensor ideal $\mathcal{P}_r = \langle T_{p^r-1}, T_{p^r}, T_{p^r+1}, \dots \rangle$

Each thick tensor ideal above gives tensor ideal \mathcal{I}_r : $\mathcal{I}_0 \supset \mathcal{I}_1 \supset \mathcal{I}_2 \supset \dots$

Fact: Any tensor ideal in $\mathcal{T}(SL_2)$ is one of \mathcal{I}_r

Quotients

Define $\mathcal{T}_{p,r} := \mathcal{T}(SL_2)/\mathcal{I}_r$, e.g. $\mathcal{T}_{p,1} = \text{Ver}_p$

More on tilting modules for SL_2

V – tautological 2-dimensional representation of SL_2

$\mathcal{T}(SL_2) :=$ additive \otimes category generated by V

$\{\text{indecomposables of } \mathcal{T}(SL_2)\} = \{\text{indecomposable summands of } V^{\otimes n}\}$

Fact: indecomposables are classified by highest weight

Thus we have $T_0 = \mathbf{1}$, $T_1 = V$, T_2 , T_3, \dots

Steinberg modules: $T_0, T_{p-1}, T_{p^2-1}, \dots, \text{St}_r = T_{p^r-1}, \dots$

Each St_r generates a (thick) tensor ideal $\mathcal{P}_r = \langle T_{p^r-1}, T_{p^r}, T_{p^r+1}, \dots \rangle$

Each thick tensor ideal above gives tensor ideal \mathcal{I}_r : $\mathcal{I}_0 \supset \mathcal{I}_1 \supset \mathcal{I}_2 \supset \dots$

Fact: Any tensor ideal in $\mathcal{T}(SL_2)$ is one of \mathcal{I}_r

Quotients

Define $\mathcal{T}_{p,r} := \mathcal{T}(SL_2)/\mathcal{I}_r$, e.g. $\mathcal{T}_{p,1} = \text{Ver}_p$

$\mathcal{T}_{p,r}$ is non-semisimple and non-abelian for $r > 1$ (except $r = 2$ and $p = 2$)

More on tilting modules for SL_2

V – tautological 2-dimensional representation of SL_2

$\mathcal{T}(SL_2) :=$ additive \otimes category generated by V

$\{\text{indecomposables of } \mathcal{T}(SL_2)\} = \{\text{indecomposable summands of } V^{\otimes n}\}$

Fact: indecomposables are classified by highest weight

Thus we have $T_0 = \mathbf{1}$, $T_1 = V$, T_2 , T_3, \dots

Steinberg modules: $T_0, T_{p-1}, T_{p^2-1}, \dots, \text{St}_r = T_{p^r-1}, \dots$

Each St_r generates a (thick) tensor ideal $\mathcal{P}_r = \langle T_{p^r-1}, T_{p^r}, T_{p^r+1}, \dots \rangle$

Each thick tensor ideal above gives tensor ideal \mathcal{I}_r : $\mathcal{I}_0 \supset \mathcal{I}_1 \supset \mathcal{I}_2 \supset \dots$

Fact: Any tensor ideal in $\mathcal{T}(SL_2)$ is one of \mathcal{I}_r

Quotients

Define $\mathcal{T}_{p,r} := \mathcal{T}(SL_2)/\mathcal{I}_r$, e.g. $\mathcal{T}_{p,1} = \text{Ver}_p$

$\mathcal{T}_{p,r}$ is non-semisimple and non-abelian for $r > 1$ (except $r = 2$ and $p = 2$)

$\mathcal{T}_{p,r}$ contains tensor ideal \mathcal{P}_{r-1} (and $\mathcal{I}_{r-1} = \mathcal{I}_{r-1}/\mathcal{I}_r$)

Main Theorem

Observation: (Benson-Etingof): their category \mathcal{C}_{2r} contains $\mathcal{T}_{2,r}$;

Main Theorem

Observation: (Benson-Etingof): their category \mathcal{C}_{2r} contains $\mathcal{T}_{2,r}$;
 $\{ \text{the ideal } \mathcal{P}_{r-1} \} = \{ \text{subcategory of projective objects in } \mathcal{C}_{2r} \}$

Main Theorem

Observation: (Benson-Etingof): their category \mathcal{C}_{2r} contains $\mathcal{T}_{2,r}$;
 $\{ \text{the ideal } \mathcal{P}_{r-1} \} = \{ \text{subcategory of projective objects in } \mathcal{C}_{2r} \}$

Theorem (Benson-Etingof-O., Coulembier)

There exists a unique pre-Tannakian category Ver_{p^n} containing $\mathcal{T}_{p,n}$ and such that \mathcal{P}_{n-1} coincides with the ideal of projective objects. The category Ver_{p^n} is incompressible.

Main Theorem

Observation: (Benson-Etingof): their category \mathcal{C}_{2r} contains $\mathcal{T}_{2,r}$;
 $\{ \text{the ideal } \mathcal{P}_{r-1} \} = \{ \text{subcategory of projective objects in } \mathcal{C}_{2r} \}$

Theorem (Benson-Etingof-O., Coulembier)

There exists a unique pre-Tannakian category Ver_{p^n} containing $\mathcal{T}_{p,n}$ and such that \mathcal{P}_{n-1} coincides with the ideal of projective objects. The category Ver_{p^n} is incompressible.

Split morphisms

A morphism (in additive category) $f : X \rightarrow Y$ is **split** if it is projection to a direct summand followed by an inclusion of a direct summand

Main Theorem

Observation: (Benson-Etingof): their category \mathcal{C}_{2r} contains $\mathcal{T}_{2,r}$;
 $\{ \text{the ideal } \mathcal{P}_{r-1} \} = \{ \text{subcategory of projective objects in } \mathcal{C}_{2r} \}$

Theorem (Benson-Etingof-O., Coulembier)

There exists a unique pre-Tannakian category Ver_{p^n} containing $\mathcal{T}_{p,n}$ and such that \mathcal{P}_{n-1} coincides with the ideal of projective objects. The category Ver_{p^n} is incompressible.

Split morphisms

A morphism (in additive category) $f : X \rightarrow Y$ is **split** if it is projection to a direct summand followed by an inclusion of a direct summand

Example

If X and Y are indecomposable, f is split $\Leftrightarrow f$ is an isomorphism or $f = 0$

Main Theorem

Observation: (Benson-Etingof): their category \mathcal{C}_{2r} contains $\mathcal{T}_{2,r}$;
 $\{ \text{the ideal } \mathcal{P}_{r-1} \} = \{ \text{subcategory of projective objects in } \mathcal{C}_{2r} \}$

Theorem (Benson-Etingof-O., Coulembier)

There exists a unique pre-Tannakian category Ver_{p^n} containing $\mathcal{T}_{p,n}$ and such that \mathcal{P}_{n-1} coincides with the ideal of projective objects. The category Ver_{p^n} is incompressible.

Split morphisms

A morphism (in additive category) $f : X \rightarrow Y$ is **split** if it is projection to a direct summand followed by an inclusion of a direct summand

Example

If X and Y are indecomposable, f is split $\Leftrightarrow f$ is an isomorphism or $f = 0$

Exercise. Let P be a projective object and $f : X \rightarrow Y$ be any morphism
Then $\text{id}_P \otimes f : P \otimes X \rightarrow P \otimes Y$ is split

Splitting ideals

Splitting ideals

Let \mathcal{T} be a rigid **symmetric** monoidal category (perhaps non-abelian),
 $\dim \text{Hom}(X, Y) < \infty$

Splitting ideals

Let \mathcal{T} be a rigid **symmetric** monoidal category (perhaps non-abelian),
 $\dim \text{Hom}(X, Y) < \infty$

Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal

Splitting ideals

Let \mathcal{T} be a rigid **symmetric** monoidal category (perhaps non-abelian),
 $\dim \text{Hom}(X, Y) < \infty$

Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal

We say that \mathcal{P} is **splitting ideal** if for any morphism $f : X \rightarrow Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $\text{id}_P \otimes f$ is split

Splitting ideals

Let \mathcal{T} be a rigid **symmetric** monoidal category (perhaps non-abelian),
 $\dim \text{Hom}(X, Y) < \infty$

Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal

We say that \mathcal{P} is **splitting ideal** if for any morphism $f : X \rightarrow Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $\text{id}_P \otimes f$ is split

General construction

Given splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above we construct abelian rigid tensor category $\mathcal{C} \supset \mathcal{P}$ such that \mathcal{P} is subcategory of projective objects

Splitting ideals

Let \mathcal{T} be a rigid **symmetric** monoidal category (perhaps non-abelian),
 $\dim \text{Hom}(X, Y) < \infty$

Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal

We say that \mathcal{P} is **splitting ideal** if for any morphism $f : X \rightarrow Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $\text{id}_P \otimes f$ is split

General construction

Given splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above we construct abelian rigid tensor category $\mathcal{C} \supset \mathcal{P}$ such that \mathcal{P} is subcategory of projective objects

Hint on construction of \mathcal{C} : complexes of objects of \mathcal{P}

Splitting ideals

Let \mathcal{T} be a rigid **symmetric** monoidal category (perhaps non-abelian),
 $\dim \text{Hom}(X, Y) < \infty$

Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal

We say that \mathcal{P} is **splitting ideal** if for any morphism $f : X \rightarrow Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $\text{id}_P \otimes f$ is split

General construction

Given splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above we construct abelian rigid tensor category $\mathcal{C} \supset \mathcal{P}$ such that \mathcal{P} is subcategory of projective objects

Hint on construction of \mathcal{C} : complexes of objects of \mathcal{P}

Some challenges: What is unit object of \mathcal{C} ?

Splitting ideals

Let \mathcal{T} be a rigid **symmetric** monoidal category (perhaps non-abelian),
 $\dim \text{Hom}(X, Y) < \infty$

Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal

We say that \mathcal{P} is **splitting ideal** if for any morphism $f : X \rightarrow Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $\text{id}_P \otimes f$ is split

General construction

Given splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above we construct abelian rigid tensor category $\mathcal{C} \supset \mathcal{P}$ such that \mathcal{P} is subcategory of projective objects

Hint on construction of \mathcal{C} : complexes of objects of \mathcal{P}

Some challenges: What is unit object of \mathcal{C} ?

Why \mathcal{C} is rigid?

Splitting ideals

Let \mathcal{T} be a rigid **symmetric** monoidal category (perhaps non-abelian),
 $\dim \text{Hom}(X, Y) < \infty$

Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal

We say that \mathcal{P} is **splitting ideal** if for any morphism $f : X \rightarrow Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $\text{id}_P \otimes f$ is split

General construction

Given splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above we construct abelian rigid tensor category $\mathcal{C} \supset \mathcal{P}$ such that \mathcal{P} is subcategory of projective objects

Hint on construction of \mathcal{C} : complexes of objects of \mathcal{P}

Some challenges: What is unit object of \mathcal{C} ?

Why \mathcal{C} is rigid?

Key Lemma

The ideal $\mathcal{P}_{n-1} \subset \mathcal{T}_{p,n}$ is splitting

Splitting ideals

Let \mathcal{T} be a rigid **symmetric** monoidal category (perhaps non-abelian),
 $\dim \text{Hom}(X, Y) < \infty$

Let $\mathcal{P} \subset \mathcal{T}$ be a thick tensor ideal

We say that \mathcal{P} is **splitting ideal** if for any morphism $f : X \rightarrow Y$ in \mathcal{T} and $P \in \mathcal{P}$ the morphism $\text{id}_P \otimes f$ is split

General construction

Given splitting ideal $\mathcal{P} \subset \mathcal{T}$ as above we construct abelian rigid tensor category $\mathcal{C} \supset \mathcal{P}$ such that \mathcal{P} is subcategory of projective objects

Hint on construction of \mathcal{C} : complexes of objects of \mathcal{P}

Some challenges: What is unit object of \mathcal{C} ?

Why \mathcal{C} is rigid?

Key Lemma

The ideal $\mathcal{P}_{n-1} \subset \mathcal{T}_{p,n}$ is splitting

Wanted: more examples of splitting tensor ideals!

Properties of Ver_{p^n}

Properties of Ver_{p^n}

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \leq i < p^n - 1$; $\# = p^n - p^{n-1}$

Properties of Ver_{p^n}

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \leq i < p^n - 1$; $\# = p^n - p^{n-1}$

We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely n digits ($i_1 \neq 0!$)

Properties of Ver_{p^n}

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \leq i < p^n - 1$; $\# = p^n - p^{n-1}$

We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely n digits ($i_1 \neq 0!$)

Cartan matrix $C_{ij} := \dim \text{Hom}(P_i, P_j)$

Properties of Ver_{p^n}

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \leq i < p^n - 1$; $\# = p^n - p^{n-1}$

We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely n digits ($i_1 \neq 0!$)

Cartan matrix $C_{ij} := \dim \text{Hom}(P_i, P_j)$

Negative digits game: make some digits negative

$$[23045]_p \rightsquigarrow 2(-3)0(-4)5 = 2p^4 - 3p^3 - 4p + 5$$

Descendants of i : all positive numbers you get in this way

E.g. $[23045]_p$ has $2^3 = 8$ descendants

Properties of Ver_{p^n}

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \leq i < p^n - 1$; $\# = p^n - p^{n-1}$

We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely n digits ($i_1 \neq 0!$)

Cartan matrix $C_{ij} := \dim \text{Hom}(P_i, P_j)$

Negative digits game: make some digits negative

$$[23045]_p \rightsquigarrow 2(-3)0(-4)5 = 2p^4 - 3p^3 - 4p + 5$$

Descendants of i : all positive numbers you get in this way

E.g. $[23045]_p$ has $2^3 = 8$ descendants

Tubbenhauer-Wedrich: $C_{ij} = |\{\text{descendants of } i\} \cap \{\text{descendants of } j\}|$

Properties of Ver_{p^n}

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \leq i < p^n - 1$; $\# = p^n - p^{n-1}$

We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely n digits ($i_1 \neq 0!$)

Cartan matrix $C_{ij} := \dim \text{Hom}(P_i, P_j)$

Negative digits game: make some digits negative

$$[23045]_p \rightsquigarrow 2(-3)0(-4)5 = 2p^4 - 3p^3 - 4p + 5$$

Descendants of i : all positive numbers you get in this way

E.g. $[23045]_p$ has $2^3 = 8$ descendants

Tubbenhauer-Wedrich: $C_{ij} = |\{\text{descendants of } i\} \cap \{\text{descendants of } j\}|$

Exercise: $C_{ij} = 0$ or power of 2

Properties of Ver_{p^n}

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \leq i < p^n - 1$; $\# = p^n - p^{n-1}$

We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely n digits ($i_1 \neq 0!$)

Cartan matrix $C_{ij} := \dim \text{Hom}(P_i, P_j)$

Negative digits game: make some digits negative

$$[23045]_p \rightsquigarrow 2(-3)0(-4)5 = 2p^4 - 3p^3 - 4p + 5$$

Descendants of i : all positive numbers you get in this way

E.g. $[23045]_p$ has $2^3 = 8$ descendants

Tubbenhauer-Wedrich: $C_{ij} = |\{\text{descendants of } i\} \cap \{\text{descendants of } j\}|$

Exercise: $C_{ij} = 0$ or power of 2

Exercise: $\det C_{ij} = \text{power of } p$

Properties of Ver_{p^n}

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \leq i < p^n - 1$; $\# = p^n - p^{n-1}$

We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely n digits ($i_1 \neq 0!$)

Cartan matrix $C_{ij} := \dim \text{Hom}(P_i, P_j)$

Negative digits game: make some digits negative

$$[23045]_p \rightsquigarrow 2(-3)0(-4)5 = 2p^4 - 3p^3 - 4p + 5$$

Descendants of i : all positive numbers you get in this way

E.g. $[23045]_p$ has $2^3 = 8$ descendants

Tubbenhauer-Wedrich: $C_{ij} = |\{\text{descendants of } i\} \cap \{\text{descendants of } j\}|$

Exercise: $C_{ij} = 0$ or power of 2

Exercise: $\det C_{ij} = \text{power of } p$

Embeddings

We have $\text{Ver}_p \subset \text{Ver}_{p^2} \subset \text{Ver}_{p^3} \subset \dots$

Properties of Ver_{p^n}

Projectives and Cartan matrix

Projective objects: T_i with $p^{n-1} - 1 \leq i < p^n - 1$; $\# = p^n - p^{n-1}$

We set $P_i = T_{i-1}$ where $i = [i_1 i_2 \dots i_n]_p$ has precisely n digits ($i_1 \neq 0!$)

Cartan matrix $C_{ij} := \dim \text{Hom}(P_i, P_j)$

Negative digits game: make some digits negative

$$[23045]_p \rightsquigarrow 2(-3)0(-4)5 = 2p^4 - 3p^3 - 4p + 5$$

Descendants of i : all positive numbers you get in this way

E.g. $[23045]_p$ has $2^3 = 8$ descendants

Tubbenhauer-Wedrich: $C_{ij} = |\{\text{descendants of } i\} \cap \{\text{descendants of } j\}|$

Exercise: $C_{ij} = 0$ or power of 2

Exercise: $\det C_{ij} = \text{power of } p$

Embeddings

We have $\text{Ver}_p \subset \text{Ver}_{p^2} \subset \text{Ver}_{p^3} \subset \dots$

For $p > 2$, $\text{Ver}_{p^n} = \text{Ver}_{p^n}^+ \boxtimes \text{sVec}$

More properties of Ver_{p^n}

Grothendieck ring ($p > 2$)

More properties of Ver_{p^n}

Grothendieck ring ($p > 2$)

$K(\text{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]$ where ξ is a primitive p^n -th root of 1

More properties of Ver_{p^n}

Grothendieck ring ($p > 2$)

$K(\text{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]$ where ξ is a primitive p^n -th root of 1

$K(\text{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]$

More properties of Ver_{p^n}

Grothendieck ring ($p > 2$)

$K(\text{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]$ where ξ is a primitive p^n -th root of 1

$K(\text{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]$

Simples

Some simples: $T_0 = \mathbf{1}$, T_1, \dots, T_{p-1} are simples $T_i^{[n]}$ in Ver_{p^n} ($n > 1$)

More properties of Ver_{p^n}

Grothendieck ring ($p > 2$)

$K(\text{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]$ where ξ is a primitive p^n -th root of 1

$K(\text{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]$

Simples

Some simples: $T_0 = \mathbf{1}$, T_1, \dots, T_{p-1} are simples $T_i^{[n]}$ in Ver_{p^n} ($n > 1$)

Tensor Product Theorem: for $i = [i_1 \dots i_n]$ with $i_1 \neq p-1$

$L_i = T_{i_1}^{[1]} \otimes T_{i_2}^{[2]} \dots T_{i_n}^{[n]}$ is simple (and this is a complete list)

More properties of Ver_{p^n}

Grothendieck ring ($p > 2$)

$K(\text{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]$ where ξ is a primitive p^n -th root of 1

$K(\text{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]$

Simples

Some simples: $T_0 = \mathbf{1}$, T_1, \dots, T_{p-1} are simples $T_i^{[n]}$ in Ver_{p^n} ($n > 1$)

Tensor Product Theorem: for $i = [i_1 \dots i_n]$ with $i_1 \neq p-1$

$L_i = T_{i_1}^{[1]} \otimes T_{i_2}^{[2]} \dots T_{i_n}^{[n]}$ is simple (and this is a complete list)

$P(L_i) = P_s$ where $s = [(i_1 + 1)i_2^* \dots i_n^*]$ where $i^* = p-1-i$

More properties of Ver_{p^n}

Grothendieck ring ($p > 2$)

$K(\text{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]$ where ξ is a primitive p^n -th root of 1

$K(\text{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]$

Simples

Some simples: $T_0 = \mathbf{1}$, T_1, \dots, T_{p-1} are simples $T_i^{[n]}$ in Ver_{p^n} ($n > 1$)

Tensor Product Theorem: for $i = [i_1 \dots i_n]$ with $i_1 \neq p-1$

$L_i = T_{i_1}^{[1]} \otimes T_{i_2}^{[2]} \dots T_{i_n}^{[n]}$ is simple (and this is a complete list)

$P(L_i) = P_s$ where $s = [(i_1 + 1)i_2^* \dots i_n^*]$ where $i^* = p-1-i$

Extensions ($p > 2$): $\text{Ext}^1(L_i, L_j) = 0$ or k

More properties of Ver_{p^n}

Grothendieck ring ($p > 2$)

$$K(\text{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}] \text{ where } \xi \text{ is a primitive } p^n\text{-th root of 1}$$

$$K(\text{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]$$

Simples

Some simples: $T_0 = \mathbf{1}$, T_1, \dots, T_{p-1} are simples $T_i^{[n]}$ in Ver_{p^n} ($n > 1$)

Tensor Product Theorem: for $i = [i_1 \dots i_n]$ with $i_1 \neq p-1$

$L_i = T_{i_1}^{[1]} \otimes T_{i_2}^{[2]} \dots T_{i_n}^{[n]}$ is simple (and this is a complete list)

$P(L_i) = P_s$ where $s = [(i_1 + 1)i_2^* \dots i_n^*]$ where $i^* = p-1-i$

Extensions ($p > 2$): $\text{Ext}^1(L_i, L_j) = 0$ or k

$\text{Ext}^1(L_i, L_j) \neq 0 \Leftrightarrow i$ and j differ only in two consecutive digits, of which the first ones differ by 1 and the second ones add up to $p-2$

More properties of Ver_{p^n}

Grothendieck ring ($p > 2$)

$K(\text{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}]$ where ξ is a primitive p^n -th root of 1

$K(\text{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]$

Simples

Some simples: $T_0 = \mathbf{1}$, T_1, \dots, T_{p-1} are simples $T_i^{[n]}$ in Ver_{p^n} ($n > 1$)

Tensor Product Theorem: for $i = [i_1 \dots i_n]$ with $i_1 \neq p-1$

$L_i = T_{i_1}^{[1]} \otimes T_{i_2}^{[2]} \dots T_{i_n}^{[n]}$ is simple (and this is a complete list)

$P(L_i) = P_s$ where $s = [(i_1 + 1)i_2^* \dots i_n^*]$ where $i^* = p-1-i$

Extensions ($p > 2$): $\text{Ext}^1(L_i, L_j) = 0$ or k

$\text{Ext}^1(L_i, L_j) \neq 0 \Leftrightarrow i$ and j differ only in two consecutive digits, of which the first ones differ by 1 and the second ones add up to $p-2$

Blocks: $n(p-1)$ of them of sizes $1, p-1, p^2-p, \dots, p^{n-1}-p^{n-2}$

More properties of Ver_{p^n}

Grothendieck ring ($p > 2$)

$$K(\text{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}] \text{ where } \xi \text{ is a primitive } p^n\text{-th root of 1}$$

$$K(\text{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]$$

Simples

Some simples: $T_0 = \mathbf{1}$, T_1, \dots, T_{p-1} are simples $T_i^{[n]}$ in Ver_{p^n} ($n > 1$)

Tensor Product Theorem: for $i = [i_1 \dots i_n]$ with $i_1 \neq p-1$

$L_i = T_{i_1}^{[1]} \otimes T_{i_2}^{[2]} \dots T_{i_n}^{[n]}$ is simple (and this is a complete list)

$P(L_i) = P_s$ where $s = [(i_1 + 1)i_2^* \dots i_n^*]$ where $i^* = p-1-i$

Extensions ($p > 2$): $\text{Ext}^1(L_i, L_j) = 0$ or k

$\text{Ext}^1(L_i, L_j) \neq 0 \Leftrightarrow i$ and j differ only in two consecutive digits, of which the first ones differ by 1 and the second ones add up to $p-2$

Blocks: $n(p-1)$ of them of sizes $1, p-1, p^2-p, \dots, p^{n-1}-p^{n-2}$

Ver_{p^n} is a mod p reduction of semisimple category in characteristic zero

More properties of Ver_{p^n}

Grothendieck ring ($p > 2$)

$$K(\text{Ver}_{p^n}^+) = \mathbb{Z}[\xi + \xi^{-1}] \text{ where } \xi \text{ is a primitive } p^n\text{-th root of 1}$$

$$K(\text{Ver}_{p^n}) = \mathbb{Z}[\xi + \xi^{-1}][\mathbb{Z}/2]$$

Simples

Some simples: $T_0 = \mathbf{1}$, T_1, \dots, T_{p-1} are simples $T_i^{[n]}$ in Ver_{p^n} ($n > 1$)

Tensor Product Theorem: for $i = [i_1 \dots i_n]$ with $i_1 \neq p-1$

$L_i = T_{i_1}^{[1]} \otimes T_{i_2}^{[2]} \dots T_{i_n}^{[n]}$ is simple (and this is a complete list)

$P(L_i) = P_s$ where $s = [(i_1 + 1)i_2^* \dots i_n^*]$ where $i^* = p-1-i$

Extensions ($p > 2$): $\text{Ext}^1(L_i, L_j) = 0$ or k

$\text{Ext}^1(L_i, L_j) \neq 0 \Leftrightarrow i$ and j differ only in two consecutive digits, of which the first ones differ by 1 and the second ones add up to $p-2$

Blocks: $n(p-1)$ of them of sizes $1, p-1, p^2-p, \dots, p^{n-1}-p^{n-2}$

Ver_{p^n} is a mod p reduction of semisimple category in characteristic zero

Corollary: $C = DD^T$ where D is the decomposition matrix

Some open questions

Module categories

Question 1. What are exact module categories over Ver_{p^n} ?

Some open questions

Module categories

Question 1. What are exact module categories over Ver_{p^n} ?

Extensions

Question 2. What is $\text{Ext}^\bullet(\mathbf{1}, \mathbf{1})$?

Some open questions

Module categories

Question 1. What are exact module categories over Ver_{p^n} ?

Extensions

Question 2. What is $\text{Ext}^\bullet(\mathbf{1}, \mathbf{1})$?

More examples?

Question 3. Are there any other incompressible categories?

Some open questions

Module categories

Question 1. What are exact module categories over Ver_{p^n} ?

Extensions

Question 2. What is $\text{Ext}^\bullet(\mathbf{1}, \mathbf{1})$?

More examples?

Question 3. Are there any other incompressible categories?

Universality

Let $\text{Ver}_{p^\infty} = \cup_n \text{Ver}_{p^n}$

Let \mathcal{C} be a pre-Tannakian category of sub-exponential growth

Question 4. Is there an exact tensor functor $\mathcal{C} \rightarrow \text{Ver}_{p^\infty}$?

Thanks for listening!