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Modular Group

Modular group Γ = SL(2,Z)
acts on the hyperbolic plane H2.(
a b
c d

)
.z = az+b

cz+d

We can construct an orbifold
H2/Γ.
Visualize by taking fundamental
domain of Γ and gluing sides.
Orbifold (rather than manifold)
because i , eπi/3, e2πi/3 are fixed
points.
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Bianchi Groups

Let K be an imaginary quadratic
field, e.g. Q(

√
−2).

Let oK be its ring of integers,
e.g. Z[

√
−2].

Γ = SL(2, oK ) is called a Bianchi
group, and it acts on H3.(
a b
c d

)
.p = (ap+b)(cp+d)−1,

where z = x + yi + zj , a
quaternion.
We can again consider the
orbifold H3/SL(2, oK ).
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Connecting Algebra and Geometry

oK H3/SL(2, oK )

Isomorphism class Homotopy/isometry class

Maximality
(among orders)

Minimal volume
(among arithmetic orbifolds)

Class number Number of cusps

Discriminant dK Volume |dK |
3/2

4π2 ζK (2)

Euclidean algorithm
Easy algorithm to
compute Dirichlet domain

Remark
General theory matches orders of split quaternion algebras and arithmetic
3-orbifolds.

Senia Sheydvasser (CUNY) Hyperbolic 4-Orbifolds 05/18/2020 4 / 30



Connecting Algebra and Geometry

oK H3/SL(2, oK )

Isomorphism class Homotopy/isometry class

Maximality
(among orders)

Minimal volume
(among arithmetic orbifolds)

Class number Number of cusps

Discriminant dK Volume |dK |
3/2

4π2 ζK (2)

Euclidean algorithm
Easy algorithm to
compute Dirichlet domain

Remark
General theory matches orders of split quaternion algebras and arithmetic
3-orbifolds.

Senia Sheydvasser (CUNY) Hyperbolic 4-Orbifolds 05/18/2020 4 / 30



Connecting Algebra and Geometry

oK H3/SL(2, oK )

Isomorphism class Homotopy/isometry class

Maximality
(among orders)

Minimal volume
(among arithmetic orbifolds)

Class number Number of cusps

Discriminant dK Volume |dK |
3/2

4π2 ζK (2)

Euclidean algorithm
Easy algorithm to
compute Dirichlet domain

Remark
General theory matches orders of split quaternion algebras and arithmetic
3-orbifolds.

Senia Sheydvasser (CUNY) Hyperbolic 4-Orbifolds 05/18/2020 4 / 30



Connecting Algebra and Geometry

oK H3/SL(2, oK )

Isomorphism class Homotopy/isometry class

Maximality
(among orders)

Minimal volume
(among arithmetic orbifolds)

Class number Number of cusps

Discriminant dK Volume |dK |
3/2

4π2 ζK (2)

Euclidean algorithm
Easy algorithm to
compute Dirichlet domain

Remark
General theory matches orders of split quaternion algebras and arithmetic
3-orbifolds.

Senia Sheydvasser (CUNY) Hyperbolic 4-Orbifolds 05/18/2020 4 / 30



Connecting Algebra and Geometry

oK H3/SL(2, oK )

Isomorphism class Homotopy/isometry class

Maximality
(among orders)

Minimal volume
(among arithmetic orbifolds)

Class number Number of cusps

Discriminant dK Volume |dK |
3/2

4π2 ζK (2)

Euclidean algorithm
Easy algorithm to
compute Dirichlet domain

Remark
General theory matches orders of split quaternion algebras and arithmetic
3-orbifolds.

Senia Sheydvasser (CUNY) Hyperbolic 4-Orbifolds 05/18/2020 4 / 30



Connecting Algebra and Geometry

oK H3/SL(2, oK )

Isomorphism class Homotopy/isometry class

Maximality
(among orders)

Minimal volume
(among arithmetic orbifolds)

Class number Number of cusps

Discriminant dK Volume |dK |
3/2

4π2 ζK (2)

Euclidean algorithm
Easy algorithm to
compute Dirichlet domain

Remark
General theory matches orders of split quaternion algebras and arithmetic
3-orbifolds.

Senia Sheydvasser (CUNY) Hyperbolic 4-Orbifolds 05/18/2020 4 / 30



Generalizing to Hyperbolic 4-Orbifolds:

Question
Can we get a similar theory for hyperbolic 4-orbifolds? That is, find some
nice arithmetic subgroups of Isom(H4) and relate algebraic invariants to
geometric/topological ones?

Was there anything special about the 2 and 3-dimensional case?

Yes: there are accidental isomorphisms
PSL(2,R) ∼= SO+(2, 1) ∼= Isom0(H2) and
PSL(2,C) ∼= SO+(3, 1) ∼= Isom0(H3).
To proceed, we shall need a new accidental isomorphism with
SO+(4, 1) ∼= Isom0(H4).
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Rings with Involution

Definition
Given a ring R , an involution on R is a map σ : R → R such that

1 σ(x + y) = σ(x) + σ(y),
2 σ(xy) = σ(y)σ(x),
3 σ(σ(x)) = x .

A homomorphism of rings with involution φ : (R1, σ1)→ (R2, σ2) is a ring
homomorphism such that φ ◦ σ1 = σ2 ◦ φ.
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Examples of Involutions

R a commutative ring, id : R → R

Mat(2,R) (R commutative),(
a b
c d

)†
=

(
d −b
−c a

)

Mat(2,R) ((R, σ) ring with involution),

σ̂

(
a b
c d

)
=

(
σ(d) −σ(b)
−σ(c) σ(a)

)
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Quaternion Algebras

Definition
A quaternion algebra over a field F is a central simple algebra H of
dimension 4. If char(F ) 6= 2, this can always be expressed as the F -algebra
generated by elements i , j satisfying i2 = a, j2 = b, ij = −ji for some
a, b ∈ F×. We write this as

H =

(
a, b

F

)
= {x + yi + zj + tij |x , y , z , t ∈ F} .

Examples

HR =
(
−1,−1

R

)
, the classical Hamilton quaternions.

Mat(2,F ) =
(

1,−1
F

)
.
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Involutions on Quaternion Algebras

Definition
Any involution σ on any central simple algebra A must restrict to an
automorphism of the center F of either order 1 (involution of first kind) or
order 2 (involution of second kind).

Remark
For ease of exposition, we shall only consider the case of involutions of the
first kind and take char(F ) 6= 2. This leaves only two options for
quaternion algebras.
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Involutions on Quaternion Algebras

Remark
For ease of exposition, we shall only consider the case of involutions of the
first kind and take char(F ) 6= 2. This leaves only two options for
quaternion algebras.

1 Standard (symplectic) involution: quaternion conjugation

x + yi + zj + tij = x − yi − zj − tij((
a b
c d

)†
=

(
d −b
−c a

))
2 Orthogonal involutions: after change of variables

(x + yi + zj + tij)‡ = x + yi + zj − tij .
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Groups Constructed from Rings with Involution

Definition
Let (R, σ) be a ring with involution. We define the twisted special linear
group

SLσ(2,R) = {M ∈ Mat(2,R)|Mσ̂(M) = 1} .

One checks that

SLσ(2,R) =

{(
a b
c d

)
∈ Mat(2,R)

∣∣∣∣aσ(b), cσ(d) ∈ R+,

aσ(d)− bσ(c) = 1}

where R+, R− are the subsets of R on which σ acts as id and −id ,
respectively.
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Examples of the Twisted Special Linear Group

If R is a commutative ring, SLid(2,R) = SL(2,R).

(Vahlen, early 1900s) Let HR be the Hamilton quaternions, ‡ an
orthogonal involution. Then
SL‡(2,HR)/{±1} ∼= SO+(4, 1) ∼= Isom0(H4).

To Reiterate
HR = {x + yi + zj + tij}, i2 = j2 = −1, ij = −ji .
(x + yi + zj + tij)‡ = x + yi + zj − tij .

SL‡(2,HR) =

{(
a b
c d

)
∈ Mat(2,HR)

∣∣∣∣ab‡, cd‡ ∈ H+,

ad‡ − bc‡ = 1
}
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Isomorphism with Isometry Group

Identify H4 with {x + yi + zj + tij ∈ HR|t > 0}.

Act by Möbius transformations(
a b
c d

)
.z = (az + b)(cz + d)−1.

Kernel is {±1}, so we get an (accidental) isomorphism
SL‡(2,HR) ∼= SO+(4, 1) ∼= Isom0(H4).
We can now try to look for nice arithmetic subgroups.
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Orders of Simple Algebras

Definition
Let o be a Dedekind domain, F its field of fractions, and A a simple
algebra over F . An order of A is a subring O which is also a o-lattice—that
is, a finitely-generated o-module such that FO = A.

Examples:

o = Z, F = Q, A = Q(
√
−n), O = Z⊕ Z

√
−n.

o = Z, F = Q, A =
(
−1,−1

Q

)
O = Z⊕ Zi ⊕ Zj ⊕ Z

1 + i + j + ij

2
.

o = Z, F = Q, A =
(
−2,−3

Q

)
O = Z⊕ Zi ⊕ Z

1 + j

2
⊕ Z

i + ij

2
.
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Orders with Involution

Definition
Let O be an order of a central simple algebra A with an involution σ. We
say O is a σ-order if σ(O) = O. We say that O is a maximal σ-order if @
σ-order O′ ) O.

Why Do We Care?
If O is a σ-order, then SLσ(2,O) is an arithmetic subgroup of the
algebraic group SLσ(2,A).
If H is a rational, definite quaternion algebra, then SL‡(2,O) is an
arithmetic subgroup of Isom0(H4).
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Examples of Orders with Involution

Remark
σ-orders originally studied by Scharlau in the 1970s; generalized to
Azumaya algebras by Saltman. Showed when maximal σ-orders are
maximal orders.

H =
(
−1,−1

Q

)
, (x + yi + zj + tij)‡ = x + yi + zj − tij .

O = Z⊕ Zi ⊕ Zj ⊕ Z
1 + i + j + ij

2
.

H =
(
−2,−3

Q

)
, (x + yi + zj + tij)‡ = x + yi + zj − tij .

O = Z⊕ Zi ⊕ Z
1 + j

2
⊕ Z

i + ij

2

⊂ Z⊕ Zi ⊕ Z
1 + j

2
⊕ Z

3 + 3i + j + ij

6
.
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maximal orders.

H =
(
−1,−1

Q

)
, (x + yi + zj + tij)‡ = x + yi + zj − tij .

O = Z⊕ Zi ⊕ Zj ⊕ Z
1 + i + j + ij

2
.

H =
(
−2,−3

Q

)
, (x + yi + zj + tij)‡ = x + yi + zj − tij .

O = Z⊕ Zi ⊕ Z
1 + j

2
⊕ Z

i + ij

2

⊂ Z⊕ Zi ⊕ Z
1 + j

2
⊕ Z

3 + 3i + j + ij

6
.
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Determining Maximality

Theorem (S. 2017)
Let K be a local or global field. Let H be a quaternion algebra over K with
orthogonal involution ‡. Then O is a maximal ‡-order if and only if it is a
‡-order with discriminant disc(O) = disc(H) ∩ ι(disc(‡)).

Remark
For local fields, better results are available for classifying isomorphism
classes.
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Connecting Algebra and Geometry, Part II

O H4/SL‡(2,O)
Isomorphism class
of
(
Mat(2,O), ‡̂

) Homotopy/isometry class 18

Maximality
(among ‡-orders)

Minimal volume
(among arithmetic orbifolds)

19

Class number Number of cusps 20,22

Discriminant Volume ??? (conjectured) 24

‡-Euclidean algorithm
Easy algorithm to
compute Dirichlet domain

20,25

Open Question
Do all arithmetic 4-orbifolds correspond to σ-orders inside Mat(2,HR)?
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Remarks about Isomorphism Classes

For 3-orbifolds, the isomorphism class of oK mattered. This is because
(Mat(2, oK ), †) ∼= (Mat(2, oK ′), †) if and only if oK ∼= oK ′ .

Not so simple a dimension up.
Mat(2,O) ∼= Mat(2,O′) 6⇒ O ∼= O′. (Examples due to Chatters 1996)
(Mat(2,O), ‡̂) ∼= (Mat(2,O′), ‡̂) 6⇒ O ∼= O′. (S. 2020)
Conversely, O ∼= O′ 6⇒ (Mat(2,O), ‡̂) ∼= (Mat(2,O′), ‡̂). (S. 2020)
Rough outline of proof:

1 Prove Z[SL‡(2,O)] = Mat(2,O) using strong approximation theorem
for algebraic groups.

2 Prove that
(
Z[SL‡(2,O1)], ‡̂

)
∼=
(
Z[SL‡(2,O2)], ‡̂

)
if and only if

SL‡(2,O1) conjugate to SL‡(2,O2). This uses the Skolem-Noether
theorem.

3 Note that SL‡(2,O1) conjugate to SL‡(2,O2) if and only if
H4/SL‡(2,O1) is isometric to H4/SL‡(2,O2) by the Mostow rigidity
theorem.

Return to index. 17
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Remarks About Maximality

Bianchi groups SL(2, oK ) are maximal among arithmetic subgroups of
SL(2,K ). Extended Bianchi groups needed to get maximal discrete
subgroups of SL(2,C).

In same way, if O is a maximal ‡-order, SL‡(2,O) is maximal among
arithmetic subgroups of SL‡(2,H).
Rough outline of proof:

1 For any arithmetic subgroup Γ ⊂ SL‡(2,H), prove that Z[Γ] is an
‡̂-order of Mat(2,H). It is a finitely-generated Z-module because
Γ→ SL(k,Z) (with finite kernel) and Z[SL(k ,Z)] = Mat(k,Z) which is
a Noetherian module.

2 If Γ ⊃ SL‡(2,O), then it is an ‡̂-order of Mat(2,H) containing
Z[SL‡(2,O)] = Mat(2,O). Check that Mat(2,O) is ‡̂-maximal.

Return to index. 17
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Remarks about Ideals

For algebraic number fields K , all ideals of the ring of integers oK are
generated by at most two elements.

Same is true for (left/right) ideals of maximal ‡-orders, but we
actually need a stronger result.

Theorem (S. 2019)
Let H be a quaternion algebra over an algebraic number field K with
orthogonal involution ‡. Let O be a ‡-order of H and let I be an invertible
right ideal of O. Then I = xO + yO for some x , y ∈ O such that
xy ‡ ∈ O+.

Corollary
For invertible left ideals, we can write I = Ox +Oy for some x , y ∈ O
such that xy−1 ∈ H+.
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Remarks about Ideals, Part II

Theorem (S. 2019)
Let H be a quaternion algebra over an algebraic number field K with
orthogonal involution ‡. Let O be a ‡-order of H and let I be an invertible
right ideal of O. Then I = xO + yO for some x , y ∈ O such that
xy ‡ ∈ O+.

Rough Outline of Proof
1 Show that for almost all prime ideals p, when we pass to the

localization Op, Ip = xpO for some xp ∈ O+
p . This uses the fact that

H+ is three-dimensional and Chevalley-Warning.
2 Show there exists z ∈ O such that J = zI is generated by one element

in t ∈ oK for every remaining bad place. Replace I by J WLOG.
3 Use strong approximation theorem on SL(2,H) to prove that J

mod (t) = (xp)p mod (t) = (x ′) mod (t) for some x ′ ∈ O+. Thus,
J = x ′O + tO.
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Remarks about Class Numbers and Cusps

The (left) class set of O is ClsL(O): the equivalence classes of
(invertible) left O-ideals modulo right multiplication by O×. (This is
not a group anymore.)

The class number of O is #ClsL(O). It is always finite.

Theorem (S. unpublished)
Let H be a definite, rational quaternion algebra with an orthogonal
involution ‡. Let O be a maximal ‡-order of H. There is a well-defined
bijection

Ψ :
(
H+ ∪ {∞}

)
/SL‡(2,O)→ ClsL(O)[

xy−1] 7→ [Ox +Oy ] .

Corollary

The number of cusps of H4/SL‡(2,O) is the class number of O.
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Remarks about Class Numbers and Cusps, Part II

Theorem (S. unpublished)
There is a well-defined bijection

Ψ :
(
H+ ∪ {∞}

)
/SL‡(2,O)→ ClsL(O)[

xy−1] 7→ [Ox +Oy ] .

Rough Outline of Proof
1 Surjectivity follows from remarks about generators of left ideals.
2 SL‡(2,H) acts transitively on the fibers of this map. To prove

injectivity, suffices to consider Ψ−1([O]).
3 Given x , y ∈ O such that Ox +Oy = O and xy−1 ∈ H+, explicitly

construct γ ∈ SL‡(2,O) such that γ.∞ = xy−1.

Return to index. 17
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Remarks about Volume

Many proofs of volume of H3/Γ where Γ = SL(2, oK ).

One possible approach: define Eisenstein series

E (Γ, z) =
∑

γ∈Γ∞\Γ

πj (γ.z)

and compute Fourier coefficients.
If we take Γ = SL‡(2,O), then we can define Eisenstein series

E (Γ, z) =
∑

γ∈Γ∞\Γ

πij (γ.z) .

Maybe a similar proof is possible?

Return to index. 17
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Remarks about ‡-Euclidean Algorithm

Definition
Let R be a ring without zero divisors. Suppose that there exists a
well-ordered set W and a function Φ : R →W such that for all a, b ∈ R
such that b 6= 0, there exists q ∈ R such that Φ(a− bq) < Φ(b). Then we
say that R is a Euclidean ring, with stathm Φ.

Definition
Let (R, σ) be a ring with involution, without zero divisors. Suppose that
there exists a well-ordered set W and a function Φ : R →W such that for
all a, b ∈ R such that b 6= 0 and aσ(b) ∈ R+, there exists q ∈ R+ such
that Φ(a− bq) < Φ(b). Then we say that R is a σ-Euclidean ring, with
stathm Φ.
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Remarks about ‡-Euclidean Algorithm, Part II

Definition
If (R, σ) is σ-Euclidean, we can define a function

fΦ : R × R → R

(a, b) 7→ (q, a− bq)

where Φ(a− bq) < Φ(b).

Algorithm (S. 2019)

On an input of a, b ∈ R such that aσ(b) ∈ R+, returns sequences
ri , si , ti ⊂ R with 0 ≤ i ≤ k + 1 and:

1 rk+1 = 0.
2 rk is a right GCD of a and b.
3 aσ(si )− bσ(ti ) = ri for all i , and siσ(ti ) ∈ R+.
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Remarks about ‡-Euclidean Algorithm, Part III

1: procedure (a,b)
2: rlist ← [a, b]
3: slist ← [1, 0]
4: tlist ← [0,−1]
5: while rlist[−1] 6= 0 do
6: ri−2 ← rlist[−2]
7: ri−1 ← rlist[−1]
8: (q, ri )← fΦ(ri−2, ri−1)
9: append(rlist, ri )

10: si−2 ← slist[−2]
11: si−1 ← slist[−1]
12: si ← si−2 − qsi−1
13: append(slist, si )
14: ti−2 ← tlist[−2]
15: ti−1 ← tlist[−1]
16: ti ← ti−2 − qti−1
17: append(slist, ti )

18: return rlist, slist, tlist
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Remarks about ‡-Euclidean Algorithm, Part IV

Corollary
If (O, ‡) is a ‡-Euclidean ring, then it has class number 1.

Brief Proof
For any left ideal I , write it as I = xO + yO with xy ‡ ∈ O+. Run the
algorithm to find the GCD of x and y .

Corollary

If (O, ‡) is a ‡-Euclidean ring, then SL‡(2,O) is generated by elementary
matrices (

1 τ
0 1

)
,

(
0 1
−1 0

)
,

(
u 0
0 (u‡)−1

)
.
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Remarks about ‡-Euclidean Algorithm, Part V

How to Construct Dirichlet Domain? (Very Brief Summary)
1 Choose point z = α + tij ∈ H4 with α ∈ H+ such that

StabΓ∞(α) = {±I} and t > 0 sufficiently large.

2 Compute Dirichlet domain Fα ⊂ H+
R centered around α w.r.t Γ∞.

3 Fα × (0,∞) certainly contains the Dirichlet domain of Γ.
4 This is infinite volume, but we only have to intersect with finitely many

sides coming from elements γ =
( 0 1
−1 τ

)
to make it finite volume.

5 Compute the diameter of this set minus the cusp. Use the ‡-Euclidean
algorithm to search through all γ ∈ SL‡(2,O) such that γ.z is within
this diameter from z—there will only be finitely many.

6 Cut away geodesic planes corresponding to such γ. You have a bona
fide Dirichlet domain for Γ.

Return to index. 17
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Q/A

Thank you very much for inviting me to give a talk!
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