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VERLINDE CATEGORY

SIDDHARTH VENKATESH

1. Symmetric Tensor Categories

I want to begin by introducing the general setting of symmetric tensor categories in a relatively

non-technical way. Let us fix some algebraically closed field k

Definition 1.1. A symmetric tensor category over k is a category C equipped with the following extra

structure:

1. C is k-linear and locally finite as an abelian category.

2. C is equipped with a bilinear tensor product bifunctor ⊗ : C × C → C. Think of this as a

multiplication internal to C.

3. This multiplication is associative and there is an object 1 that is unital for this multiplication.

In general, associativity and unitality in the categorical setting can be complicated but for this

talk, you can simply read associativity as allowing you to ignore parentheses, and unitality to

mean

1⊗X = X = X ⊗ 1, for any X ∈ C.

4. Every object X ∈ C has a dual X∗ that comes equipped with a pair of maps

evX : X∗ ⊗X → 1, coevX : 1→ X ⊗X∗.

These maps satisfy a relation that is somewhat tedious to write down but is very easy to under-

stand intuitively. Acting via evX allows us to view X ⊗X∗ as matrices on X, and the relation

then says that coevX must be the inclusion of the identity matrix.

5. The above data defines a structure of a tensor category on C. For this to be a symmetric tensor

category, we need a notion of swapping tensors, namely a natural isomorphism

cX,Y : X ⊗ Y → Y ⊗X

for every pair of objects X,Y ∈ C that squares to the identity.

All this structure needs to satisfy a bunch of extra compatibility relations but describing this in detail

is not illuminating at all. So, instead, let us look at some examples.
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Example 1.2. 1. The simplest symmetric tensor category is the category of finite dimensional

vector spaces, with ⊗ being tensor product over the field. The unit object is the ground field

and c is just the swap map. This is the initial symmetric tensor category, in the sense that it

sits inside every symmetric tensor category as the subcategory generated by 1.

2. More generally, if H is a commutative Hopf algebra over k, then the category of finite dimensional

H-comodules forms a symmetric tensor category, with essentially the same structure as the

previous example.

3. Here is a slightly different example. If char(k) 6= 2, then the category of finite dimensional

super vector spaces is a symmetric tensor category. As a tensor category, it is equivalent to

Repk(Z/2Z), but the symmetric structure comes from the signed swap map, rather than the

swap map, where permuting two odd elements picks up a −1.

4. In analogy with the Hopf algebra example, the category of finite dimensional comodules of a

supercommutative Hopf super algebra H is also a symmetric tensor category, using the signed

swap map. I will use the term “representations of a super group scheme” to refer to such

categories, thinking of Spec(H) as an affine supergroup.

So why should anyone care about symmetric tensor categories? To me, there are two main sources of

motivation:

1. Representation Theory: As the above examples show, symmetric tensor categories are a good

setting in which to study the representations of algebraic groups or supergroups.

2. Algebraic Geometry: The structure of a symmetric tensor category is the minimal structure

needed to be able to define commutative algebras. The geometric properties of commutative

algebras in symmetric tensor categories is very interesting.

In characteristic zero, it turns out that symmetric tensor categories aren’t much more general than

the last of the examples I provided. More precisely, there is the following theorem of Deligne.

Theorem 1.3 (Deligne). Let C be a symmetric tensor category over an algebraically closed field of

characteristic 0 and assume that for each object X ∈ C, there is a constant aX such that

length(X⊗n) ≤ anX .

Then, C is the category of finite dimensional representations of an affine supergroup.

Hence, symmetric tensor categories in characteristic 0 are either large, and hence tend to have bad

Noetherianity properties that makes it difficult to do much algebraic geometry, or they are simply

representations of algebraic groups and Lie superalgebras. In characteristic p > 0 however, this theorem

fails to be true. For most of the rest of this talk, I want to explain how much of this we can replicate in

characteristic p, and what new phenomena appear.
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2. The Verlinde Category

For the rest of this talk, fix p > 0 as the characteristic of k. The simplest counterexample to Deligne’s

theorem, at least when p ≥ 5 is the Verlinde category Verp associated to SL2. I will first describe this

category in detail, and then show how to see it is a counterexample, and also give some more fundamental

reasons why you should care about it. The main construction involved is semisimplification.

Let C be a symmetric tensor category, not necessarily semisimple. For any object X ∈ C and any

endomorphism ρ : X → X, there is a notion of trace Tr(ρ) ∈ k. I won’t go into the full details of how

this is defined, but as an example, if C is the category of representations of a group scheme, then this is

the ordinary trace, and if C is the category of representations of a super group scheme, this is the super

trace. To semisimplify C, we now take the following steps:

1. For f : X → Y in C, we say f is negligble if for any g : Y → X, g ◦ f is traceless.

2. Define N to be the ideal in C consisting of the same objects but with N (X,Y ) the space of

neglgible morphisms. This is a tensor ideal, i.e., it is closed under addition, scalar multiplication,

composition and tensor product.

3. The semisimplification C is C/N . It is a semisimple symmetric tensor category with a simple

object for each indecomposable in C for which the trace of the identity is not 0.

4. Verp is obtained by semisimplifying any one of three categories: representations of Z/pZ, repre-

sentations of αp (the first Frobenius kernel of Ga) or the category of tilting modules for SL2.

So what does V erp look like. Well the multiple ways to construct it allow us to very easily describe

its additive and monoidal structure.

1. As an abelian category, Rep(Z/pZ) has p-indecomposables corresponding to the Jordan blocks

of size 1 through p. The only indecomposable of dimension p is the free module. Hence, V erp

has p − 1 simples, V0, . . . Vp−2, with the index corresponding to the dimension of the Z/pZ
representation.

2. The tensor products of simples in V erp follow a truncated version of the tensor product rules in

Rep(SL2,C). In Rep(SL2,C),

Vi ⊗ Vj = Vi−j ⊕ Vi−j+2 ⊕ · · · ⊕ Vi+j .

If i+ j < p−1, then the tensor product is the same in V erp. But if i+ j = p−1 +n, then to get

the tensor product in V erp, start with the above decomposition and delete everything between

Vp−1−n and Vp−1+n.

2.1. Motivation: It’s very easy to see from the tensor product rules that only V0 and Vp−2 could have

integer dimension. Take the case p = 5 for example, here

V ⊗22 = V2 + V0
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and hence its dimension is the golden ratio. As a result, Verp for p ≥ 5 cannot be the category of

representations of a supergroup, and is a counterexample to Deligne’s theorem. But if this were the

only thing interesting, then the category would just be a curiosity. My interest in Verp stems from three

important facts:

1. Universailty: Verp is a partial replacement for sVec in Deligne’s theorem. Namely, there is

a theorem of Victor Ostrik that says that any symmetric fusion (finite + semisimple tensor)

category over k is the category of comodules of some commutative Hopf algebra in V erp.

2. Connections to Modular Representation Theory: The three different ways to construct

V erp give us a lot of ways to construct interesting algebras, Hopf algebras and Lie algebras in

V erp from corresponding objects in Rep(Z/pZ),Rep(αp) or Tilt(SL2). Additionally, Vec and

sVec sit as tensor summands of V erp, so from these objects we can obtain ordinary algebras,

Hopf algebras and Lie algebras (along with super versions). Hence, by passing through Verp, we

can give fairly elementary constructions of interesting objects in modular representation theory.

For example, if p = 5, we can take the Lie algebra g = E8 and a principal nilpotent element

N coming of an so(5) subalgebra. The action of [N,−] on g turns g into a Lie algebra in

Rep(αp) and we can semisimplify to get a Lie algebra g in Verp. Projecting down to sVec gives

us the Elduque exceptional Lie superalgebra, of which there isn’t really any other elementary

construction. This relationship between V erp and modular representation theory is still very

unexplored and interesting.

3. Connections to Modular Tensor Categories in Characteristic 0: There seems to be a

deep relationship between symmmetric fusion categories in positive characteristic and certain

modular tensor categories in characteristic 0 associated to quantum groups at roots of unity

that is controlled by semisimple Lie algebras in Verp. Time permitting, I will describe some

aspects of this connection at the end of the talk, as it relates to a very interesting and wide open

conjecture of Victor Ostrik regarding classification of symmetric fusion categories.

Hopefully, I’ve managed to convince you that the Verlinde category is worth studying. For the rest of

this talk, I will use Ostrik’s theorem as motivation to show some important properties of commutative

Hopf algebras in V erp. The main goal will be to show that the data of a commutative Hopf algebra

in V erp is the same as the data of a Hopf algebra over k, a Lie algebra in V erp along with some

compatibility of adjoint actions. This will reduce the extra complexity of going from vector spaces to

V erp to a purely local problem of understanding Lie algebras in V erp and their representations.
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3. Commutative Algebra in Verp

In order to prove this result, the main tool is splitting a commutative Hopf algebra in Verp as a direct

product of an underlying commutative Hopf algebra over k and an algebra of functions on its Lie algebra.

To do so, I need to explain some basic features of commutative algebras in Verp. However, commutative

algebras in Verp itself form a very limited class, they are analogous to the Artinian commutative k-

algebras. Hence, when I speak about commutative algebras in Verp, I will actually allow them to have

infinite length. In this bigger class of algebras, to get reasonable geometric properties, we need some

sort of finiteness condition. The correct notion turns out to be finite generation.

Definition 3.1. A commutative algebra in Verindp is finitely generated if it is the quotient of S(X) for

some object X ∈ Verp.

Here S(X) is the symmetric algebra of X, i.e., the coinvariants of the symmetric braiding in the

tensor algebra of X.

Finitely generated commutative algebras in Verp turn out to be very nice geometrically, and their

good behavior stems from one key result.

Theorem 3.2 (V.). If L is any simple object in Verp not isomorphic to 1, then

Sn(L) = 0 for n ≥ p− 1.

Proof. The proof of this theorem relies on the relationship between Verp and Verp(SLn) for 2 < n < p.

Let L = Vi for i > 1. Then, we can construct a Verlinde category Verp(SLi+1) by semisimplifying the

category of tilting modules for SLi+1. Restriction to the principal nilpotent gives us a symmetric tensor

functor

F : Verp(SLi+1)→ Verp

that sends the tautological representation V to L. But in Verp(SLi+1) it is immediate that Sp−1(V ) = 0,

as it corresponds to a negligible indecomposable tilting module, i.e., a tilting module that is killed by

semisimplification.

�

This has some important consequences.

Corollary 3.3. Let A be a finitely generated commutative algebra in Verp.

1. If I is the ideal generated by all simple subobjects of A not isomorphic to 1, then I is in the

kernel of the Frobenius endomorphism on A. In particular, I is nilpotent.

2. A is Noetherian.

3. The invariant subalgebra Ainv = Hom(1, A) is a finitely generated commutative k-algebra and

A is a finite extension of Ainv. Hence, A is both a finite extension and a nilpotent thickening of

finitely generated commutative k-algebras.

These facts largely trivialize commutative algebra in Verp. Many basic theorems that you would like to

prove such as Nullstellensatz or Krull Intersection Theorem follow immediately from this corollary. This

result also shows that topologically, commutative algebras in Verp are no different from commutative
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k-algebras, and so we can even define non-affine schemes in Verp by gluing along principal open affines

in Ainv.

However, it is important to note that the space of gluing isomorphisms is now very different, as these

morphisms now must live in Verp. Hence, non-affine schemes still have a lot of interesting questions open

to study. One that I’m thinking about at the moment for example, is the cohomology of “line” bundles

associated to flag varieties associated to simple objects not isomorphic to 1, as this has implications on

Borel-Weil-Bott theory in Verp. But this is all out of the scope of this talk. For today, what matters is

that the above result gives a lot of control on the geometric properties of finitely generated commutative

Hopf algebras in Verp.
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4. Algebraic Groups in Verp and Harish-Chandra pairs

Let us now return to our main focus of trying to understand commutative Hopf algebras in Verp. Ver2

is just the category of vector spaces and Ver3 is just the category of super vector spaces so let us assume

for this section that p > 3. We will also assume that all commutative algebras are finitely generated

here. I’m now going to introduce some constructions and terminology.

1. Given a commutative Hopf algebra H in Verp, I will call G = Spec(H) the affine group scheme

associated to H, even though Spec(H) isn’t really a precise term. G is really just H itself (or

more precisely, the group valued functor Hom(H,−) on the category of commutative algebras

in Verp) but the scheme theoretic terminology is useful. I will also use O(G) to mean the Hopf

algebra H that defined G and call it the algebra of functions on G.

2. If I is the ideal generated by simple summands of H that are not isomorphic to 1, then I is a

Hopf ideal by semisimplicity of Verp. Hence, H = H/I is a commutative Hopf algebra over k. I

will use G0 to denote Spec(H) and call it the underlying ordinary group scheme.

3. The distribution algebra of G, or the dual coalgebra of O(G), is the cocommutative coalgebra

O(G)◦ :=
⋃
n

(O(G)/Jn)∗,

where J is the augmentation ideal, i.e., the kernel of the counit map on O(G).

4. The Lie algebra associated to G is

Lie(G) := (J/J2)∗.

It is a Lie algebra in Verp, as it is the space of primitives inside O(G)◦.

5. For a Lie algebra g in Verp, the subobject g0 generated by the summands isomorphic to 1 is a

k-Lie algebra which I will call the ordinary Lie subalgebra. If g = Lie(G), it is easy to see that

g0 = Lie(G0).

These are a lot of definitions. Let me show you how it works with one important example.

Example 4.1. If X is an object in Verp, then G = GL(X) is an affine group scheme in Verp. There are

two ways to describe G. First, via the algebra of functions,

O(G) = Sym[(X ⊗X∗)⊕2]/I

where I is the ideal cutting out the relations AB = BA = 1, if we think of A and B as elements of

X ⊗ X∗ with multiplication given by evaluation in the middle. This is not very precise, but writing

down I explicitly in terms of the multiplication map and coevaluation is not hard, but very tedious.

Alternatively, we can view G through the functor of points

G(A) = Hom(O(G), A) = A-module automorphisms of A⊗X,

for any commutative algebra A in Verp.

Let us see how the constructions in the above definition work for G = GL(X).
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1. If

X =

p−2⊕
i=0

niVi,

then

G0 =
∏
i

GL(ni,k).

2.

Lie(G) = gl(X) = X ⊗X∗

where the Lie bracket is just the commutator, as X ⊗X∗ is an associative algebra under middle

evaluation

X ⊗X∗ ⊗X ⊗X∗.

These constructions show that given an affine group scheme G in Verp, we can produce the following

data:

1. An affine group scheme G0 over k.

2. A Lie algebra g = Lie(G) in Verp such that g0 = Lie(G0).

3. An action of G0 compatible with the Lie algebra structure.

4. The action of g0 on g obtained via differentiating the action of G0 coincides with the action

obtained by restricting the adjoint action of g on itself.

If we now forget that the group G exists, and just take the above structure and compatibility condi-

tions, then we have a Harish-Chandra pair in Verp. Harish-Chandra pairs naturallt form a category in

the obvious way, and our constructions give us a functor from the category of affine group schemes in

Verp to the category of Harish-Chandra pairs in Verp. The main theorem of this talk is the following.

Theorem 4.2 (V.). This functor establishes an equivalence between the category of affine group schemes

in Verp and the category of Harish-Chandra pairs in Verp.

Proof. I am not going to give a full proof of this theorem, it is fairly technical. Instead, I will simply

describe the construction of the inverse functor and then give a rough idea of what goes into proving

that the construction is truly an inverse.

To construct an inverse, what I need to do is start with a Harish-Chandra pair and produce an

affine group scheme in Verp. So let us suppose we have a Harish-Chandra pair (G0, g). Rather than

constructing the group G directly, it is easier to construct the dual coalgebra O(G)◦.

Decompose

g = g0 ⊕ g6=0

in Verp. The tensor algebra T (g6=0) is a Hopf algebra with g6=0 primitive and is equipped with a Hopf

action of O(G0)◦. So, we can take the smash product

H(G0, g) = O(G0)◦ n T (g6=0).

This doesn’t encode the commutation relations in g. So we define I to be the ideal generated by
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X ⊗ Y − Y ⊗X − [X,Y ]

for X,Y ∈ g6=0. This can be done without any reference to elements of g6=0, and while [X,Y ] doesn’t

have to land in g 6=0, this is fine, because g0 ⊆ O(G0)◦.

On the commutative side, we have O(G0) coacting on the tensor coalgebra Tc(g
∗
6=0) (the graded dual

of T (g 6=0)). Hence, we can take the smash product

A(G0, g) = O(G0) n Tc(g
∗
6=0)

and we can define Â(G0, g) to be its completion with respect to the grading on Tc(g
∗
6=0). This has a

perfect pairing with H(G0, g), and the inverse functor A is defined by

A(G0, g) = I⊥

under this pairing.

The proof that this is an inverse construction builds on work by Akira Masuoka, who proved the

analogous result for the category of supervector spaces, and the two key ideas in extending his work are

the PBW theorem for Lie algebras in Verp proved by Pavel Etingof, and the fact that the Frobenius

map is trivial on g6=0. This last fact ensures that in the dual coalgebra, divided powers only show up for

g0, which is used to show that H(G0, g)/I is the correct dual coalgebra, and then we can use the perfect

pairing to move the result over to A(G0, g).

�

So why is this theorem useful? Well, Harish-Chandra pairs turn out to be easier to work with for the

most part than affine group schemes in Verp, the main reason being that Lie algebras are local data and

have finite length in Verp, versus the typically infinite length Hopf algebras defining the group schemes.

To end this talk, I will show a few applications of this result.
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5. Applications

5.1. Representation Theory. To me, the interesting thing isn’t necessarily the affine group

schemes themselves but their categories of representations, because these give us a large class of ex-

amples of symmetric tensor categories in positive characteristic.

Definition 5.1. If G is an affine group scheme in Verp, then a representation V for G is a homomorphism

of groups G→ GL(V ).

Definition 5.2. If g is a Lie algebra in Verp, then a representation V of g is a homomorphism of Lie

algebras g→ gl(V ) = V ⊗ V ∗.

As an easy consequence of the main theorem, we have

Corollary 5.3. If G is an affine group scheme in Verp, then a representation of G is the same thing as

a representation of g such that the action of g0 lifts to G0.

In practice, this latter condition ends up being much easier to check.

5.2. Irreducible Representations of GL(X). An interesting problem is to classify the irre-

ducible representations of GL(X) for X an object in Verp. If

X =
⊕

niVi

then parabolic induction shows that the irreducibles are in bijection with the irreducibles of

∏
i

GL(niVi).

Hence , we can assume that X has a single isotypic component.

To classify the irreducibles of GL(niVi), the first step is to understand what happens when ni = 1.

In this case, G0 = GL(1) is a central subgroup, so define PGL(Vi) = G/G0. At the level of Lie algebras,

we get a direct sum decomposition

g = g0 + sl(Vi)

where sl(Vi) is the kernel of the evaluation map ε. Hence, we get a homomorphism of Harish-Chandra

pairs (1, sl(Vi)) → (G0, g). By the equivalence between Harish-Chandra pairs and groups, this means

that the quotient map G→ PGL(Vi) splits and hence

G = GL(1)× PGL(Vi).

Hence,

Rep(GL(Vi)) = Rep(GL(1))× Rep(PGL(Vi))

and Rep(PGL(Vi)) turns out to be Ver+p (SLi+1), a connected subcategory of Verp(SLi+1).

For n > 1, we can think of GL(nVi) as the group of n×n matrices with entries in gl(Vi) with nonzero

determinant. As such, we have an obvious triangular decomposition into diagonal, upper triangular and

lower triangular matrices, and the maximal torus is
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GL(Vi)
n.

Hence, GL(nVi) seems to have a highest weight theory, with irreducibles labelled by certain dominant

and integral weights, where the weights are pairs of weights for GLn and simple objects in Ver+p (SLi+1).

However, dominance and integrality is still an open question, it doesn’t seem to be the same as taking

dominant integral weights for GL(n).

5.3. Classification of symmetric fusion categories. The last thing I will talk about is

a problem of classification. Recall that Ostrik’s theorem stated that any symmetric fusion (finite,

semisimple, tensor) category was the category of representations of some commutative Hopf algebra

(now of finite length) in Verp. Let G be the associated affine group scheme. Then, since O(G) has finite

length, looking at the corresponding Harish-Chandra pair, we must have g6=0 is a Lie algebra as well and

O(G) = O(G0) n U(g6=0)∗

with O(G0) a semisimple group scheme of finite dimension over k. So, to classify the symmetric fusion

categories over k, we need to classify all such Lie algebras with semisimple representation theory. So far,

every example of these Lie algebras that we have constructed seem to have Verlinde categories associated

to other algebraic groups as their representation categories. This led to a big open conjecture by Ostrik

Conjecture 5.4. Every symmetric fusion category in positive characteristic is the product of a pointed

category with the equivariantization of a Verlinde category associated to an algebraic group.

If this conjecture were true, then it would imply a deep connection between modular tensor categories

associated to quantum groups in characteristic 0 and symmetric fusion categories in characteristic p,

because these Verlinde categories are reductions mod p of the semisimplification of quantum group

representations at roots of unity.
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