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Root Systems Basics

Reflections
Let V be a Euclidean space. If 0 # « € V, then r, is the reflection
in the hyperplane orthogonal to «.

(Reduced) Root Systems

A root system ® in V is a nonempty finite set of nonzero vectors
in V such that

@ r(P)=9 Vacd;
® (a,BY)€Z Va,B e
© if 5 € & is a multiple of a € ®, then § = *a.

Coroots




Finite Root Systems

® 4 infinite families: A,, B,, C,, D,.
® 5 exceptional types: Eg7g, Fa, Go.

® |nformation can be recorded in Dynkin diagrams.
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Fundamental Weights

® The fundamental weights {A;}; are defined as the dual basis
of {a}}; with respect to (, ), i.e,, (Ai,af) = dj.

® The weight lattice is A := @; ZA;.

® The dominant chamber AT := @ Rx/; corresponds to the
identity element.

Example
In type Ap, we have A = et + e+ -+ e forl <i<n.
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Example: A, (again)
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Kashiwara Crystal

Definition

Fix a root system ® with index set | and weight lattice A. A
Kashiwara crystal of type ® is a nonempty set 3 together with
maps

e, fi: B— BU{0}
wt: B — A

where e;x = y if and only if f;y = x. Together with some other
axioms.



Representation Theoretic Motivation for
Crystals

® Irreducible representations V) and V),

VeV, 2@ g,V

Question: How to count multiplicities cy,?

® Crystals By «+— V), B, «+— V,,

By@B, =D,B,

* (Type A)
cx,, = #{Yamanouchi tableaux of shape /A and content i}
Littlewood-Richardson Coefficients



Example of type A,

Figure: Std Rep of sl3 : V(1)
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Example of type A,
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Nice Things about Simply-laced Types

Theorem (Stembridge, 03")

Assume that the root system is simply-laced. Let C be a connected
weak Stembridge crystal that is nonempty, upper seminormal and
bounded above. Then C has a unique highest weight element.

Theorem (Stembridge, 03")

Let C and C' be connected Stembridge crystals. If their highest
weight elements have the same weight, then they are isomorphic.



Virtualization map

Virtualization [Kashiwara 96']

Consider root systems ® (resp. ®) with index sets / (resp. /)
simple roots {c;}; (resp. {@;};) and fundamental weights {A;};

(resp. {A}}).

A virtualization of ¢ by ® with folding ¢: T 1 and scaling factors
{vi}i is a linear map

/\,' = i Z //if
j€o~(i)
such that
o (aj,a7) =0 for all j,j € ¢7(i);
[ ]

Qj — i Z aj.
j€o=1(i)



Some Natural Virtualization
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Virtual crystals

Virtual Crystals [Kashiwara 96']

Consider a virtualization of the root system & to ® where v is the
map on the weight lattices. Let A = v(\). We say B(\) is a virtual

crystal of B()) if there exists a Bubs&s\ of B()) that is
isomorphic to B(\) under the crystal structure
e = H &, fi= H ?jv’ v owt = wt.
jes=1(i) jed=(i)

We call the resulting isomorphism W: B(A) — V the virtualization
map.
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Nice things about Virtual Crystals

Theorem (Bump, Schilling 16")

Let V C V be a connected virtual crystal for the Lie algebra
embedding X — Y. Then V has a unique highest weight element.

Theorem (Bump, Schilling 16")

Let V,V' C V be connected virtual crystals corresponding to the
Lie algebra embedding X — Y. If their highest weight elements
have the same weight, then they are isomorphic.
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Littelmann path model

® Paths 7: [0,1] — A ®z R up to reparameterization.

e 7(0) =0, 7(1) € A.

® The closure under f; from the straight-line path uy(t) = At is
the irreducible extremal weight crystal B(A). When A is
dominant, B(\) is a highest weight crystal.
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Example on G,

e m(t) = BA + At
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Example on G,

7T(t) = (3/\1 +/\2)t
<(3/\1 + /\2)1’, Oé\1/> =3t
Largest t € [0, 1] attains
the minimum: t =0
Minimal t' € [t, 1] such
that 3t' =1: t' =1/3
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Example on G,

7T(t) = (3/\1 + /\2)t
<(3/\1 + /\z)t, Oé\1/> =3t

Largest t € [0, 1] attains
the minimum: t =0
Minimal ¢’ € [t, 1] such
that 3t' =1: t' =1/3
(BA L+ M)t o))y =t
Largest t € [0, 1] attains
the minimum (0): t =0
Minimal t’ € [t, 1] such
that t' =1: t' =1



Example on G,

7T(t) = (3/\1 + /\2)t

<(3/\1 + /\z)t, Oé\1/> =3t
2 ® Largest t € [0, 1] attains
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the minimum: t =0

7T e Minimal t' € [t,1] such
that 3t' =1: t' =1/3

& o (BM+ M)t o) =t
® Largest t € [0, 1] attains

i

'SR)

< the minimum (0): t =0

® Minimal t' € [t,1] such
that t' =1: t' =1



Results

Theorem (P-Scrimshaw)

Let ® to ® be root systems with weight lattices \ and A
respectively.



Results

Theorem (P-Scrimshaw)

Let ® to ® be root systems with weight lattices \ and A
respectively.

The following are equivalent:

e There exists a virtualization of ® to ®.

® The embedding of weight lattices v: N — A is a virtualization
map on the Littelmann path model.

® There is a virtualization of crystals B(\) to B()).
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Example

3

(t) = (3/\1 + /\z)t
() \ 2 )
(m)(t) = (3A1 + 2A; + 3A3)t
U (f7)(t) = (5A; — 2A; +5A3)t
20 (m)(t) = (5A1 —2A2+5A3)t
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Example

3

(t) = (3/\1 + /\z)t
() \ 2 )
(m)(t) = (3A1 + 2A; + 3A3)t
U (f7)(t) = (5A; — 2A; +5A3)t
20 (m)(t) = (5A1 —2A2+5A3)t
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Example

3

(t) = (3/\1 + /\z)t
() \ 2 )
(m)(t) = (3A1 + 2A5 + 3A3)t
U (f7)(t) = (5A; — 2A; +5A3)t
P20 (m)(t) = (5A1 —2A2+5A3)t
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Example

w(t) = (3N + A2)t

)(t) = BA\1 — Aot

7)(t) = (3A1 + 2A, + 3R5)t
(Bm)(t) = (5A1 —2A; +5A3)t
U (m)(t) = (5A1 —2A+5As)t



Results

Proposition

Let g be of affine type. Let W be the virtualization map induced
from the generalized diagram folding. Then there exists a

U, (g)-crystal virtualization map W, such that the diagram

~

v

B(M) » B(W(A))

cl cl

B(A)a ——=— B(V(}))

cl

cl

commutes.



Conjecture

Conjecture
The KR crystal B"* of type g virtualizes into

Rreco-1(r) Br'7rs  otherwise.

Theorem

Let g be of affine type. Suppose r € | is such that7, =1 or g is of
g2) AT

n’’“2n -

type A Then the conjecture above holds for s = 1.



Thank you!



