Virtualization of root systems and Littelmann Path Model

Jianping Pan
Joint work with Travis Scrimshaw
Transformation Groups (2018) 23: 1045-1061

University of California jpgpan@ucdavis.edu

June 22, 2019

Overview

Preliminaries and Motivation

2 Virtualization

3 Littelmann Path Model

Root Systems Basics

Reflections

Let V be a Euclidean space. If $0 \neq \alpha \in V$, then r_{α} is the reflection in the hyperplane orthogonal to α .

(Reduced) Root Systems

A root system Φ in V is a nonempty finite set of nonzero vectors in V such that

- $(\alpha, \beta^{\vee}) \in \mathbb{Z} \quad \forall \alpha, \beta \in \Phi;$
- **3** if $\beta \in \Phi$ is a multiple of $\alpha \in \Phi$, then $\beta = \pm \alpha$.

Coroots

$$\alpha^{\vee} := \frac{2\alpha}{(\alpha, \alpha)}$$

Finite Root Systems

- 4 infinite families: A_n , B_n , C_n , D_n .
- 5 exceptional types: $E_{6.7.8}$, F_4 , G_2 .
- Information can be recorded in Dynkin diagrams.

Type A_2

Type A_2

Type A_2

Fundamental Weights

- The fundamental weights $\{\Lambda_i\}_i$ are defined as the dual basis of $\{\alpha_i^{\vee}\}_i$ with respect to \langle , \rangle , *i.e.*, $\langle \Lambda_i, \alpha_i^{\vee} \rangle = \delta_{ij}$.
- The weight lattice is $\Lambda := \bigoplus_i \mathbb{Z} \Lambda_i$.
- The dominant chamber $\Lambda^+ := \bigoplus \mathbb{R}_{\geq 0} \Lambda_i$ corresponds to the identity element.

Example

In type A_n , we have $\Lambda_i = e_1 + e_2 + \cdots + e_i$ for $1 \le i \le n$.

Example: A_2 (again)

Example: A_2 (again)

Kashiwara Crystal

Definition

Fix a root system Φ with index set I and weight lattice Λ . A Kashiwara crystal of type Φ is a nonempty set $\mathcal B$ together with maps

$$e_i, f_i: \mathcal{B} \to \mathcal{B} \sqcup \{0\}$$

wt: $\mathcal{B} \to \Lambda$

where $e_i x = y$ if and only if $f_i y = x$. Together with some other axioms.

Representation Theoretic Motivation for Crystals

ullet Irreducible representations V_λ and V_μ

$$V_{\lambda}\otimes V_{\mu}\cong igoplus_{
u}c_{\lambda\mu}^{
u}V_{
u}$$

Question: How to count multiplicities $c_{\lambda\mu}^{\nu}$?

• Crystals $\mathcal{B}_{\lambda} \longleftrightarrow V_{\lambda}$, $\mathcal{B}_{\mu} \longleftrightarrow V_{\mu}$

•

$${\cal B}_{\lambda}\otimes {\cal B}_{\mu}=igoplus_{
u}c_{\lambda\mu}^{
u}{\cal B}_{
u}$$

• (Type A) $c_{\lambda\mu}^{\nu}=\#\{{\sf Yamanouchi\ tableaux\ of\ shape\ }\nu/\lambda\ {\sf and\ content\ }\mu\}$ Littlewood-Richardson Coefficients

Example of type A_2

Figure: Std Rep of $\mathfrak{sl}_3:V_{(1,0)}$

Example of type A_2

Figure: Std Rep of $\mathfrak{sl}_3:V_{(1,0)}$

Figure: Tensor Product

Example of type A_2

Figure: Std Rep of $\mathfrak{sl}_3:V_{(1,0)}$

Figure: Tensor Product

$$1 \xrightarrow{\quad 1\quad } 2 \xrightarrow{\quad 2\quad } 3$$

$$\begin{array}{cccccc}
1 & 1 \otimes 1 & \xrightarrow{1} & 1 \otimes 2 & \xrightarrow{2} & 1 \otimes 3 \\
\downarrow^{1} & & \downarrow^{1} & \downarrow^{1} \\
2 & 2 \otimes 1 & 2 \otimes 2 & \xrightarrow{2} & 2 \otimes 3 \\
\downarrow^{2} & \downarrow^{2} & \downarrow^{2} \\
3 & 3 \otimes 1 & \xrightarrow{1} & 3 \otimes 2 & 3 \otimes 3
\end{array}$$

Nice Things about Simply-laced Types

Theorem (Stembridge, 03')

Assume that the root system is simply-laced. Let $\mathcal C$ be a connected weak Stembridge crystal that is nonempty, upper seminormal and bounded above. Then $\mathcal C$ has a unique highest weight element.

Theorem (Stembridge, 03')

Let C and C' be connected Stembridge crystals. If their highest weight elements have the same weight, then they are isomorphic.

Virtualization map

Virtualization [Kashiwara 96']

Consider root systems Φ (resp. $\widehat{\Phi}$) with index sets I (resp. \widehat{I}) simple roots $\{\alpha_i\}_i$ (resp. $\{\widehat{\alpha}_i\}_i$) and fundamental weights $\{\Lambda_i\}_i$ (resp. $\{\widehat{\Lambda}_i\}$).

A virtualization of Φ by $\widehat{\Phi}$ with folding $\phi\colon \widehat{I}\to I$ and scaling factors $\{\gamma_i\}_i$ is a linear map

$$\Lambda_i \mapsto \gamma_i \sum_{j \in \phi^{-1}(i)} \widehat{\Lambda}_j$$

such that

• $\langle \widehat{\alpha}_j, \widehat{\alpha}_{j'} \rangle = 0$ for all $j, j' \in \phi^{-1}(i)$;

•

$$\alpha_i \mapsto \gamma_i \sum_{i \in \phi^{-1}(i)} \widehat{\alpha}_j.$$

Some Natural Virtualization

Figure: $C_n \hookrightarrow A_{2n-1}$

Figure: $B_n \hookrightarrow D_{n+1}$

Figure: $F_4 \hookrightarrow E_6$

Figure: $G_2 \hookrightarrow D_4$

Virtual crystals

Virtual Crystals [Kashiwara 96']

Consider a virtualization of the root system Φ to $\widehat{\Phi}$ where v is the map on the weight lattices. Let $\widehat{\lambda} = v(\lambda)$. We say $B(\lambda)$ is a virtual

crystal of $B(\widehat{\lambda})$ if there exists a subset V of $B(\widehat{\lambda})$ that is isomorphic to $B(\lambda)$ under the crystal structure

$$e_i := \prod_{j \in \phi^{-1}(i)} \widehat{e}_j^{\gamma}, \quad f_i := \prod_{j \in \phi^{-1}(i)} \widehat{f}_j^{\gamma}, \quad v \circ \mathsf{wt} = \widehat{\mathsf{wt}}.$$

We call the resulting isomorphism $\Psi \colon \mathcal{B}(\lambda) \to V$ the virtualization map.

Nice things about Virtual Crystals

Theorem (Bump, Schilling 16')

Let $\mathcal{V} \subseteq \widehat{\mathcal{V}}$ be a connected virtual crystal for the Lie algebra embedding $X \hookrightarrow Y$. Then \mathcal{V} has a unique highest weight element.

Theorem (Bump, Schilling 16')

Let $\mathcal{V}, \mathcal{V}' \subseteq \widehat{\mathcal{V}}$ be connected virtual crystals corresponding to the Lie algebra embedding $X \hookrightarrow Y$. If their highest weight elements have the same weight, then they are isomorphic.

Virtualize C_2 in A_3

Virtualize C_2 in A_3

Littelmann path model

- Paths $\pi \colon [0,1] \to \Lambda \otimes_{\mathbb{Z}} \mathbb{R}$ up to reparameterization.
- $\pi(0) = 0, \ \pi(1) \in \Lambda.$
- The closure under f_i from the straight-line path $u_{\lambda}(t) = \lambda t$ is the irreducible extremal weight crystal $B(\lambda)$. When λ is dominant, $B(\lambda)$ is a highest weight crystal.

•
$$\pi(t) = (3\Lambda_1 + \Lambda_2)t$$

- $\pi(t) = (3\Lambda_1 + \Lambda_2)t$
- $\langle (3\Lambda_1 + \Lambda_2)t, \frac{\alpha_1^{\vee}}{2} \rangle = 3t$
- Largest $t \in [0,1]$ attains the minimum: t = 0
- Minimal $t' \in [t, 1]$ such that 3t' = 1: t' = 1/3

- $\pi(t) = (3\Lambda_1 + \Lambda_2)t$
- $\langle (3\Lambda_1 + \Lambda_2)t, \alpha_1^{\vee} \rangle = 3t$
- Largest $t \in [0, 1]$ attains the minimum: t = 0
- Minimal $t' \in [t, 1]$ such that 3t' = 1: t' = 1/3
- $\langle (3\Lambda_1 + \Lambda_2)t, \alpha_2^{\vee} \rangle = t$
- Largest $t \in [0, 1]$ attains the minimum (0): t = 0
- Minimal $t' \in [t, 1]$ such that t' = 1: t' = 1

- $\pi(t) = (3\Lambda_1 + \Lambda_2)t$
- $\langle (3\Lambda_1 + \Lambda_2)t, \alpha_1^{\vee} \rangle = 3t$
- Largest $t \in [0, 1]$ attains the minimum: t = 0
- Minimal $t' \in [t, 1]$ such that 3t' = 1: t' = 1/3
- $\langle (3\Lambda_1 + \Lambda_2)t, \alpha_2^{\vee} \rangle = t$
- Largest $t \in [0, 1]$ attains the minimum (0): t = 0
- Minimal $t' \in [t,1]$ such that t' = 1: t' = 1

Results

Theorem (P-Scrimshaw)

Let Φ to $\widehat{\Phi}$ be root systems with weight lattices Λ and $\widehat{\Lambda}$ respectively.

Results

Theorem (P-Scrimshaw)

Let Φ to $\widehat{\Phi}$ be root systems with weight lattices Λ and $\widehat{\Lambda}$ respectively.

The following are equivalent:

- There exists a virtualization of Φ to $\widehat{\Phi}$.
- The embedding of weight lattices $v: \Lambda \to \widehat{\Lambda}$ is a virtualization map on the Littelmann path model.
- There is a virtualization of crystals $B(\lambda)$ to $B(\widehat{\lambda})$.

•
$$\pi(t) = (3\Lambda_1 + \Lambda_2)t$$

•
$$f_2(\pi)(t) = (3\Lambda_1 - \Lambda_2)t$$

•
$$\tilde{\Psi}(\pi)(t) = (3\hat{\Lambda}_1 + 2\hat{\Lambda}_2 + 3\hat{\Lambda}_3)t$$

•
$$\tilde{\Psi}(f_2\pi)(t) = (5\hat{\Lambda}_1 - 2\hat{\Lambda}_2 + 5\hat{\Lambda}_3)t$$

•
$$\hat{f}_2^2 \tilde{\Psi}(\pi)(t) = (5\hat{\Lambda}_1 - 2\hat{\Lambda}_2 + 5\hat{\Lambda}_3)t$$

•
$$\pi(t) = (3\Lambda_1 + \Lambda_2)t$$

•
$$f_2(\pi)(t) = (3\Lambda_1 - \Lambda_2)t$$

•
$$\tilde{\Psi}(\pi)(t) = (3\hat{\Lambda}_1 + 2\hat{\Lambda}_2 + 3\hat{\Lambda}_3)t$$

•
$$\tilde{\Psi}(f_2\pi)(t) = (5\hat{\Lambda}_1 - 2\hat{\Lambda}_2 + 5\hat{\Lambda}_3)t$$

•
$$\hat{f}_2^2 \tilde{\Psi}(\pi)(t) = (5\hat{\Lambda}_1 - 2\hat{\Lambda}_2 + 5\hat{\Lambda}_3)t$$

•
$$\pi(t) = (3\Lambda_1 + \Lambda_2)t$$

•
$$f_2(\pi)(t) = (3\Lambda_1 - \Lambda_2)t$$

•
$$\tilde{\Psi}(\pi)(t) = (3\hat{\Lambda}_1 + 2\hat{\Lambda}_2 + 3\hat{\Lambda}_3)t$$

•
$$\tilde{\Psi}(f_2\pi)(t) = (5\hat{\Lambda}_1 - 2\hat{\Lambda}_2 + 5\hat{\Lambda}_3)t$$

•
$$\hat{f}_2^2 \tilde{\Psi}(\pi)(t) = (5\hat{\Lambda}_1 - 2\hat{\Lambda}_2 + 5\hat{\Lambda}_3)t$$

•
$$\pi(t) = (3\Lambda_1 + \Lambda_2)t$$

•
$$f_2(\pi)(t) = (3\Lambda_1 - \Lambda_2)t$$

•
$$\tilde{\Psi}(\pi)(t) = (3\hat{\Lambda}_1 + 2\hat{\Lambda}_2 + 3\hat{\Lambda}_3)t$$

•
$$\tilde{\Psi}(f_2\pi)(t) = (5\hat{\Lambda}_1 - 2\hat{\Lambda}_2 + 5\hat{\Lambda}_3)t$$

•
$$\hat{f}_2^2 \tilde{\Psi}(\pi)(t) = (5\hat{\Lambda}_1 - 2\hat{\Lambda}_2 + 5\hat{\Lambda}_3)t$$

Results

Proposition

Let \mathfrak{g} be of affine type. Let $\widetilde{\Psi}$ be the virtualization map induced from the generalized diagram folding. Then there exists a $U_a'(\mathfrak{g})$ -crystal virtualization map $\widetilde{\Psi}_{\text{cl}}$ such that the diagram

commutes.

Conjecture

Conjecture

The KR crystal $B^{r,s}$ of type \mathfrak{g} virtualizes into

$$\widehat{B}^{r,s} = \begin{cases} B^{n,s} \otimes B^{n,s} & \text{if } \mathfrak{g} = A_{2n}^{(2)}, A_{2n}^{(2)\dagger} \text{ and } r = n, \\ \bigotimes_{r' \in \phi^{-1}(r)} B^{r',\overline{\gamma}_r s} & \text{otherwise.} \end{cases}$$

Theorem

Let \mathfrak{g} be of affine type. Suppose $r \in I$ is such that $\overline{\gamma}_r = 1$ or \mathfrak{g} is of type $A_{2n}^{(2)}$, $A_{2n}^{(2)\dagger}$. Then the conjecture above holds for s = 1.

Thank you!