Uncrowding algorithm for hook-valued tableaux

Jianping Pan

Department of Mathematics, UC Davis

based on joint work with Joseph Pappe, Wencin Poh and Anne Schilling (preprint arXiv:2012.14975)

Informal seminar on combinatorics and representation theory UC Davis April 19, 2021

00000000000	000000	0000	000000
Table of Contents			

Background and definitions

2 Uncrowding on HVT

3 Crowding map C

Table of Contents

Background and definitions

2 Uncrowding on HVT

3 Crowding map C

4 Applications

Background and definitions ⊙●○○○○○○○○○	Uncrowding on HVT 000000	Crowding map C 0000	Applications
Stable symmetric Grother	ndieck polynomials		
${\it G}_{\lambda}({f x};eta) = \sum_{{\it T}\in{\sf SVT}}$	$\beta^{ex(T)} x_1^{\# of 1's} x_2^{\# of 2's} \dots$	(Buch 2002)	

 $SVT(\lambda) = set of semistandard set-valued tableaux of shape <math>\lambda$ Excess in T is ex(T)

Background and definitions ⊙●○○○○○○○○○	Uncrowding on HVT 000000	Crowding map C 0000	Applications 000000
Stable symmetric Grothe	ndieck polynomials		
$G_{\lambda}(\mathbf{x};\beta) = \sum_{T \in SVT}$ SVT(λ) = set of semistandard Excess in T is ex(T)	$\beta^{\text{ex}(T)} x_1^{\#\text{of 1's}} x_2^{\#\text{of 2's}} \dots$ $f(\lambda)$ set-valued tableaux of shape	(Buch 2002) λ	
Semistandard set-valued table	eaux $SVT(\lambda)$		
Fill boxes of skew shape ν/λ w	ith nonempty sets. Semistan	dardness:	

r_____

Background and definitions ⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙	Uncrowding on HVT 000000	Crowding map <i>C</i> 0000	Applications 000000
Stable symmetric Grot	hendieck polynomia	ls	
${\it G}_{\lambda}({f x};eta)={egin{array}{c} {f x} \ {f x}$	$\sum_{SVT(\lambda)} \beta^{ex(T)} x_1^{\#of 1's} x_2^{\#of 2's}$	(Bu	ich 2002)
$SVT(\lambda) = set of semistanda Excess in T is ex(T)$	rd set-valued tableaux of	shape λ	
Semistandard set-valued ta	ableaux SVT(λ)		
Fill boxes of skew shape ν/λ	with nonempty sets. Ser	nistandardness:	
C A	$\max(A) \leqslant \min(B), m$	$\max(A) < \min(C)$	
Example (Which one is a v	valid filling?)		

Background and definitions ⊙●○○○○○○○○	Uncrowding on HVT 000000	Crowding map C 0000	Applications 000000
Stable symmetric Grothe	ndieck polynomials		
${\sf G}_\lambda({\sf x};eta)=\sum_{T\in{\sf SVT}}$	$\beta^{ex(\mathcal{T})} x_1^{\#of 1's} x_2^{\#of 2's} \dots$	(Buch 2002)	
SVI (λ) = set of semistandard Excess in T is ex(T)	set-valued tableaux of shape	λ	
Semistandard set-valued table	eaux SVT(λ)		
Fill boxes of skew shape ν/λ w	ith nonempty sets. Semistand	dardness:	
C A B	$\Big] \max(A) \leqslant \min(B), \max(A)$	< min(<i>C</i>)	
Example (Which one is a vali	d filling?)		

3 / 25

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
00●00000000	000000	0000	000000
Background			

• K-theory of the Grassmannian

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
⊙⊙●○○○○○○○○	000000	0000	000000
Background			

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
⊙⊙●○○○○○○○○	000000	0000	000000
Background			

- *K*-theory of the Grassmannian
- generalization of semistandard Young tableaux
- \bullet stable symmetric Grothendieck polynomial ${\cal G}_{\lambda}^{(\beta)}$

Background and definitions ⊙⊙●⊙⊙⊙⊙⊙⊙⊙	Uncrowding on HVT 000000	Crowding map C 0000	Applications 000000
Background			

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(\beta)}$
- K-theory analogue of the Schur functions s_{λ}

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	000000	0000	000000
Background			

- *K*-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(\beta)}$
- K-theory analogue of the Schur functions s_{λ}

Duality

• $Gr(k,\mathbb{C}^n)\cong Gr(n-k,\mathbb{C}^n)$

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	000000	0000	000000
Background			

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux
- ullet stable symmetric Grothendieck polynomial $G_\lambda^{(eta)}$
- K-theory analogue of the Schur functions s_{λ}

•
$$Gr(k,\mathbb{C}^n)\cong Gr(n-k,\mathbb{C}^n)$$

•
$$\omega(s_{\lambda}) = s_{\lambda'}$$
,

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	000000	0000	000000
Background			

- *K*-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(\beta)}$
- K-theory analogue of the Schur functions s_{λ}

Duality

•
$$Gr(k,\mathbb{C}^n)\cong Gr(n-k,\mathbb{C}^n)$$

• $\omega(s_{\lambda}) = s_{\lambda'}$, but $\omega(G_{\lambda}^{(\beta)}) \neq G_{\lambda'}^{(\beta)}$

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	000000	0000	000000
Background			

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(eta)}$
- K-theory analogue of the Schur functions s_{λ}

•
$$Gr(k,\mathbb{C}^n)\cong Gr(n-k,\mathbb{C}^n)$$

•
$$\omega(s_{\lambda}) = s_{\lambda'}$$
, but $\omega(G_{\lambda}^{(\beta)}) \neq G_{\lambda'}^{(\beta)}$
• $\tau(G_{\lambda}^{(\beta)}) = G_{\lambda'}^{(\beta)}$?

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	000000	0000	000000
Background			

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(eta)}$
- K-theory analogue of the Schur functions s_{λ}

- $Gr(k,\mathbb{C}^n)\cong Gr(n-k,\mathbb{C}^n)$
- $\omega(s_{\lambda}) = s_{\lambda'}$, but $\omega(G_{\lambda}^{(\beta)}) \neq G_{\lambda'}^{(\beta)}$
- $\tau(G_{\lambda}^{(\beta)}) = G_{\lambda'}^{(\beta)}$?
- Stable canonical stable Grothendieck polynomials $G_{\lambda}^{\alpha,\beta}$, $\omega(G_{\lambda}^{(\alpha,\beta)}) = G_{\lambda'}^{(\beta,\alpha)}$

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	000000	0000	000000
Background			

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(eta)}$
- K-theory analogue of the Schur functions s_{λ}

- $Gr(k,\mathbb{C}^n)\cong Gr(n-k,\mathbb{C}^n)$
- $\omega(s_{\lambda}) = s_{\lambda'}$, but $\omega(G_{\lambda}^{(\beta)}) \neq G_{\lambda'}^{(\beta)}$
- $\tau(G_{\lambda}^{(\beta)}) = G_{\lambda'}^{(\beta)}$?
- Stable canonical stable Grothendieck polynomials $G_{\lambda}^{\alpha,\beta}$, $\omega(G_{\lambda}^{(\alpha,\beta)}) = G_{\lambda'}^{(\beta,\alpha)}$
- Hook-valued tableaux

Stable symmetric Grothendieck functions G_λ^(β)
 No arm, generating function of set-valued tableaux

by Fomin Kirillov 1994, Buch 2002

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	000000	0000	000000
Variations of stable Grot	hendieck polynomials a	nd their combinatoric	S

- Stable symmetric Grothendieck functions G_λ^(β)
 No arm, generating function of set-valued tableaux
- Stable weak symmetric Grothendieck functions $G_{\lambda}^{(\alpha)}$ No leg, generating function of multiset-valued tableaux

by Fomin Kirillov 1994, Buch 2002

by Lam, Pylyavskyy 2007

	مسام والمقام والمعالية والمسام	والمسمح وبنجوا فالمروح والمناو	to a band an
0000000000	000000	0000	000000
Background and definitions	Uncrowding on HVT	Crowding map C	Applications

Variations of stable Grothendieck polynomials and their combinatorics

- Stable symmetric Grothendieck functions G_λ^(β)
 No arm, generating function of set-valued tableaux
- Stable weak symmetric Grothendieck functions $G_{\lambda}^{(\alpha)}$ No leg, generating function of multiset-valued tableaux
- Dual stable symmetric Grothendieck polynomials g_{λ}^{β} Reverse plane partition

by Fomin Kirillov 1994, Buch 2002

by Lam, Pylyavskyy 2007

by Lam and Pylyavskyy 2007

Variations of stable Cree	h an dia da na hun anaista a	وتسميه ويتباوين ومريبته والجراوين	
Background and definitions	Uncrowding on HVI 000000	Crowding map C 0000	000000
Dealers and a definition a			

Variations of stable Grothendieck polynomials and their combinatorics

- Stable symmetric Grothendieck functions G_λ^(β)
 No arm, generating function of set-valued tableaux
- Stable weak symmetric Grothendieck functions $G_{\lambda}^{(\alpha)}$ No leg, generating function of multiset-valued tableaux
- Dual stable symmetric Grothendieck polynomials g_{λ}^{β} Reverse plane partition
- Stable canonical Grothendieck functions G^(α,β) Generating functions of hook-valued tableaux

by Fomin Kirillov 1994, Buch 2002

by Lam, Pylyavskyy 2007

by Lam and Pylyavskyy 2007

by Yeliussizov, 2017

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
0000€000000	000000	0000	000000
Semistandard hook-value	d tableaux		

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	000000	0000	000000

Semistandard hook-valued tableaux

Terminology

- Hook entry: H(U) = x
- Arm: $A(U) = \{a_1, ..., a_q\}$

• Leg:
$$L(U) = \{\ell_1, ..., \ell_p\}$$

• Extended leg: $L^+(U) = \{x, \ell_1, \dots \ell_p\}$
 Background and definitions
 Uncrowding on HVT
 Crowding map C
 Applications

 Semistandard hook-valued tableaux
 Applications
 000000

Terminology

- Hook entry: H(U) = x
- Arm: $A(U) = \{a_1, ..., a_q\}$

• Leg:
$$L(U) = \{\ell_1, ..., \ell_p\}$$

• Extended leg: $L^+(U) = \{x, \ell_1, \dots \ell_p\}$ Semistandard hook-valued tableau Yeliussizov 2017

Filling of Young diagram λ with hooks such that:

- max(A) ≤ min(B) whenever cell A is left of
 B in same row
- max(A) < min(C) whenever cell A is below
 C in same column

Background and definitions Uncrowding on HVT Crowding map CApplications 00000000000

Semistandard hook-valued tableaux

Terminology

- Hook entry: H(U) = x
- Arm: $A(U) = \{a_1, \ldots, a_n\}$
- Leg: $L(U) = \{\ell_1, \ldots, \ell_p\}$
- Extended leg: $L^{+}(U) = \{x, \ell_1, \dots, \ell_n\}$

Semistandard hook-valued tableau Yeliussizov 2017

Filling of Young diagram λ with hooks such that:

- $max(A) \leq min(B)$ whenever cell |A| is left of B in same row
- $\max(A) < \min(C)$ whenever cell |A| is below C in same column

Background and definitions 00000●00000	Uncrowding on HVT 000000	Crowding map C 0000	Applications 000000
Canonical stable Grother	ndieck polynomials		
Generating set			

 $HVT(\lambda) :=$ set of semistandard hook-valued tableaux of shape λ For $H \in HVT(\lambda)$, denote

- a(H) = total number of cells in all arms
- $\ell(H) = \text{total number of cells in all legs}$
- wt(*H*) = (#of 1's, #of 2's,...)

Definition

$$G_{\lambda}^{(\alpha,\beta)}(\mathbf{x}) = \sum_{H \in \mathsf{HVT}(\lambda)} \alpha^{\mathfrak{s}(H)} \beta^{\ell(H)} \mathbf{x}^{\mathsf{wt}(H)}$$

Restricting letters to $1, 2, \ldots, m$ is equivalent to restricting variables to x_1, x_2, \ldots, x_m .

Background and definitions	Uncrowding on HVT	Crowding map C
000000●0000	000000	0000
a		

Reading word

- Read tableau column-by-column, left to right
- Within each column:
 - read extended leg in each cell from top to bottom
 - read all remaining entries in weakly increasing order

Applications

Background	and	definitions
00000000	000	

Reading word

- Read tableau column-by-column, left to right
- Within each column:
 - read extended leg in each cell from top to bottom
 - read all remaining entries in weakly increasing order

Background	and	definitions	
00000000	000		

Reading word

- Read tableau column-by-column, left to right
- Within each column:
 - read extended leg in each cell from top to bottom
 - read all remaining entries in weakly increasing order

Each column reads

Background	and	definitions	
00000000	000		

Reading word

- Read tableau column-by-column, left to right
- Within each column:
 - read extended leg in each cell from top to bottom
 - read all remaining entries in weakly increasing order

Background	and	definitions
00000000	000	

Reading word

- Read tableau column-by-column, left to right
- Within each column:
 - read extended leg in each cell from top to bottom
 - read all remaining entries in weakly increasing order

i-pairing $(1 \leq i < m)$

- Assign to each *i*
- Assign + to every i + 1
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.

Background	and	definitions
00000000	000	

Reading word

- Read tableau column-by-column, left to right
- Within each column:
 - read extended leg in each cell from top to bottom
 - read all remaining entries in weakly increasing order

i-pairing $(1 \leqslant i < m)$

- Assign to each *i*
- Assign + to every i + 1
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.

Example $T = \begin{bmatrix} 4 & 5 \\ 34 & 4 \\ 2 & 3 \\ 11 & 233 \end{bmatrix}$ Each column reads 432114 and 543233.

Example

• *i* = 1 : 432114543233

Background	and	definitions
00000000	000	

Reading word

- Read tableau column-by-column, left to right
- Within each column:
 - read extended leg in each cell from top to bottom
 - read all remaining entries in weakly increasing order

i-pairing $(1 \leq i < m)$

- Assign to each *i*
- Assign + to every i + 1
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.

Example $T = \frac{\begin{vmatrix} 4 & 5 \\ 34 & 4 \\ 2 & 3 \\ 11 & 233 \end{vmatrix}$

Each column reads 432114 and 543233.

Example

• *i* = 1 : 4321①4543233

Background	and	definitions
00000000	000	

Reading word

- Read tableau column-by-column, left to right
- Within each column:
 - read extended leg in each cell from top to bottom
 - read all remaining entries in weakly increasing order

i-pairing $(1 \leq i < m)$

- Assign to each *i*
- Assign + to every i + 1
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.

Example

- *i* = 1 : 4321①4543233
- *i* = 2 : 432114543233

Example 7 _ 34 4

$$T = \frac{\begin{vmatrix} 4 & 5 \\ 34 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 3 \\ 11 & 233 \end{vmatrix}$$

Each column reads 432114 and 543233.

Background	and	definitions
00000000	000	

Reading word

- Read tableau column-by-column, left to right
- Within each column:
 - read extended leg in each cell from top to bottom
 - read all remaining entries in weakly increasing order

i-pairing $(1 \leqslant i < m)$

- Assign to each *i*
- Assign + to every i + 1
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.

Example

- *i* = 1 : 4321①4543233
- *i* = 2 : 432114543233
- *i* = 3 : 432114543233

Example $T = \begin{bmatrix} 4 & 5 \\ 34 & 4 \\ 2 & 3 \\ 11 & 233 \end{bmatrix}$

Each column reads 432114 and 543233.

Background	and	definitions
00000000	000	

Reading word

- Read tableau column-by-column, left to right
- Within each column:
 - read extended leg in each cell from top to bottom
 - read all remaining entries in weakly increasing order

i-pairing $(1 \leq i < m)$

- Assign to each *i*
- Assign + to every i + 1
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.

Example

- *i* = 1 : 4321①4543233
- *i* = 2 : 432114543233
- *i* = 3 : 43211454323(3)

Example 4 5 34 4

$$T = \frac{\begin{array}{c} 4 & 3 \\ 34 & 4 \\ \hline 2 & 3 \\ 11 & 233 \end{array}$$

Each column reads 432114 and 543233.
Background	and	definitions
00000000	000	

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

- Read tableau column-by-column, left to right
- Within each column:
 - read extended leg in each cell from top to bottom
 - read all remaining entries in weakly increasing order

i-pairing $(1 \leqslant i < m)$

- Assign to each *i*
- Assign + to every i + 1
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.

Example

- *i* = 1 : 4321①4543233
- *i* = 2 : 432114543233
- *i* = 3 : 43211454323(3)
- *i* = 4 : 432114543233

Example $T = \begin{bmatrix} 4 & 5 \\ 34 & 4 \\ 2 & 3 \\ 11 & 233 \end{bmatrix}$

Each column reads 432114 and 543233.

Background	and	definitions
00000000	000	

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

Example

- Read tableau column-by-column, left to right
- Within each column:
 - read extended leg in each cell from top to bottom
 - read all remaining entries in weakly increasing order

5

233

 $T = \begin{array}{|c|c|} 34 & 4 \\ \hline 2 & 3 \end{array}$

Each column reads 432114 and 543233.

i-pairing $(1 \leq i < m)$

- Assign to each *i*
- Assign + to every i + 1
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.

- *i* = 1 : 4321①4543233
- *i* = 2 : 432114543233
- *i* = 3 : 43211454323(3)
- *i* = 4 : 43211④543233

Background and definitions	Uncrowding on HVT 000000	Crowding map C 0000	Applications
Crystal structure on	hook-valued tableau>	(Hawkes, Scrimshaw 2020)	
Crystal operator f_i			
If there is no unpaired –, Do one of the following i	$f_i(T) = 0$. Otherwise, let on order:	cell <i>B</i> contain the <mark>rightmos</mark>	t unpaired <i>i</i> .
(M) If $i + 1$ is in B^{\uparrow} , rem	ove an i from $A(B)$ and ad	Id $i+1$ to A(B^{\uparrow}).	
(S) If <i>i</i> is in B^{\rightarrow} , remove	e the i from $L^+(B^{ ightarrow})$ and a	dd $i + 1$ to L(B).	

(N) Else, f_i changes the *i* in *B* into an i + 1.

Example

i = 1: 4321 (1)4543233 i = 2: 432114543233

Background and definitions	Uncrowding on HVT 000000	Crowding map ${\cal C}$ 0000	Applications
Crystal structure on	hook-valued tableaux	🗙 (Hawkes, Scrimshaw 2020)	
Crystal operator f_i			
If there is no unpaired –, Do one of the following i	$f_i(T) = 0$. Otherwise, let n order:	cell <i>B</i> contain the rightmos	st unpaired <i>i</i> .
(M) If $i + 1$ is in B^{\uparrow} , rem	ove an <i>i</i> from A(<i>B</i>) and ac	Id $i+1$ to A(B^{\uparrow}).	
(S) If <i>i</i> is in B^{\rightarrow} , remove	e the i from $L^+(B^ o)$ and a	dd $i + 1$ to L(B).	
(N) Else, f_i changes the	i in B into an $i + 1$.		

Example

i = 1: 4321 (I) 4543233 i = 2: 432114543233 $f_2(T) = 0$

Background and definitions	Uncrowding on HVT 000000	Crowding map C 0000	Applications 000000
Crystal structure on	hook-valued tableaux	K (Hawkes, Scrimshaw 2020)	
Crystal operator f_i			
If there is no unpaired – Do one of the following	, $f_i(T) = 0$. Otherwise, let in order:	cell <i>B</i> contain the rightmos	t unpaired <i>i</i> .
(M) If $i + 1$ is in B^{\uparrow} , rem	nove an i from $A(B)$ and ac	Id $i+1$ to A(B^{\uparrow}).	
(S) If <i>i</i> is in B^{\rightarrow} , remove	e the i from $L^+(B^ o)$ and a	dd $i + 1$ to L(B).	
(N) Else, f_i changes the	<i>i</i> in <i>B</i> into an $i + 1$.		

Example

<i>i</i> = 1 : 4321①4543233	<i>i</i> = 2 : 4 3 211454 3 2 3 3	$f_2(T)=0$
<i>i</i> = 3 : 4 3211 4 5 4 323(3)	<i>i</i> = 4 : 43211 45 43233	

$$T = \begin{bmatrix} 4 & 5 \\ 34 & 4 \\ 2 & 3 \\ 11 & 233 \end{bmatrix}, \quad f_1(T) = \begin{bmatrix} 4 & 5 \\ 34 & 4 \\ 2 & 3 \\ 12 & 233 \end{bmatrix},$$

Jianping Pan

Background and definitions 0000000●000	Uncrowding on HVT 000000	Crowding map C 0000	Applications
Crystal structure or	hook-valued tableau	(Hawkes, Scrimshaw 2020)	
Crystal operator f_i			
If there is no unpaired – Do one of the following	$f_i(T) = 0$. Otherwise, let in order:	cell <i>B</i> contain the <mark>rightmos</mark>	st unpaired <i>i</i> .
(M) If $i + 1$ is in B^{\uparrow} , rem	nove an i from $A(B)$ and ad	Id $i+1$ to A(B^{\uparrow}).	
(S) If <i>i</i> is in B^{\rightarrow} , remove	ve the i from $L^+(B^ o)$ and a	dd $i + 1$ to L(B).	
(N) Else, f_i changes the	<i>i</i> in <i>B</i> into an $i + 1$.		

Example

i = 1: 4321 (4543233i = 2: 432114543233i = 4: 432114543233i = 4: 432114543233

$$T = \begin{bmatrix} \frac{4}{34} & 5\\ \frac{34}{4} & 4\\ \frac{2}{31} & 233 \end{bmatrix}, \quad f_1(T) = \begin{bmatrix} \frac{4}{34} & 5\\ \frac{34}{4} & 4\\ \frac{2}{312} & 233 \end{bmatrix}, \quad f_3(T) = \begin{bmatrix} \frac{4}{34} & 5\\ \frac{34}{44} & 4\\ \frac{2}{311} & 23 \end{bmatrix},$$

Jianping Pan

Background and definitions	Uncrowding on HVT 000000	Crowding map 0000	C Applications
Crystal structure on	hook-valued tabl	eaux (Hawkes, Scrims	haw 2020)
Crystal operator f_i			
If there is no unpaired $-$, $f_i(T) = 0$. Otherwise	, let cell <i>B</i> contain the	e <mark>rightmost</mark> unpaired <i>i</i> .
	n order:		
(M) If $i + 1$ is in B^{\dagger} , rem	nove an <i>i</i> from $A(B)$ as	nd add $i + 1$ to $A(B^{\dagger})$	•
(S) If <i>i</i> is in B^{\rightarrow} , remov	e the i from L $^+(B^{ ightarrow})$ a	and add $i + 1$ to $L(B)$.	
(N) Else, f_i changes the	i in B into an $i + 1$.		
Example			
<i>i</i> = 1 : 4321①4543233	<i>i</i> = 2 : 4 <mark>3</mark> 211454 <mark>3</mark> 2	$33 f_2(T) = 0$	
<i>i</i> = 3 : 4 3211 4 5 4 323③	<i>i</i> = 4 : 43211 ④5 43	233	
4 5	4 5	4 5	5
$T = \begin{bmatrix} 34 & 4 \end{bmatrix}$	$f_1(T) = 34 4$	$f_2(T) = 34 44$	$f_4(T) = \begin{vmatrix} 4 \\ 34 \end{vmatrix} 5$
11 233	12 233	11 23	12 233
		Uncrowding algorithm for hook-val	ued tableaux 9 / 25

	000000	Crowding map C 0000	oooooo
Uncrowding mans			

			•		
	ncr	CINIC	inc	mn	nc
U	ILUI	Ovvu	שווו	ша	05
~					- -

Function	Combinatorial objects	Crystal structure	Uncrowding maps
$c^{(\beta)}$	set-valued	Monical, Pechenik	$\sqcup_{\mu}SSYT(\mu) imes \mathcal{F}(\mu/\lambda)$
G_{λ}	tableaux	Scrimshaw 2018	Buch 2012
$c^{(\alpha)}$	multiset-valued	Hawkes	$\sqcup_{\mu} SSYT(\mu) \times \hat{\mathcal{F}}(\mu/\lambda)$
G_{λ}	tableaux	Scrimshaw 2019	Hawkes, Scrimshaw 2019
$c^{(\alpha,\beta)}$	hook-valued	Hawkes	2
G_{λ}^{v}	tableaux	Scrimshaw 2019	<u></u>

00000000000	000000	0000	000000
Uncrowding mans			

	ncrowic	ling r	nnnc
U		ו צווו	liaus
_			

Function	Combinatorial objects	Crystal structure	Uncrowding maps
$G^{(\beta)}$	set-valued	Monical, Pechenik	$\sqcup_{\mu}SSYT(\mu) imes \mathcal{F}(\mu/\lambda)$
- ~	tableaux	Scrimshaw 2018	Buch 2012
$C^{(\alpha)}$	multiset-valued	Hawkes	$\sqcup_{\mu}SSYT(\mu) imes \hat{\mathcal{F}}(\mu/\lambda)$
G_{λ}	tableaux	Scrimshaw 2019	Hawkes, Scrimshaw 2019
$c^{(\alpha,\beta)}$	hook-valued	Hawkes	2
G_{λ}^{*}	tableaux	Scrimshaw 2019	!

Why should we care about uncrowding maps?

- Bijections on generating sets of different functions.
- Yields symmetric function expansions.
- Gives crystal isomorphisms.

Background and definitions 000000000€0	Uncrowding on HVT 000000	Crowding map C 0000	Applications 000000
Uncrowding algorithm for	r SVT		

- Identify topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Repeat, resulting in a single-valued skew tableau.

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
000000000€0	000000	0000	000000
Uncrowding algorithm for	· SVT		

- Identify topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Repeat, resulting in a single-valued skew tableau.

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
000000000000	000000	0000	000000
Uncrowding algorithm for	· SVT		

- Identify topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Repeat, resulting in a single-valued skew tableau.

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
000000000€0	000000	0000	000000
Uncrowding algorithm for	· SVT		

- Identify topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Repeat, resulting in a single-valued skew tableau.

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
000000000€0	000000	0000	000000
Uncrowding algorithm for	· SVT		

- Identify topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Repeat, resulting in a single-valued skew tableau.

Uncrowding algorit	hm for SV/T		
0000000000	000000	0000	000000
Background and definitions	Uncrowding on HVT	Crowding map C	Applications

ig algorithin

Uncrowding operator Buch 2002; Bandlow, Morse 2012; Reiner, Tenner, Yong 2018; Chan, Pflueger 2019

- Identify topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Repeat, resulting in a single-valued skew tableau.

Background	and	definitions
00000000	000	

Uncrowding on HVT

Crowding map *C* 0000 Applications 000000

End of part I

Т	Y
H FOR	0 ME
Α	
N	U
K YOU	R TI

Table of Contents

Background and definitions

2 Uncrowding on HVT

3 Crowding map C

Applications

Background and definitions	Oncrowding on HVI O●OOOO	Crowding map C 0000	Applications 000000

If a cell contains nonzero arm, call it an armed cell.

- Find the rightmost column c with an armed cell. Within column c, find the topmost armed cell (r, c). Denote the rightmost arm entry in cell (r, c) by a, and its largest leg entry by ℓ .
- 2 Look at (c + 1)-st column and find the smallest number that is greater than or equal to a at cell $(\tilde{r}, c + 1)$.
- Move letter(s) over, maybe involves creating a new cell.

		6666	000000
000000000	00000	0000	000000
Background and definitions	Uncrowding on HVT	Crowding map C	Applications

If a cell contains nonzero arm, call it an armed cell.

- Find the rightmost column c with an armed cell. Within column c, find the topmost armed cell (r, c). Denote the rightmost arm entry in cell (r, c) by a, and its largest leg entry by ℓ .
- 2 Look at (c + 1)-st column and find the smallest number that is greater than or equal to a at cell $(\tilde{r}, c + 1)$.
- Move letter(s) over, maybe involves creating a new cell.

4	6		
3	5		
	4		
2	33 <mark>3</mark>	5	
	2	3	
11	12	2	3

Background and definitions Un	ncrowding on HVT	Crowding map C	Applications
0000000000 00	•0000	0000	000000

If a cell contains nonzero arm, call it an armed cell.

- Find the rightmost column c with an armed cell. Within column c, find the topmost armed cell (r, c). Denote the rightmost arm entry in cell (r, c) by a, and its largest leg entry by ℓ .
- 2 Look at (c + 1)-st column and find the smallest number that is greater than or equal to a at cell $(\tilde{r}, c + 1)$.
- Move letter(s) over, maybe involves creating a new cell.

		6666	000000	
000000000	00000	0000	000000	
Background and definitions	Uncrowding on HVT	Crowding map C	Applications	

If a cell contains nonzero arm, call it an armed cell.

- Find the rightmost column c with an armed cell. Within column c, find the topmost armed cell (r, c). Denote the rightmost arm entry in cell (r, c) by a, and its largest leg entry by ℓ .
- Look at (c + 1)-st column and find the smallest number that is greater than or equal to a at cell $(\tilde{r}, c + 1)$.
- Move letter(s) over, maybe involves creating a new cell.

- Column 2
- Row 2

		6666	000000	
000000000	00000	0000	000000	
Background and definitions	Uncrowding on HVT	Crowding map C	Applications	

If a cell contains nonzero arm, call it an armed cell.

- Find the rightmost column c with an armed cell. Within column c, find the topmost armed cell (r, c). Denote the rightmost arm entry in cell (r, c) by a, and its largest leg entry by ℓ .
- 2 Look at (c + 1)-st column and find the smallest number that is greater than or equal to a at cell $(\tilde{r}, c + 1)$.
- Move letter(s) over, maybe involves creating a new cell.

- Column 2
- Row 2
- *a* = 3, *l* = 4

		6666	000000	
000000000	00000	0000	000000	
Background and definitions	Uncrowding on HVT	Crowding map C	Applications	

If a cell contains nonzero arm, call it an armed cell.

- Find the rightmost column c with an armed cell. Within column c, find the topmost armed cell (r, c). Denote the rightmost arm entry in cell (r, c) by a, and its largest leg entry by ℓ .
- Look at (c + 1)-st column and find the smallest number that is greater than or equal to a at cell $(\tilde{r}, c + 1)$.
- Move letter(s) over, maybe involves creating a new cell.

ipic									
4	6 5			• Column 2	4 3	6 5			
	4			• Row 2		4			
2	333	5		● <i>a</i> = 3, ℓ = 4	2	33	5		
11	2 12	2	3	• <i>r̃</i> = 1	11	2 12	3 23	3	

Figure: When $\tilde{r} \neq r$. Left: $(\tilde{r}, c+1)$ is a new cell; Right: $(\tilde{r}, c+1)$ is an existing cell.

Figure: When $\tilde{r} = r$. Left: (r, c+1) is a new cell; Right: (r, c+1) is an existing cell.

0000000000	000000	0000	000000
Uncrowding map			

Definition

Let $T \in HVT(\lambda)$ with arm excess α . The uncrowding map

$$\mathcal{U} \colon \mathsf{HVT}(\lambda) \to \bigsqcup_{\mu \supseteq \lambda} \mathsf{SVT}(\mu) \times \hat{\mathcal{F}}(\mu/\lambda)$$

is defined by the following algorithm:

• Let $P_0 = T$ and let Q_0 be the column-flagged increasing tableau of shape λ/λ .

2 For
$$1 \leq i \leq \alpha$$
, let $P_{i+1} = \mathcal{V}(P_i)$.

- Let *c* be the index of the starting column
 - let \tilde{c} be the column index of the cell shape (P_{i+1}) /shape (P_i)
 - Fill Q_{i+1} with $\tilde{c} c$ in the same new cell.

Define $\mathcal{U}(T) = (P(T), Q(T)) := (P_{\alpha}, Q_{\alpha}).$

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	000000		

An example of uncrowding map

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	00000●	0000	000000
Properties			

1 If
$$f_i(T) \neq 0$$
, then $f_i(P(T)) = P(f_i(T))$ and $Q(T) = Q(f_i(T))$.

② If
$$e_i(T) \neq 0$$
, then $e_i(P(T)) = P(e_i(T))$ and $Q(T) = Q(e_i(T))$.

In other words, the diagram commutes:

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	00000●	0000	000000
Properties			

If
$$f_i(T) \neq 0$$
, then $f_i(P(T)) = P(f_i(T))$ and $Q(T) = Q(f_i(T))$.
If $e_i(T) \neq 0$, then $e_i(P(T)) = P(e_i(T))$ and
 $Q(T) = Q(e_i(T))$.
HVT $\xrightarrow{\mathcal{U}}$ SVT × $\hat{\mathcal{F}}$
In other words, the diagram commutes:
HVT $\xrightarrow{\mathcal{U}}$ SVT × $\hat{\mathcal{F}}$.

② If
$$e_i(T) \neq 0$$
, then $e_i(P(T)) = P(e_i(T))$ and $Q(T) = Q(e_i(T))$.

In other words, the diagram commutes:

Background and definitions	Uncrowding on HVI	Crowding map C	Applications
	00000●	0000	000000
Properties			

If
$$f_i(T) \neq 0$$
, then $f_i(P(T)) = P(f_i(T))$ and $Q(T) = Q(f_i(T))$.
If $e_i(T) \neq 0$, then $e_i(P(T)) = P(e_i(T))$ and
 $Q(T) = Q(e_i(T))$.
HVT $\xrightarrow{\mathcal{U}}$ SVT × $\hat{\mathcal{F}}$
In other words, the diagram commutes:
HVT $\xrightarrow{\mathcal{U}}$ SVT × $\hat{\mathcal{F}}$.

② If
$$e_i(T) \neq 0$$
, then $e_i(P(T)) = P(e_i(T))$ and $Q(T) = Q(e_i(T))$.

In other words, the diagram commutes:

Collorary 1

 HVT^m is a type A_{m-1} Stembridge crystal.

0000000000	000000	0000	000000
Droportion			

1 If
$$f_i(T) \neq 0$$
, then $f_i(P(T)) = P(f_i(T))$ and $Q(T) = Q(f_i(T))$.

② If
$$e_i(T) \neq 0$$
, then $e_i(P(T)) = P(e_i(T))$ and $Q(T) = Q(e_i(T))$.

In other words, the diagram commutes:

$$\begin{array}{ccc} \mathsf{HVT} & \stackrel{\mathcal{U}}{\longrightarrow} \mathsf{SVT} \times \hat{\mathcal{F}} \\ & & & & \\ & & & & \\ \mathsf{f}_i & & & & \\ & & & & \\ \mathsf{HVT} & \stackrel{\mathcal{U}}{\longrightarrow} \mathsf{SVT} \times \hat{\mathcal{F}}. \end{array}$$

Collorary 1

HVT^{*m*} is a type A_{m-1} Stembridge crystal.

Collorary 2

 $G_{\lambda}^{(\alpha,\beta)}$ is Schur-positive.

0000000000	000000	0000	000000
Droportion			

If
$$f_i(T) \neq 0$$
, then $f_i(P(T)) = P(f_i(T))$ and $Q(T) = Q(f_i(T))$.
If $e_i(T) \neq 0$, then $e_i(P(T)) = P(e_i(T))$ and
 $Q(T) = Q(e_i(T))$.
HVT $\xrightarrow{\mathcal{U}}$ SVT $\times \hat{\mathcal{F}}$
In other words, the diagram commutes:

② If
$$e_i(T) \neq 0$$
, then $e_i(P(T)) = P(e_i(T))$ and $Q(T) = Q(e_i(T))$.

In other words, the diagram commutes:

Collorary 1

 HVT^m is a type A_{m-1} Stembridge crystal.

Collorary 2

 $G_{\lambda}^{(\alpha,\beta)}$ is Schur-positive.

Collorary 3

 $\mathcal{U}_{|\mathsf{MVT}}$ coincides with the uncrowding map on MVT described in Hawkes, Scrimshaw 2020 using RSK insertion.

Table of Contents

Background and definitions

2 Uncrowding on HVT

 $\textcircled{3} Crowding map \mathcal{C}$

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
0000000000	000000	0●00	000000
Crowding back			

Crowding back		

$$\mathcal{U} \colon \mathsf{HVT}(\lambda) \to \bigsqcup_{\mu \supseteq \lambda} \mathsf{SVT}(\mu) \times \hat{\mathcal{F}}(\mu/\lambda), \quad (S, Q) = \left(egin{array}{c} 3 \\ 2 & 3 \\ 1 & 2 \end{array}, \begin{array}{c} \end{array} \right).$$

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	000000	0●00	000000
Crowding back			

What can go wrong?

$$\mathcal{U} \colon \mathsf{HVT}(\lambda) \to \bigsqcup_{\mu \supseteq \lambda} \mathsf{SVT}(\mu) \times \hat{\mathcal{F}}(\mu/\lambda), \quad (S, Q) = \begin{pmatrix} \boxed{3} \\ 2 \\ 1 \end{pmatrix}$$

We say the cell (1,2) in S practices social distancing.

1

3 ,

2

.

1

000000000	000000	0000	000000
Crowding back			

What can go wrong?

$$\mathcal{U} \colon \mathsf{HVT}(\lambda) o igsqcup_{\mu \supseteq \lambda} \mathsf{SVT}(\mu) imes \hat{\mathcal{F}}(\mu/\lambda) \,, \quad (\mathcal{S}, \mathcal{Q}) =$$

We say the cell (1, 2) in S practices social distancing.

Solution

- Restrict our domain to a subset of $\sqcup_{\mu \supseteq \lambda} SVT(\mu) \times \hat{\mathcal{F}}(\mu/\lambda)$.
- weight($T_j^{(s)}$) = weight(S)
| Background and definitions | Uncrowding on HVT | Crowding map C | Applications |
|----------------------------|-------------------|------------------|--------------|
| | 000000 | 0000 | 000000 |
| Going back: one charact | erization! C_b | | |

Figure: When r' = r. Left: (i) $A_h(r, c) \neq \emptyset$. Right: (ii) $A_h(r, c) = \emptyset$.

Figure: When $r' \neq r$. Left: $A_h(r, c) \neq \emptyset$. Right: $A_h(r, c) = \emptyset$.

Background and defir	nitions	Uncrowding on HVT 000000	Crowding map C 000•	Applications 000000

An example on crowding map

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
00000000		0000	

An example on crowding map

Table of Contents

Background and definitions

2 Uncrowding on HVT

3 Crowding map C

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	000000	0000	000000
Tableaux Schur expansion	n (TSE)		

A symmetric function f_{α} is said to have a TSE if there is a set of (semistandard Young) tableaux $\mathbb{T}(\alpha)$ and a weight function wt_{α}: $\mathbb{T}(\alpha) \to R$ so that

$$f_{lpha} = \sum_{\mathcal{T} \in \mathbb{T}(lpha)} \mathsf{wt}_{lpha}(\mathcal{T}) s_{\mathsf{shape}(\mathcal{T})}.$$

Background and definitions	Uncrowding on HVT	Crowding map <i>C</i>	Applications
	000000	0000	○●○○○○
Tableaux Schur expansion	n (TSE)		

A symmetric function f_{α} is said to have a TSE if there is a set of (semistandard Young) tableaux $\mathbb{T}(\alpha)$ and a weight function wt_{α}: $\mathbb{T}(\alpha) \to R$ so that

$$f_{lpha} = \sum_{\mathcal{T} \in \mathbb{T}(lpha)} \mathsf{wt}_{lpha}(\mathcal{T}) s_{\mathsf{shape}(\mathcal{T})}.$$

Theorem (Bandlow, Morse 2012)

Let f_{α} be a symmetric function with a TSE $f_{\alpha} = \sum_{T \in \mathbb{T}(\alpha)} \operatorname{wt}_{\alpha}(T) s_{\operatorname{shape}(T)}$ for some $\mathbb{T}(\alpha)$. Then we have

$$f_{\alpha} = \sum_{R \in \mathbb{R}(\alpha)} \mathsf{wt}_{\alpha}(R) \mathcal{G}_{\mathsf{shape}(R)}(x; -1) = \sum_{S \in \mathbb{S}(\alpha)} \mathsf{wt}_{\alpha}(S)(-1)^{|S| - |\mathsf{shape}(S)|} g_{\mathsf{shape}(S)}(x; 1).$$

Background and definitions	Uncrowding on HVT 000000	Crowding map C 0000	Applications
TSE for $G_{\lambda}^{(\alpha,\beta)}$			

Proposition (P., Pappe, Poh, Schilling, 2020)

$$G_{\lambda}^{(lpha,eta)}(oldsymbol{x}) = \sum_{\mathcal{T}\in\mathbb{T}(\lambda)} \mathsf{wt}_{\lambda}(\mathcal{T}) s_{\mathsf{shape}(\mathcal{T})}$$

$$\begin{split} \mathbb{T}(\lambda) &= \{ T \in \mathsf{SSYT}(\nu) \mid \nu \supseteq \lambda, T \text{ is of highest weight in the crystal graph} \} \\ \mathsf{wt}_{\lambda}(T) &= \sum_{\mu: \lambda \subseteq \mu \subseteq \mathsf{shape}(T)} \alpha^{|\mu| - |\lambda|} \beta^{|\mathsf{shape}(T)| - |\mu|} \sum_{Q \in \mathcal{F}(\mathsf{shape}(T)/\mu)} \phi_{\lambda}(\mathcal{U}_{\mathsf{SVT}}^{-1}(T, Q)) \\ \phi_{\lambda}(S) &= |\{ F \in \hat{\mathcal{F}} \mid (S, F) \in \mathsf{K}_{\lambda} \} |. \end{split}$$

Background and definitions	Uncrowding on HVT	Crowding map C	Applications
	000000	0000	000000
An example on $G_{(2)}^{(\alpha,\beta)}$	continued		

$$\begin{array}{c|c} \begin{array}{c} \begin{array}{c} Background \ and \ definitions \\ \hline 000000 \\ \hline 000000 \\ \hline 000000 \\ \hline 00000 \\ \hline 00000 \\ \hline 00000 \\ \hline 0000 \\ \hline 000$$

Applying the expansion formulas, we obtain

$$G_{(2)}(x;\alpha,\beta) = (G_{(2)}(x;-1) + G_{(21)}(x;-1) + G_{(22)}(x;-1) + G_{(211)}(x;-1) + \cdots) + \beta(G_{(21)}(x;-1) + G_{(22)}(x;-1) + 2G_{(211)}(x;-1) + \cdots) + \cdots$$

(

Background and definitions

Uncrowding on HVT

Crowding map C 0000 Applications 00000

End of part II

Т	Y
H FOR	0 ME
Α	
Ν	U
K YOU	R TI