Uncrowding algorithm for hook-valued tableaux

Jianping Pan
Department of Mathematics, UC Davis

based on joint work with Joseph Pappe, Wencin Poh and Anne Schilling (preprint arXiv:2012.14975)

	4			
2	36			
		2	6	
1	1	1	5	7

Informal seminar on combinatorics and representation theory UC Davis
April 19, 2021
(1) Background and definitions
(2) Uncrowding on HVT
(3) Crowding map \mathcal{C}
4. Applications

Table of Contents
(1) Background and definitions
(3) Crowding map \mathcal{C}
(4) Applications

$$
G_{\lambda}(\mathbf{x} ; \beta)=\sum_{T \in \operatorname{SVT}(\lambda)} \beta^{\mathrm{ex}(T)} x_{1}^{\# \text { of 1's }} x_{2}^{\# \text { of } 2 \text { 's }} \ldots
$$

(Buch 2002)
$\operatorname{SVT}(\lambda)=$ set of semistandard set-valued tableaux of shape λ Excess in T is $\operatorname{ex}(T)$

Stable symmetric Grothendieck polynomials

$$
G_{\lambda}(\mathbf{x} ; \beta)=\sum_{T \in \operatorname{SVT}(\lambda)} \beta^{\text {ex(T) }} x_{1}^{\# \text { of 1's }} x_{2}^{\# \text { of 2's }} \ldots
$$

(Buch 2002)
$\operatorname{SVT}(\lambda)=$ set of semistandard set-valued tableaux of shape λ Excess in T is ex (T)

Semistandard set-valued tableaux SVT (λ)

Fill boxes of skew shape ν / λ with nonempty sets. Semistandardness:

$$
\quad \begin{aligned}
& \\
& \hline
\end{aligned}
$$

Stable symmetric Grothendieck polynomials

$$
G_{\lambda}(\mathbf{x} ; \beta)=\sum_{T \in \operatorname{SVT}(\lambda)} \beta^{\operatorname{ex}(T)} x_{1}^{\# \text { of 1's }} x_{2}^{\# \text { of 2's }} \ldots
$$

(Buch 2002)
$\operatorname{SVT}(\lambda)=$ set of semistandard set-valued tableaux of shape λ
Excess in T is $\operatorname{ex}(T)$

Semistandard set-valued tableaux SVT (λ)

Fill boxes of skew shape ν / λ with nonempty sets. Semistandardness:

\[

\]

Example (Which one is a valid filling?)

34	45	
	12	25

34	35	
	12	456

2	35	
	14	56

Stable symmetric Grothendieck polynomials

$$
G_{\lambda}(\mathbf{x} ; \beta)=\sum_{T \in \operatorname{SVT}(\lambda)} \beta^{\operatorname{ex}(T)} x_{1}^{\# \text { of 1's }} x_{2}^{\# \text { of 2's }} \ldots
$$

(Buch 2002)
$\operatorname{SVT}(\lambda)=$ set of semistandard set-valued tableaux of shape λ
Excess in T is $\operatorname{ex}(T)$

Semistandard set-valued tableaux SVT (λ)

Fill boxes of skew shape ν / λ with nonempty sets. Semistandardness:

\[

\]

Example (Which one is a valid filling?)

34	45	
	12	25

34	35	
	12	456

2	35	
	14	56

Background

Set-valued tableaux

- K-theory of the Grassmannian

Background

Set-valued tableaux

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux

Background

Set-valued tableaux

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(\beta)}$

Background

Set-valued tableaux

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(\beta)}$
- K-theory analogue of the Schur functions s_{λ}

Background

Set-valued tableaux

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(\beta)}$
- K-theory analogue of the Schur functions s_{λ}

Duality

- $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right) \cong \operatorname{Gr}\left(n-k, \mathbb{C}^{n}\right)$

Background

Set-valued tableaux

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(\beta)}$
- K-theory analogue of the Schur functions s_{λ}

Duality

- $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right) \cong \operatorname{Gr}\left(n-k, \mathbb{C}^{n}\right)$
- $\omega\left(s_{\lambda}\right)=s_{\lambda^{\prime}}$,

Background

Set-valued tableaux

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(\beta)}$
- K-theory analogue of the Schur functions s_{λ}

Duality

- $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right) \cong \operatorname{Gr}\left(n-k, \mathbb{C}^{n}\right)$
- $\omega\left(s_{\lambda}\right)=s_{\lambda^{\prime}}$, but $\omega\left(G_{\lambda}^{(\beta)}\right) \neq G_{\lambda^{\prime}}^{(\beta)}$

Background

Set-valued tableaux

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(\beta)}$
- K-theory analogue of the Schur functions s_{λ}

Duality

- $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right) \cong \operatorname{Gr}\left(n-k, \mathbb{C}^{n}\right)$
- $\omega\left(s_{\lambda}\right)=s_{\lambda^{\prime}}$, but $\omega\left(G_{\lambda}^{(\beta)}\right) \neq G_{\lambda^{\prime}}^{(\beta)}$
- $\tau\left(G_{\lambda}^{(\beta)}\right)=G_{\lambda^{\prime}}^{(\beta)}$?

Background

Set-valued tableaux

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(\beta)}$
- K-theory analogue of the Schur functions s_{λ}

Duality

- $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right) \cong \operatorname{Gr}\left(n-k, \mathbb{C}^{n}\right)$
- $\omega\left(s_{\lambda}\right)=s_{\lambda^{\prime}}$, but $\omega\left(G_{\lambda}^{(\beta)}\right) \neq G_{\lambda^{\prime}}^{(\beta)}$
- $\tau\left(G_{\lambda}^{(\beta)}\right)=G_{\lambda^{\prime}}^{(\beta)}$?
- Stable canonical stable Grothendieck polynomials $G_{\lambda}^{\alpha, \beta}, \omega\left(G_{\lambda}^{(\alpha, \beta)}\right)=G_{\lambda^{\prime}}^{(\beta, \alpha)}$

Background

Set-valued tableaux

- K-theory of the Grassmannian
- generalization of semistandard Young tableaux
- stable symmetric Grothendieck polynomial $G_{\lambda}^{(\beta)}$
- K-theory analogue of the Schur functions s_{λ}

Duality

- $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right) \cong \operatorname{Gr}\left(n-k, \mathbb{C}^{n}\right)$
- $\omega\left(s_{\lambda}\right)=s_{\lambda^{\prime}}$, but $\omega\left(G_{\lambda}^{(\beta)}\right) \neq G_{\lambda^{\prime}}^{(\beta)}$
- $\tau\left(G_{\lambda}^{(\beta)}\right)=G_{\lambda^{\prime}}^{(\beta)}$?
- Stable canonical stable Grothendieck polynomials $G_{\lambda}^{\alpha, \beta}, \omega\left(G_{\lambda}^{(\alpha, \beta)}\right)=G_{\lambda^{\prime}}^{(\beta, \alpha)}$
- Hook-valued tableaux

Variations of stable Grothendieck polynomials and their combinatorics

- Stable symmetric Grothendieck functions $G_{\lambda}^{(\beta)}$
by Fomin Kirillov 1994, Buch 2002 No arm, generating function of set-valued tableaux

Variations of stable Grothendieck polynomials and their combinatorics

- Stable symmetric Grothendieck functions $G_{\lambda}^{(\beta)}$ by Fomin Kirillov 1994, Buch 2002 No arm, generating function of set-valued tableaux
- Stable weak symmetric Grothendieck functions $G_{\lambda}^{(\alpha)}$
by Lam, Pylyavskyy 2007 No leg, generating function of multiset-valued tableaux

Variations of stable Grothendieck polynomials and their combinatorics

- Stable symmetric Grothendieck functions $G_{\lambda}^{(\beta)}$ No arm, generating function of set-valued tableaux
- Stable weak symmetric Grothendieck functions $G_{\lambda}^{(\alpha)}$ by Fomin Kirillov 1994, Buch 2002 No leg, generating function of multiset-valued tableaux
- Dual stable symmetric Grothendieck polynomials g_{λ}^{β}
by Lam, Pylyavskyy 2007
by Lam and Pylyavskyy 2007

Reverse plane partition

Variations of stable Grothendieck polynomials and their combinatorics

- Stable symmetric Grothendieck functions $G_{\lambda}^{(\beta)}$ No arm, generating function of set-valued tableaux
- Stable weak symmetric Grothendieck functions $G_{\lambda}^{(\alpha)}$ by Fomin Kirillov 1994, Buch 2002 No leg, generating function of multiset-valued tableaux
- Dual stable symmetric Grothendieck polynomials g_{λ}^{β}
by Lam, Pylyavskyy 2007

Reverse plane partition

- Stable canonical Grothendieck functions $G_{\lambda}^{(\alpha, \beta)}$
by Yeliussizov, 2017
Generating functions of hook-valued tableaux

Semistandard hook-valued tableaux

Hook U

$$
\begin{aligned}
& x<\ell_{1}<\ell_{2} \cdots<\ell_{p} \\
& x \leqslant a_{1} \leqslant \cdots \leqslant a_{q}
\end{aligned}
$$

Semistandard hook-valued tableaux

Hook U

$$
\begin{aligned}
& x<\ell_{1}<\ell_{2} \cdots<\ell_{p} \\
& x \leqslant a_{1} \leqslant \cdots \leqslant a_{q}
\end{aligned}
$$

Terminology

- Hook entry: $\mathrm{H}(U)=x$
- Arm: $\mathrm{A}(U)=\left\{a_{1}, \ldots, a_{q}\right\}$
- Leg: $\mathrm{L}(U)=\left\{\ell_{1}, \ldots, \ell_{p}\right\}$
- Extended leg:

$$
\mathrm{L}^{+}(U)=\left\{x, \ell_{1}, \ldots \ell_{p}\right\}
$$

Hook U

$$
\begin{aligned}
& x<\ell_{1}<\ell_{2} \cdots<\ell_{p} \\
& x \leqslant a_{1} \leqslant \cdots \leqslant a_{q}
\end{aligned}
$$

Terminology

- Hook entry: $\mathrm{H}(U)=x$
- Arm: $\mathrm{A}(U)=\left\{a_{1}, \ldots, a_{q}\right\}$
- Leg: $\mathrm{L}(U)=\left\{\ell_{1}, \ldots, \ell_{p}\right\}$
- Extended leg:

$$
\mathrm{L}^{+}(U)=\left\{x, \ell_{1}, \ldots \ell_{p}\right\}
$$

Semistandard hook-valued tableau Yeliussizov 2017

 Filling of Young diagram λ with hooks such that:- $\max (A) \leqslant \min (B)$ whenever cell A is left of B in same row
- $\max (A)<\min (C)$ whenever cell A is below C in same column

Semistandard hook-valued tableaux

Hook U

$x<\ell_{1}<\ell_{2} \cdots<\ell_{p}$
$x \leqslant a_{1} \leqslant \cdots \leqslant a_{q}$

Terminology

- Hook entry: $\mathrm{H}(U)=x$
- Arm: $\mathrm{A}(U)=\left\{a_{1}, \ldots, a_{q}\right\}$
- Leg: $\mathrm{L}(U)=\left\{\ell_{1}, \ldots, \ell_{p}\right\}$
- Extended leg:

$$
\mathrm{L}^{+}(U)=\left\{x, \ell_{1}, \ldots \ell_{p}\right\}
$$

Semistandard hook-valued tableau Yeliussizov 2017

 Filling of Young diagram λ with hooks such that:- $\max (A) \leqslant \min (B)$ whenever cell A is left of B in same row
- max $(A)<\min (C)$ whenever cell A is below C in same column

Example

| 4
 3
 2 333
 2 3
 11 12 2 | 34 |
| :--- | :--- | :--- | :--- |

Canonical stable Grothendieck polynomials

Generating set

$\operatorname{HVT}(\lambda):=$ set of semistandard hook-valued tableaux of shape λ
For $H \in \operatorname{HVT}(\lambda)$, denote

- $a(H)=$ total number of cells in all arms
- $\ell(H)=$ total number of cells in all legs
- $\mathrm{wt}(H)=(\#$ of 1 's, \#of 2's, \ldots)

Definition

$$
G_{\lambda}^{(\alpha, \beta)}(\boldsymbol{x})=\sum_{H \in \operatorname{HVT}(\lambda)} \alpha^{a(H)} \beta^{\ell(H)} \boldsymbol{x}^{\mathrm{wt}(H)}
$$

Restricting letters to $1,2, \ldots, m$ is equivalent to restricting variables to $x_{1}, x_{2}, \ldots, x_{m}$.

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

- Read tableau column-by-column, left to right
- Within each column:
read extended leg in each cell from top to bottom
read all remaining entries in weakly increasing order

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

- Read tableau column-by-column, left to right
- Within each column:
read extended leg in each cell from top to bottom
read all remaining entries in weakly increasing order

Example

$$
T=\begin{array}{|l|l|}
\hline 4 & 5 \\
34 & 4 \\
\hline 2 & 3 \\
11 & 233 \\
\hline
\end{array}
$$

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

- Read tableau column-by-column, left to right
- Within each column:
read extended leg in each cell from top to bottom
read all remaining entries in weakly increasing order

Example

$$
T=\begin{array}{|l|l|}
\hline 4 & 5 \\
34 & 4 \\
\hline 2 & 3 \\
11 & 233 \\
\hline
\end{array}
$$

Each column reads

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

- Read tableau column-by-column, left to right
- Within each column:
read extended leg in each cell from top to bottom
read all remaining entries in weakly increasing order

Example

$$
T=\begin{array}{|l|l|}
\hline 4 & 5 \\
34 & 4 \\
\hline 2 & 3 \\
11 & 233 \\
\hline
\end{array}
$$

Each column reads 432114 and

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

- Read tableau column-by-column, left to right
- Within each column:
read extended leg in each cell from top to bottom
read all remaining entries in weakly increasing order

$$
\begin{aligned}
& i \text {-pairing }(1 \leqslant i<m) \\
& \text { - Assign }- \text { to each } i \\
& \text { - Assign }+ \text { to every } i+1 \\
& \text { - Successively pair each + that is } \\
& \text { adjacent and to the left of a - } \\
& \text { - Remove paired signs until nothing can } \\
& \text { be paired. }
\end{aligned}
$$

Example

$$
T=\begin{array}{|l|l|}
\hline 4 & 5 \\
34 & 4 \\
\hline 2 & 3 \\
11 & 233 \\
\hline
\end{array}
$$

Each column reads 432114 and 543233.

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

- Read tableau column-by-column, left to right
- Within each column:
read extended leg in each cell from top to bottom
read all remaining entries in weakly increasing order

Example

$$
T=\begin{array}{|l|l|}
\hline 4 & 5 \\
34 & 4 \\
\hline 2 & 3 \\
11 & 233 \\
\hline
\end{array}
$$

Each column reads 432114 and 543233.

```
i-pairing (1\leqslanti<m)
    - Assign - to each i
    - Assign + to every i+1
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.
```


Example

- $i=1$: 432114543233

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

- Read tableau column-by-column, left to right
- Within each column:
read extended leg in each cell from top to bottom
read all remaining entries in weakly increasing order

Example

$$
T=\begin{array}{|l|l|}
\hline 4 & 5 \\
34 & 4 \\
\hline 2 & 3 \\
11 & 233 \\
\hline
\end{array}
$$

Each column reads 432114 and 543233.
i-pairing $(1 \leqslant i<m)$

- Assign - to each i
- Assign + to every $i+1$
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.

Example

- $i=1$: 4321(1)4543233

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

- Read tableau column-by-column, left to right
- Within each column:
read extended leg in each cell from top to bottom
read all remaining entries in weakly increasing order

Example

$$
T=\begin{array}{|l|l|}
\hline 4 & 5 \\
34 & 4 \\
\hline 2 & 3 \\
11 & 233 \\
\hline
\end{array}
$$

Each column reads 432114 and 543233.
i-pairing $(1 \leqslant i<m)$

- Assign - to each i
- Assign + to every $i+1$
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.

Example

- $i=1$: 4321(1)4543233
- $i=2$: 432114543233

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

- Read tableau column-by-column, left to right
- Within each column:
read extended leg in each cell from top to bottom
read all remaining entries in weakly increasing order

Example

$$
T=\begin{array}{|l|l|}
\hline 4 & 5 \\
34 & 4 \\
\hline 2 & 3 \\
11 & 233 \\
\hline
\end{array}
$$

Each column reads 432114 and 543233.

```
i-pairing (1\leqslanti<m)
    - Assign - to each i
    - Assign + to every i+1
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.
```


Example

- $i=1$: 4321(1)4543233
- $i=2$: 432114543233
- $i=3: 432114543233$

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

- Read tableau column-by-column, left to right
- Within each column:
read extended leg in each cell from top to bottom
read all remaining entries in weakly increasing order

Example

$$
T=\begin{array}{|l|l|}
\hline 4 & 5 \\
34 & 4 \\
\hline 2 & 3 \\
11 & 233 \\
\hline
\end{array}
$$

Each column reads 432114 and 543233.
i-pairing $(1 \leqslant i<m)$

- Assign - to each i
- Assign + to every $i+1$
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.

Example

- $i=1$: 4321(1)4543233
- $i=2$: 432114543233
- $i=3$: 43211454323(3)

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

- Read tableau column-by-column, left to right
- Within each column:
read extended leg in each cell from top to bottom read all remaining entries in weakly increasing order

Example

$$
T=\begin{array}{|l|l|}
\hline 4 & 5 \\
34 & 4 \\
\hline 2 & 3 \\
11 & 233 \\
\hline
\end{array}
$$

Each column reads 432114 and 543233.

```
i-pairing (1\leqslanti<m)
```

- Assign - to each i
- Assign + to every $i+1$
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.

Example

- $i=1$: 4321(1)4543233
- $i=2$: 432114543233
- $i=3$: 43211454323(3)
- $i=4$: 432114543233

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Reading word

- Read tableau column-by-column, left to right
- Within each column:
read extended leg in each cell from top to bottom
read all remaining entries in weakly increasing order

Example

$$
T=\begin{array}{|l|l|}
\hline 4 & 5 \\
34 & 4 \\
\hline 2 & 3 \\
11 & 233 \\
\hline
\end{array}
$$

Each column reads 432114 and 543233.
i-pairing $(1 \leqslant i<m)$

- Assign - to each i
- Assign + to every $i+1$
- Successively pair each + that is adjacent and to the left of a -
- Remove paired signs until nothing can be paired.

Example

- $i=1$: 4321(1)4543233
- $i=2$: 432114543233
- $i=3$: 43211454323(3)
- $i=4$: 43211(4)543233

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Crystal operator f_{i}

If there is no unpaired,$- f_{i}(T)=0$. Otherwise, let cell B contain the rightmost unpaired i. Do one of the following in order:
(M) If $i+1$ is in B^{\uparrow}, remove an i from $A(B)$ and add $i+1$ to $A\left(B^{\uparrow}\right)$.
(S) If i is in B^{\rightarrow}, remove the i from $\mathrm{L}^{+}\left(B^{\rightarrow}\right)$ and add $i+1$ to $\mathrm{L}(B)$.
(N) Else, f_{i} changes the i in B into an $i+1$.

Example

$i=1: 4321(1) 4543233 \quad i=2: 432114543233$

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Crystal operator f_{i}

If there is no unpaired,$- f_{i}(T)=0$. Otherwise, let cell B contain the rightmost unpaired i. Do one of the following in order:
(M) If $i+1$ is in B^{\uparrow}, remove an i from $A(B)$ and add $i+1$ to $A\left(B^{\uparrow}\right)$.
(S) If i is in B^{\rightarrow}, remove the i from $\mathrm{L}^{+}\left(B^{\rightarrow}\right)$ and add $i+1$ to $\mathrm{L}(B)$.
(N) Else, f_{i} changes the i in B into an $i+1$.

Example

$i=1: 4321(1) 4543233 \quad i=2: 432114543233 \quad f_{2}(T)=0$

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Crystal operator f_{i}

If there is no unpaired,$- f_{i}(T)=0$. Otherwise, let cell B contain the rightmost unpaired i. Do one of the following in order:
(M) If $i+1$ is in B^{\uparrow}, remove an i from $A(B)$ and add $i+1$ to $A\left(B^{\uparrow}\right)$.
(S) If i is in B^{\rightarrow}, remove the i from $\mathrm{L}^{+}\left(B^{\rightarrow}\right)$ and add $i+1$ to $\mathrm{L}(B)$.
(N) Else, f_{i} changes the i in B into an $i+1$.

Example

$$
\begin{array}{lll}
i=1: 4321(1) 4543233 & i=2: 432114543233 & f_{2}(T)=0 \\
i=3: 43211454323(3) & i=4: 43211(4) 543233
\end{array}
$$

$T=$| 4 | 5 |
| :--- | :--- |
| 34 | 4 |
| 2 | 3 |
| 11 | 233 |,$\quad f_{1}(T)=$| 4 | 5 |
| :--- | :--- |
| 34 | 4 |
| 2 | 3 |
| 12 | 233 |,

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Crystal operator f_{i}

If there is no unpaired,$- f_{i}(T)=0$. Otherwise, let cell B contain the rightmost unpaired i.
Do one of the following in order:
(M) If $i+1$ is in B^{\uparrow}, remove an i from $A(B)$ and add $i+1$ to $A\left(B^{\uparrow}\right)$.
(S) If i is in B^{\rightarrow}, remove the i from $\mathrm{L}^{+}\left(B^{\rightarrow}\right)$ and add $i+1$ to $\mathrm{L}(B)$.
(N) Else, f_{i} changes the i in B into an $i+1$.

Example

$$
\begin{array}{lll}
i=1: 4321(1) 4543233 & i=2: 432114543233 & f_{2}(T)=0 \\
i=3: 43211454323(3) & i=4: 43211(4) 543233
\end{array}
$$

$T=$| 4 | 5 |
| :--- | :--- |
| 34 | 4 |
| 2 | 3 |
| 11 | 233 |,$\quad f_{1}(T)=$| 4 | 5 |
| :--- | :--- |
| 34 | 4 |
| 2 | 3 |
| 12 | 233 |,$\quad f_{3}(T)=$| 4 | 5 |
| :--- | :--- |
| 34 | 44 |
| 2 | 3 |
| 11 | 23 |,

Crystal structure on hook-valued tableaux (Hawkes, Scrimshaw 2020)

Crystal operator f_{i}

If there is no unpaired,$- f_{i}(T)=0$. Otherwise, let cell B contain the rightmost unpaired i.
Do one of the following in order:
(M) If $i+1$ is in B^{\uparrow}, remove an i from $A(B)$ and add $i+1$ to $A\left(B^{\uparrow}\right)$.
(S) If i is in B^{\rightarrow}, remove the i from $\mathrm{L}^{+}\left(B^{\rightarrow}\right)$ and add $i+1$ to $\mathrm{L}(B)$.
(N) Else, f_{i} changes the i in B into an $i+1$.

Example

$$
\begin{array}{lll}
i=1: 4321(1) 4543233 & i=2: 432114543233 & f_{2}(T)=0 \\
i=3: 43211454323(3) & i=4: 43211(4) 543233
\end{array}
$$

$$
T=\begin{array}{|l|l|}
\hline 4 & 5 \\
34 & 4 \\
\hline 2 & 3 \\
11 & 233 \\
\hline
\end{array},
$$

$f_{1}(T)=$| 4 | 5 |
| :--- | :--- |
| 34 | 4 |
| 2 | 3 |
| 12 | 233 |,

$f_{3}(T)=$| 4 | 5 |
| :--- | :--- |
| 34 | 44 |
| 2 | 3 |
| 11 | 23 |,

$f_{4}(T)=$| 5 | |
| :--- | :--- |
| 4 | |
| 34 | 5 |
| 2 | 3 |
| 12 | 233 |.

Uncrowding maps

Function	Combinatorial objects	Crystal structure	Uncrowding maps
$G_{\lambda}^{(\beta)}$	set-valued tableaux	Monical, Pechenik Scrimshaw 2018	$\sqcup_{\mu} \operatorname{SSYT}(\mu) \times \mathcal{F}(\mu / \lambda)$ Buch 2012
$G_{\lambda}^{(\alpha)}$	multiset-valued tableaux	Hawkes Scrimshaw 2019	$\sqcup_{\mu} \operatorname{SSYT}(\mu) \times \hat{\mathcal{F}}(\mu / \lambda)$ Hawkes, Scrimshaw 2019
$G_{\lambda}^{(\alpha, \beta)}$	hook-valued tableaux	Hawkes Scrimshaw 2019	$?$

Uncrowding maps

Function	Combinatorial objects	Crystal structure	Uncrowding maps
$G_{\lambda}^{(\beta)}$	set-valued tableaux	Monical, Pechenik Scrimshaw 2018	$\sqcup_{\mu} \operatorname{SSYT}(\mu) \times \mathcal{F}(\mu / \lambda)$ Buch 2012
$G_{\lambda}^{(\alpha)}$	multiset-valued tableaux	Hawkes Scrimshaw 2019	$\sqcup_{\mu} \operatorname{SSYT}(\mu) \times \hat{\mathcal{F}}(\mu / \lambda)$ Hawkes, Scrimshaw 2019
$G_{\lambda}^{(\alpha, \beta)}$	hook-valued tableaux	Hawkes Scrimshaw 2019	$?$

Why should we care about uncrowding maps?

- Bijections on generating sets of different functions.
- Yields symmetric function expansions.
- Gives crystal isomorphisms.
- Identify topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Repeat, resulting in a single-valued skew tableau.
- Identify topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Repeat, resulting in a single-valued skew tableau.

Example

4	5	
3	4	
	2	5
	1	2

Uncrowding algorithm for SVT

Uncrowding operator Buch 2002; Bandlow, Morse 2012; Reiner, Tenner, Yong 2018; Chan, Pflueger 2019

- Identify topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Repeat, resulting in a single-valued skew tableau.

Example

Uncrowding algorithm for SVT

Uncrowding operator Buch 2002; Bandlow, Morse 2012; Reiner, Tenner, Yong 2018; Chan, Pflueger 2019

- Identify topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Repeat, resulting in a single-valued skew tableau.

Example

Uncrowding algorithm for SVT

Uncrowding operator Buch 2002; Bandlow, Morse 2012; Reiner, Tenner, Yong 2018; Chan, Pflueger 2019

- Identify topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Repeat, resulting in a single-valued skew tableau.

Example

Uncrowding algorithm for SVT

Uncrowding operator Buch 2002; Bandlow, Morse 2012; Reiner, Tenner, Yong 2018; Chan, Pflueger 2019

- Identify topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Repeat, resulting in a single-valued skew tableau.

Example

T	Y
H FOR	OME
A	
N	U
KYOU	R TI

Table of Contents

(1) Background and definitions

(2) Uncrowding on HVT
(3) Crowding map \mathcal{C}
(4) Applications

Uncrowding bumping \mathcal{V}_{b} on $T \in H V T$ (P., Pappe, Poh, Schilling, 2020)

If a cell contains nonzero arm, call it an armed cell.
(1) Find the rightmost column c with an armed cell. Within column c, find the topmost armed cell (r, c). Denote the rightmost arm entry in cell (r, c) by a, and its largest leg entry by ℓ.
(2) Look at $(c+1)$-st column and find the smallest number that is greater than or equal to a at cell $(\tilde{r}, c+1)$.
(3) Move letter(s) over, maybe involves creating a new cell.

Uncrowding bumping \mathcal{V}_{b} on $T \in$ HVT (P., Pappe, Poh, Schilling, 2020)

If a cell contains nonzero arm, call it an armed cell.
(1) Find the rightmost column c with an armed cell. Within column c, find the topmost armed cell (r, c). Denote the rightmost arm entry in cell (r, c) by a, and its largest leg entry by ℓ.
(2) Look at $(c+1)$-st column and find the smallest number that is greater than or equal to a at cell $(\tilde{r}, c+1)$.
(3) Move letter(s) over, maybe involves creating a new cell.

Example

4 3	$\begin{aligned} & 6 \\ & 5 \end{aligned}$		
2	$\begin{aligned} & 4 \\ & 333 \end{aligned}$	5	
11	$\begin{aligned} & \hline 2 \\ & 12 \end{aligned}$		3

Uncrowding bumping \mathcal{V}_{b} on $T \in \mathrm{HVT}$ (P., Pappe, Poh, Schilling, 2020)

If a cell contains nonzero arm, call it an armed cell.
(1) Find the rightmost column c with an armed cell. Within column c, find the topmost armed cell (r, c). Denote the rightmost arm entry in cell (r, c) by a, and its largest leg entry by ℓ.
(2) Look at $(c+1)$-st column and find the smallest number that is greater than or equal to a at cell $(\tilde{r}, c+1)$.
(3) Move letter(s) over, maybe involves creating a new cell.

Example

$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$		
2	$\begin{aligned} & 4 \\ & 333 \end{aligned}$	5	
	2	3	
11	12	2	3

- Column 2

Uncrowding bumping \mathcal{V}_{b} on $T \in$ HVT (P., Pappe, Poh, Schilling, 2020)

If a cell contains nonzero arm, call it an armed cell.
(1) Find the rightmost column c with an armed cell. Within column c, find the topmost armed cell (r, c). Denote the rightmost arm entry in cell (r, c) by a, and its largest leg entry by ℓ.
(2) Look at $(c+1)$-st column and find the smallest number that is greater than or equal to a at cell $(\tilde{r}, c+1)$.
(3) Move letter(s) over, maybe involves creating a new cell.

Example

$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$		
2	$\begin{aligned} & 4 \\ & 333 \end{aligned}$	5	
	2	3	
11	12	2	3

- Column 2
- Row 2

Uncrowding bumping \mathcal{V}_{b} on $T \in$ HVT (P., Pappe, Poh, Schilling, 2020)

If a cell contains nonzero arm, call it an armed cell.
(1) Find the rightmost column c with an armed cell. Within column c, find the topmost armed cell (r, c). Denote the rightmost arm entry in cell (r, c) by a, and its largest leg entry by ℓ.
(2) Look at $(c+1)$-st column and find the smallest number that is greater than or equal to a at cell $(\tilde{r}, c+1)$.
(3) Move letter(s) over, maybe involves creating a new cell.

Example

$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$		
2	$\begin{aligned} & 4 \\ & 333 \end{aligned}$	5	
	2	3	
11	12	2	3

- Column 2
- Row 2
- $a=3, \ell=4$

Uncrowding bumping \mathcal{V}_{b} on $T \in$ HVT (P., Pappe, Poh, Schilling, 2020)

If a cell contains nonzero arm, call it an armed cell.
(1) Find the rightmost column c with an armed cell. Within column c, find the topmost armed cell (r, c). Denote the rightmost arm entry in cell (r, c) by a, and its largest leg entry by ℓ.
(2) Look at $(c+1)$-st column and find the smallest number that is greater than or equal to a at cell $(\tilde{r}, c+1)$.
(3) Move letter(s) over, maybe involves creating a new cell.

Example

$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$		
2	$\begin{aligned} & 4 \\ & 333 \end{aligned}$	5	
11	$\begin{aligned} & \hline 2 \\ & 12 \end{aligned}$	3	3

- Column 2
- Row 2
- $a=3, \ell=4$
- $\tilde{r}=1$

4	6		
3	5		
	4		
2	33	5	
	2	3	
11	12	23	3

Uncrowding bumping \mathcal{V}_{b} on $T \in$ HVT continued

-	
$--a$	
-	
-	-
-	-
--	

Figure: When $\tilde{r} \neq r$. Left: $(\tilde{r}, c+1)$ is a new cell; Right: $(\tilde{r}, c+1)$ is an existing cell.

$$
\begin{array}{|l|l|l|}
\hline \ell \\
* \\
- \\
--a
\end{array}{\xrightarrow{\mathcal{V}_{b}}} \begin{array}{|l|l|}
\hline- & * \\
-- & a \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|}
\hline \ell & \\
* & - \\
- & - \\
--a & k \\
\hline
\end{array} \xrightarrow{\mathcal{V}_{b}} \begin{array}{|l|l|}
\hline & - \\
- & * \\
-- & a k \\
\hline
\end{array}
$$

Figure: When $\tilde{r}=r$. Left: $(r, c+1)$ is a new cell; Right: $(r, c+1)$ is an existing cell.

Uncrowding map

Definition

Let $T \in \operatorname{HVT}(\lambda)$ with arm excess α. The uncrowding map

$$
\mathcal{U}: \operatorname{HVT}(\lambda) \rightarrow \bigsqcup_{\mu \supseteq \lambda} \operatorname{SVT}(\mu) \times \hat{\mathcal{F}}(\mu / \lambda)
$$

is defined by the following algorithm:
(1) Let $P_{0}=T$ and let Q_{0} be the column-flagged increasing tableau of shape λ / λ.
(2) For $1 \leqslant i \leqslant \alpha$, let $P_{i+1}=\mathcal{V}\left(P_{i}\right)$.

Let c be the index of the starting column
let \tilde{c} be the column index of the cell shape $\left(P_{i+1}\right) /$ shape $\left(P_{i}\right)$
Fill Q_{i+1} with $\tilde{c}-c$ in the same new cell.
Define $\mathcal{U}(T)=(P(T), Q(T)):=\left(P_{\alpha}, Q_{\alpha}\right)$.

An example of uncrowding map

Properties

Theorem (P., Pappe, Poh, Schilling, 2020)
(1) If $f_{i}(T) \neq 0$, then $f_{i}(P(T))=P\left(f_{i}(T)\right)$ and $Q(T)=Q\left(f_{i}(T)\right)$.
(2) If $e_{i}(T) \neq 0$, then $e_{i}(P(T))=P\left(e_{i}(T)\right)$ and $Q(T)=Q\left(e_{i}(T)\right)$.
In other words, the diagram commutes:

Properties

Theorem (P., Pappe, Poh, Schilling, 2020)
(1) If $f_{i}(T) \neq 0$, then $f_{i}(P(T))=P\left(f_{i}(T)\right)$ and $Q(T)=Q\left(f_{i}(T)\right)$.
(2) If $e_{i}(T) \neq 0$, then $e_{i}(P(T))=P\left(e_{i}(T)\right)$ and $Q(T)=Q\left(e_{i}(T)\right)$.
In other words, the diagram commutes:

Properties

Theorem (P., Pappe, Poh, Schilling, 2020)
(1) If $f_{i}(T) \neq 0$, then $f_{i}(P(T))=P\left(f_{i}(T)\right)$ and $Q(T)=Q\left(f_{i}(T)\right)$.
(2) If $e_{i}(T) \neq 0$, then $e_{i}(P(T))=P\left(e_{i}(T)\right)$ and $Q(T)=Q\left(e_{i}(T)\right)$.
In other words, the diagram commutes:

Collorary 1
HVT^{m} is a type A_{m-1} Stembridge crystal.

Properties

Theorem (P., Pappe, Poh, Schilling, 2020)
(1) If $f_{i}(T) \neq 0$, then $f_{i}(P(T))=P\left(f_{i}(T)\right)$ and $Q(T)=Q\left(f_{i}(T)\right)$.
(2) If $e_{i}(T) \neq 0$, then $e_{i}(P(T))=P\left(e_{i}(T)\right)$ and $Q(T)=Q\left(e_{i}(T)\right)$.
In other words, the diagram commutes:

Collorary 1

HVT^{m} is a type A_{m-1} Stembridge crystal.

Collorary 2
$G_{\lambda}^{(\alpha, \beta)}$ is Schur-positive.

Properties

Theorem (P., Pappe, Poh, Schilling, 2020)

(1) If $f_{i}(T) \neq 0$, then $f_{i}(P(T))=P\left(f_{i}(T)\right)$ and $Q(T)=Q\left(f_{i}(T)\right)$.
(2) If $e_{i}(T) \neq 0$, then $e_{i}(P(T))=P\left(e_{i}(T)\right)$ and $Q(T)=Q\left(e_{i}(T)\right)$.
In other words, the diagram commutes:

Collorary 1

HVT^{m} is a type A_{m-1} Stembridge crystal.

Collorary 2

$G_{\lambda}^{(\alpha, \beta)}$ is Schur-positive.

Collorary 3

$\left.\mathcal{U}\right|_{\text {MVT }}$ coincides with the uncrowding map on MVT described in Hawkes, Scrimshaw 2020 using RSK insertion.

Table of Contents

(1) Background and definitions

(2) Uncrowding on HVT

(3) Crowding map \mathcal{C}

Crowding back

Crowding back

What can go wrong?

$$
\mathcal{U}: \operatorname{HVT}(\lambda) \rightarrow \bigsqcup_{\mu \supseteq \lambda} \operatorname{SVT}(\mu) \times \hat{\mathcal{F}}(\mu / \lambda), \quad(S, Q)=\left(\begin{array}{ll}
\boxed{3} & \\
\hline 2 & 3 \\
1 & 2 \\
\hline
\end{array}, \square\right.
$$

Crowding back

What can go wrong?

$$
\mathcal{U}: \operatorname{HVT}(\lambda) \rightarrow \bigsqcup_{\mu \supseteq \lambda} \operatorname{SVT}(\mu) \times \hat{\mathcal{F}}(\mu / \lambda), \quad(S, Q)=\left(\begin{array}{ll|l}
\hline 3 & & \\
\hline 2 & 3 \\
1 & 2 \\
\hline
\end{array}, \square\right.
$$

We say the cell $(1,2)$ in S practices social distancing.

Crowding back

What can go wrong?

$$
\mathcal{U}: \operatorname{HVT}(\lambda) \rightarrow \bigsqcup_{\mu \supseteq \lambda} \operatorname{SVT}(\mu) \times \hat{\mathcal{F}}(\mu / \lambda), \quad(S, Q)=\left(\begin{array}{ll|l}
\hline 3 & & \\
\hline 2 & 3 \\
1 & 2 \\
\hline
\end{array}, \square\right.
$$

We say the cell $(1,2)$ in S practices social distancing.

Solution

- Restrict our domain to a subset of $\sqcup_{\mu \supseteq \lambda} \operatorname{SVT}(\mu) \times \hat{\mathcal{F}}(\mu / \lambda)$.
- weight $\left(T_{j}^{(s)}\right)=$ weight (S)

Going back: one characterization! \mathcal{C}_{b}

	-			
-	$*$			
--	$q m$	$\xrightarrow{\mathcal{C}_{b}}$	b	
:---	:---	:---		
$*$				
-	-			
$--q$	m			

Figure: When $r^{\prime}=r$. Left: (i) $\mathrm{A}_{h}(r, c) \neq \emptyset$. Right: (ii) $\mathrm{A}_{h}(r, c)=\emptyset$.

			- $--b$	
--	\bar{b} $-m$	$\xrightarrow{\text { C }{ }_{\text {b }}}$	--	-

Figure: When $r^{\prime} \neq r$. Left: $\mathrm{A}_{h}(r, c) \neq \emptyset$. Right: $\mathrm{A}_{h}(r, c)=\emptyset$.

An example on crowding map

Table of Contents

(1) Background and definitions

(2) Uncrowding on HVT
(3) Crowding map \mathcal{C}

4 Applications

Tableaux Schur expansion (TSE)

A symmetric function f_{α} is said to have a TSE if there is a set of (semistandard Young) tableaux $\mathbb{T}(\alpha)$ and a weight function $\mathrm{wt}_{\alpha}: \mathbb{T}(\alpha) \rightarrow R$ so that

$$
f_{\alpha}=\sum_{T \in \mathbb{T}(\alpha)} w t_{\alpha}(T) s_{\text {shape }(T)} .
$$

Tableaux Schur expansion (TSE)

A symmetric function f_{α} is said to have a TSE if there is a set of (semistandard Young) tableaux $\mathbb{T}(\alpha)$ and a weight function $\mathrm{wt}_{\alpha}: \mathbb{T}(\alpha) \rightarrow R$ so that

$$
f_{\alpha}=\sum_{T \in \mathbb{T}(\alpha)} w t_{\alpha}(T) s_{\text {shape }(T)} .
$$

Theorem (Bandlow, Morse 2012)

Let f_{α} be a symmetric function with a $T S E f_{\alpha}=\sum_{T \in \mathbb{T}(\alpha)} w t_{\alpha}(T) s_{\text {shape }(T)}$ for some $\mathbb{T}(\alpha)$. Then we have

$$
f_{\alpha}=\sum_{R \in \mathbb{R}(\alpha)} \mathrm{wt}_{\alpha}(R) G_{\text {shape }(R)}(x ;-1)=\sum_{S \in \mathbb{S}(\alpha)} \mathrm{wt}_{\alpha}(S)(-1)^{|S|-\mid \text { shape }(S) \mid} g_{\text {shape }(S)}(x ; 1) .
$$

Proposition (P., Pappe, Poh, Schilling, 2020)

$$
G_{\lambda}^{(\alpha, \beta)}(\boldsymbol{x})=\sum_{T \in \mathbb{T}(\lambda)} w t_{\lambda}(T) s_{\text {shape }(T)}
$$

$$
\begin{aligned}
\mathbb{T}(\lambda) & =\{T \in \operatorname{SSYT}(\nu) \mid \nu \supseteq \lambda, T \text { is of highest weight in the crystal graph }\} \\
\mathrm{wt}_{\lambda}(T) & =\sum_{\mu: \lambda \subseteq \mu \subseteq \operatorname{shape}(T)} \alpha^{|\mu|-|\lambda|} \beta^{|\operatorname{shape}(T)|-|\mu|} \sum_{Q \in \mathcal{F}(\operatorname{shape}(T) / \mu)} \phi_{\lambda}\left(\mathcal{U}_{\mathrm{SVT}}^{-1}(T, Q)\right) \\
\phi_{\lambda}(S) & =\left|\left\{F \in \hat{\mathcal{F}} \mid(S, F) \in \mathrm{K}_{\lambda}\right\}\right| .
\end{aligned}
$$

An example on $G_{(2)}^{(\alpha, \beta)}$

$G_{(2)}^{(\alpha, \beta)}(x)=s_{2}+\beta s_{21}+2 \alpha s_{3}+\cdots$. We have $\mathrm{wt}_{(2)}\left(T_{1}\right)=1, \mathrm{wt}_{(2)}\left(T_{2}\right)=\beta, \mathrm{wt}_{(2)}\left(T_{3}\right)=2 \alpha$.

$$
\begin{array}{lllll}
T_{1}, & T_{2}, & T_{3}, & \ldots
\end{array}
$$

An example on $G_{(2)}^{(\alpha, \beta)}$

$G_{(2)}^{(\alpha, \beta)}(x)=s_{2}+\beta s_{21}+2 \alpha s_{3}+\cdots$. We have wt ${ }_{(2)}\left(T_{1}\right)=1, \mathrm{wt}_{(2)}\left(T_{2}\right)=\beta, \mathrm{wt}_{(2)}\left(T_{3}\right)=2 \alpha$.

$$
\mathbb{T}((2))=\left\{\begin{array}{l|l|}
\hline
\end{array}, \begin{array}{|c|}
\hline 2 \\
\hline 1 \\
\hline 1 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline
\end{array}, \begin{array}{|c|c|c|}
\hline 2 & \\
\hline & 1 & 1 \\
\hline
\end{array}, \ldots\right\}
$$

$$
\begin{gathered}
T_{1}, \quad T_{2}, \quad T_{3}, \ldots \\
\left\{S \in \mathbb{S}((2)) \mid P(\operatorname{word}(S))=T_{1}\right\}=\left\{\begin{array}{|l|l|}
\hline 1 & 1 \\
\{
\end{array}\right\} \\
\left\{S \in \mathbb{S}((2)) \mid P(\operatorname{word}(S))=T_{2}\right\}=\left\{\begin{array}{|l|l|l|}
\hline 2 & 2 \\
\hline 1 & 1 & 1 \\
1
\end{array}\right\} .
\end{gathered}
$$

An example on $G_{(2)}^{(\alpha, \beta)}$

$G_{(2)}^{(\alpha, \beta)}(x)=s_{2}+\beta s_{21}+2 \alpha s_{3}+\cdots$. We have wt ${ }_{(2)}\left(T_{1}\right)=1, \mathrm{wt}_{(2)}\left(T_{2}\right)=\beta, \mathrm{wt}_{(2)}\left(T_{3}\right)=2 \alpha$.

$$
\mathbb{T}((2))=\left\{\begin{array}{l|l|}
\hline
\end{array}, \begin{array}{|c|}
\hline 2 \\
\hline 1 \\
\hline 1 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline
\end{array}, \begin{array}{|c|c|c|}
\hline 2 & \\
\hline & 1 & 1 \\
\hline
\end{array}, \ldots\right\}
$$

$$
\left.\begin{array}{c}
T_{1}, \quad T_{2}, \quad T_{3}, \ldots \\
\left\{S \in \mathbb{S}((2)) \mid P(\operatorname{word}(S))=T_{1}\right\}=\left\{\begin{array}{|l|l}
\hline 1 & 1
\end{array}\right\} \\
\left\{S \in \mathbb{S}((2)) \mid P(\operatorname{word}(S))=T_{2}\right\}=\left\{\begin{array}{|l|l|l}
\hline 2 & 2 \\
\hline 1 & 1
\end{array}\right\} . \\
1
\end{array}\right\} .
$$

An example on $G_{(2)}^{(\alpha, \beta)}$ continued

Applying the expansion formulas, we obtain

$$
\begin{aligned}
G_{(2)}(x ; \alpha, \beta)= & \left(G_{(2)}(x ;-1)+G_{(21)}(x ;-1)+G_{(22)}(x ;-1)+G_{(211)}(x ;-1)+\cdots\right) \\
& +\beta\left(G_{(21)}(x ;-1)+G_{(22)}(x ;-1)+2 G_{(211)}(x ;-1)+\cdots\right)+\cdots
\end{aligned}
$$

End of part II

T	Y
H FOR	OME
A	
N	U
KYOU	$R T I$

