Combinatorial descriptions of some representations of (degenerate) affine and double affine Hecke algebra of type C

Yue Zhao

University of California, Davis

April 26, 2021

Outline

- \mathcal{Y}-semisimple representations and intertwining operators
- Combinatorial descriptions in type A case
- Schur-Weyl type duality
- Invariant spaces
- A basis of invariant spaces
- \mathcal{Y}-actions
- Combinatorial descriptions in type C case

\mathcal{Y}-semisimplicity

Definition (\mathcal{Y}-eigenspaces)

Since $\mathcal{Y}=\mathbb{C}\left\{y_{1}, \cdots, y_{n}\right\}$ is a commutative subalgebra of $H_{n}=H(W, y)$, then we can consider \mathcal{Y}-eigenspaces. Let M be an H_{n} module, for each function $\zeta:\{1,2, \ldots, n\} \rightarrow \mathbb{C}$, define the subspace of M

$$
M_{\zeta}=\left\{v \in M \mid y_{i} v=\zeta(i) v \text { for } i \in[1, n]\right\}
$$

In the quantum case, we have $Y_{i}^{ \pm}$instead of y_{i}.

Definition(\mathcal{Y}-semisimple)

Consider the case we have the decomposition

$$
M=\bigoplus_{\zeta} M_{\zeta},
$$

in this case we call $M \mathcal{Y}$-semisimple.
Each ζ such that $M_{\zeta} \neq 0$ is called a \mathcal{Y}-weight. M_{ζ} is the weight space of weight ζ and $v \in M_{\zeta}$ is a weight vector of weight ζ.

Intertwining operators

Definition

For each $i \in[0, n-1]$, define

$$
\phi_{i}=\left[s_{i}, y_{i}\right],
$$

and for γ_{n}, define

$$
\phi_{n}=\left[\gamma_{n}, y_{n}\right] .
$$

Let $W \cong S_{n} \ltimes(\mathbb{Z} / 2 \mathbb{Z})^{n}$, for each $w \in W$, it has a reduced expression $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{m}}, l(w)=m$. Here $s_{n}=\gamma_{n}$. Define

$$
\phi_{w}=\phi_{i_{1}} \phi_{i_{2}} \ldots \phi_{i_{m}} .
$$

This is well-defined since $\phi_{1}, \ldots, \phi_{n}$ satisfy the same braid relations of type C.

A basic fact about the intertwining operators

$$
\phi_{w} M_{\zeta} \subset M_{w \cdot \zeta},
$$

where $w \cdot \zeta=\zeta \circ w^{-1}$.

Schur-Weyl type duality

Jordan-Ma functor (Quantum case)

$$
\begin{gathered}
\mathcal{F}_{n}^{\sigma, \eta, \tau}:\left\{U_{q}\left(\mathfrak{g l}_{N}\right)-\text { modules }\right\} \longrightarrow\{A H A-\text { representations of type } C\} \\
\mathcal{F}_{n, \psi, \omega, \iota}^{\sigma, \eta, \tau}:\left\{D_{U}-\text { modules }\right\} \longrightarrow\{D A H A-\text { representations of type } C\}
\end{gathered}
$$

Etingof-Freund-Ma functor (Degenerate case)

$$
\begin{gathered}
F_{n, p, \mu}:\left\{G L_{N}-\text { modules }\right\} \longrightarrow\{d A H A-\text { representations of type } C\} \\
F_{n, p, \mu}^{\lambda}:\{\mathcal{D} \text { - modules }\} \longrightarrow\{d D A H A-\text { representations of type } C\}
\end{gathered}
$$

Invariant spaces of Etingof-Freund-Ma functor

Invariant spaces

For a finite dimensional irreducible module V^{ξ} with highest weight $\xi \in P^{+}$, the invariant space

$$
F_{n, p, \mu}\left(V^{\xi}\right)=\operatorname{Hom}_{\mathrm{t}_{0}}\left(1_{\mu \chi}, V^{\xi} \otimes V^{\otimes n}\right),
$$

and

$$
F_{n, p, \mu}^{\lambda}\left(A\left(G L_{N}\right)\right)=\operatorname{Hom}_{\mathrm{t}_{0} \boxtimes \mathrm{t}_{0}}\left(1_{\lambda \chi} \boxtimes 1_{\mu \chi}, A\left(G L_{N}\right) \otimes V^{\otimes n}\right)
$$

where $\mu, \lambda \in \mathbb{C}$ and χ is a character of t .

Classical symmetric pair

Let $N=p+q$, we have a classical symmetric pair $\left(\mathfrak{g l}_{N}, \mathfrak{g l}_{p} \times \mathfrak{g l}_{q}\right)$. Let $\mathfrak{t}=\mathfrak{g l}_{p} \times \mathfrak{g l}_{q}$ and $\mathfrak{t}_{0}=\left\{A \in \mathfrak{g l}_{p} \times \mathfrak{g l}_{q} \mid \operatorname{tr}(A)=0\right\}$.

Character χ

Define a character χ on $t=\mathfrak{g l}_{p} \times \mathfrak{g l}_{q}$ by

$$
\chi\left(\left[\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right]\right)=q \operatorname{tr} X_{1}-p \operatorname{tr} X_{2} .
$$

Invariant spaces of Jordan-Ma functor

Invariant spaces

For a finite dimensional irreducible module V^{ξ} with highest weight $\xi \in P^{+}$, the invariant space

$$
\mathcal{F}_{n}^{\sigma, \eta, \tau}\left(V^{\xi}\right)=\operatorname{Hom}_{B_{\sigma}}\left(1_{\chi_{\tau}^{\eta}}, V^{\xi} \otimes V^{\otimes n}\right),
$$

and

$$
\mathcal{F}_{n, \psi, \omega, \iota}^{\sigma, \eta, \tau}\left(A_{q}\left(G L_{N}\right)\right)=\operatorname{Hom}_{B_{\psi}^{\prime} \boxtimes B_{\sigma}}\left(1_{\lambda_{\iota}^{\omega}} \boxtimes 1_{\chi_{\tau}^{\eta}}, A_{q}\left(G L_{N}\right) \otimes_{2}\left(1 \boxtimes V_{1}\right) \otimes_{2} \cdots \otimes_{2}\left(1 \boxtimes V_{n}\right)\right),
$$

where $\eta, \tau, \sigma \in \mathbb{C}, \chi_{\tau}^{\eta}$ is a character of B_{σ} and λ_{ι}^{ω} is a character of B_{ψ}^{\prime}.

Coideal subalgebras

Here $B_{\sigma} \subset U_{q}\left(\mathfrak{g l}_{N}\right)$ is a left coideal subalgebra defined via l-operators and $B_{\psi}^{\prime} \subset U_{q}\left(\mathfrak{g l}_{N}\right)$ is a right coideal subalgebra.

Quantum symmetric pair

Here $\left(U_{q}\left(\mathfrak{g l}_{N}, B_{\sigma}\right)\right)$ is a quantum symmetric pair. The quasi classical limit of the quantum symmetric pair is the classical symmetric pair.

Tensor product $V^{\xi} \otimes V^{\otimes n}$

We have the decomposition as follows,

$$
V^{\xi} \otimes V^{\otimes n}=\bigoplus_{\left(\nu^{(0)}, \nu^{(1)}, \cdots, \nu^{(n)}\right)} V^{\nu^{(n)}}
$$

the direct sum runs through all the squences $\left(\nu^{(0)}, \nu^{(1)}, \cdots, \nu^{(n)}\right)$ such that $\nu^{(0)}=\xi$, $\nu^{(i)}=\nu^{(i-1)}+\epsilon_{k_{i}}$ for some $k_{i}=1, \cdots, N$ and each $\nu^{(i)} \in P^{+}$for $i=0,1, \cdots, n$. For any $\xi, \nu \in P^{+}$, we denote also by ν / ξ the subset of $\mathbb{Z}^{2}\left\{\left(i, j_{i}\right) \mid i=1, \cdots, N, \xi_{i}+1 \leqslant j_{i} \leqslant \nu_{i}\right\}$. For a sequence $\left(\nu^{(0)}, \nu^{(1)}, \cdots, \nu^{(n)}\right)$, define a map $T_{\left(\nu^{(0)}, \nu^{(1)}, \ldots, \nu^{(n)}\right)}$

$$
\begin{aligned}
\nu^{(n)} / \xi & \rightarrow\{1,2, \cdots, n\} \\
\left(k_{i}, \nu_{k_{i}}^{(i)}\right) & \mapsto i
\end{aligned}
$$

for $i=1, \cdots, n$. Then $T_{\left(\nu^{(0)}, \nu^{(1)}, \cdots, \nu^{(n)}\right)}$ is a standard tableau of shape $\nu^{(n)} / \xi$. So the tensor product $V^{\xi} \otimes V^{\otimes n}$ decomposes to a direct sum of irreducible $U_{q}\left(\mathfrak{g l}_{N}\right)$-modules indexed by sequences $\left(\nu^{(0)}, \nu^{(1)}, \cdots, \nu^{(n)}\right)$ such that $\nu^{(0)}=\xi$ and $T_{\left(\nu^{(0)}, \nu^{(1)}, \cdots, \nu^{(n)}\right)}$ is a standard tableau.

Decomposition of $V^{\xi} \otimes V^{\otimes n}$

By Pieri rule, $V^{\xi} \otimes V^{\otimes n}$ decomposes to a sum of irreducible $G L_{N}$ modules which are indexed by skew tableaux and multiplicity free.

Example: $\square \otimes \square^{\otimes 3}$

$$
\nu^{(0)}=\xi=(2,1,0)
$$

$$
\nu^{(1)}=(3,1,0)
$$

$\nu^{(2)}=(3,1,1)$

$\nu^{(3)}=(3,2,1)$

Nonzero invariant spaces

Degenerate (Okada's Theorem)

For any two rectangular shapes $\left(a^{p}\right)$ and $\left(b^{q}\right)$, where a and b are nonnegative integers and $p \leqslant q$, then

$$
s_{\left(a^{p}\right)} \times s_{\left(b^{q}\right)}=\sum c_{\left(a^{p}\right)\left(b^{q}\right)}^{\nu} s_{\nu}
$$

where $c_{\eta \tau}^{\nu}=1$ when ν satisfies the condition

$$
\begin{align*}
& \nu_{i}+\nu_{p+q-i+1}=a+b, \quad i=1, \cdots, p \tag{1}\\
& \nu_{i}=b, \quad i=p+1, \cdots, q \tag{2}
\end{align*}
$$

and $c_{\eta \tau}^{\nu}=0$ otherwise.

Quantum case

In the case $\sigma-\tau$ is an even number, the invariant space $\operatorname{Hom}_{B_{\sigma}}\left(1_{\chi \frac{\eta}{\tau}}, V^{\nu}\right)$ is either 0 or a one-dimensional vector space. The invariant space is nonzero if and only if $\nu \in P^{+}$and

$$
\begin{align*}
& \nu_{i}=\frac{\eta+\sigma-\tau}{2}, \quad i=p+1, \cdots, N-p \tag{3}\\
& \nu_{i}+\nu_{N-i+1}=\eta, \quad i=1, \cdots, p \tag{4}
\end{align*}
$$

Example

Let $M=V \square$ be a $G L_{3}$-module, $n=3, p=1$ and $\mu=0$.
Then $\left(a^{p}\right)=\left(2^{1}\right)$ and $\left(b^{q}\right)=\left(2^{2}\right)$.
By Okada's theorem, we could compute the shapes ν such that the invariant space is nonzero.

$$
\begin{aligned}
& \operatorname{Hom}_{\mathrm{t}_{0}}\left(1_{\mu \chi}, V^{\xi} \otimes V^{\otimes 3}\right) \\
= & \operatorname{Hom}_{G L_{1} \times G L_{2}}\left(\operatorname{det}^{a} \boxtimes \operatorname{det}^{b}, V^{\xi} \otimes V^{\otimes 3}\right) \\
= & \bigoplus_{\left(\nu^{(0)}, \cdots, \nu^{(3)}\right)} \operatorname{Hom}_{G L_{1} \times G L_{2}}\left(\operatorname{det}^{a} \boxtimes \operatorname{det}^{b}, V^{\nu^{(3)}}\right) .
\end{aligned}
$$

A basis of the invariant space $F(V \boxplus)$

A basis of the invariant space

Degenerate case

The invariant space $\operatorname{Hom}_{\mathrm{t}_{0}}\left(1_{\mu \chi}, V^{\xi} \otimes V^{\otimes n}\right)$ has a basis indexed by the collection of standard tableaux T of shape ν / ξ such that ν satisfies (1)-(2).

Quantum case

The invariant space $\operatorname{Hom}_{B_{\sigma}}\left(1_{\chi_{\tau}^{\eta}}, V^{\xi} \otimes V^{\otimes n}\right)$ has a basis indexed by the collection of standard tableaux T of shape ν / ξ such that ν satisfies (3)-(4).

\mathcal{Y}-actions

Quantum case

Figure: The action of Y_{i}

Degenerate case: generator y_{i}

The generator y_{i} acts by

$$
-\Sigma_{i \mid j}\left(E_{i}^{j}\right)_{0} \otimes\left(E_{j}^{i}\right)_{k}+\frac{p-q-\mu N}{2} \gamma_{k}+\frac{1}{2} \Sigma_{t>k} s_{k t}-\frac{1}{2} \Sigma_{t<k} s_{k t}+\frac{1}{2} \Sigma_{t \neq k} s_{k t} \gamma_{k} \gamma_{t} .
$$

\mathcal{Y}-actions in terms of contents

Let v_{T} be a basis element corresponding to the standard tableau T.

Quantum case

Then the action of Y_{i} on v_{T} is multiplying by the scalar

$$
q^{2 \operatorname{cont}_{T}(i)-\eta+N}
$$

where $\operatorname{cont}_{T}(i)$ is the content of the box filled by i.

Degenerate case

Then the action of y_{i} on v_{T} is multiplying by the scalar

$$
-\operatorname{cont}_{T}(i)+\frac{|\xi|+n}{N}-\frac{N}{2}-\frac{\mu(p-q)}{2},
$$

where $\operatorname{cont}_{T}(i)$ is the content of the box filled by i.

Intertwining operators and \mathcal{Y} weight vectors

Invariant spaces: DAHA and dDAHA

Invariant spaces $\mathcal{F}\left(A_{q}\left(G L_{N}\right)\right)$ and $F\left(A\left(G L_{N}\right)\right)$

$$
\begin{gathered}
\mathcal{F}_{n, \psi, \omega, \iota}^{\sigma, \eta, \tau}\left(A_{q}\left(G L_{N}\right)\right)=\operatorname{Hom}_{B_{\psi}^{\prime} \boxtimes B_{\sigma}}\left(1_{\lambda_{\iota}^{\omega}} \boxtimes 1_{\chi}{\underset{\tau}{\tau}}_{\eta},\left(\bigoplus_{\beta \in P^{+}} V^{\beta^{\vee}} \boxtimes V^{\beta}\right) \otimes_{2}\left(1 \boxtimes V_{1}\right) \otimes_{2} \cdots \otimes_{2}\left(1 \boxtimes V_{n}\right)\right) \\
F_{n, p, \mu}^{\lambda}\left(A\left(G L_{N}\right)\right)=\operatorname{Hom}_{\mathrm{t}_{0} \boxtimes \mathrm{t}_{0}}\left(1_{\lambda \chi} \boxtimes 1_{\mu \chi},\left(\bigoplus_{\beta \in P^{+}} V^{\beta^{\vee}} \boxtimes V^{\beta}\right) \otimes_{2}\left(1 \boxtimes V_{1}\right) \otimes_{2} \cdots \otimes_{2}\left(1 \boxtimes V_{n}\right)\right)
\end{gathered}
$$

First, compute $\beta^{\vee} \in P^{+}$such that

$$
\operatorname{Hom}_{\mathrm{t}_{0}}\left(1_{\lambda \chi}, V^{\beta^{\vee}}\right) \neq 0
$$

For each $\beta^{\vee} \in P^{+}$such that $\operatorname{Hom}_{\mathrm{t}_{0}}\left(1_{\lambda \chi}, V^{\beta^{\vee}}\right) \neq 0$, we compute

$$
\operatorname{Hom}_{\mathrm{t}_{0}}\left(1_{\lambda \chi}, V^{\beta} \otimes V^{\otimes n}\right)
$$

$F\left(A\left(G L_{N}\right)\right)$

The invariant space $F_{n, p, \mu}^{\lambda}\left(A\left(G L_{N}\right)\right)$ has a basis indexed by the collection of sequences $\left(\nu^{(0)}, \nu^{(1)}, \cdots, \nu^{(n)}\right)$ such that $\nu^{(0)}$ satisfying

$$
\begin{align*}
& \nu_{i}^{(0)}=-t, i=p+1, \cdots, q, \tag{5}\\
& \nu_{i}^{(0)}+\nu_{N-i+1}^{(0)}=-s-t, i=1, \cdots, p . \tag{6}
\end{align*}
$$

and $\nu^{(n)}$ satisfying

$$
\begin{align*}
& \nu_{i}^{(n)}=b, i=p+1, \cdots, q \tag{7}\\
& \nu_{i}^{(n)}+\nu_{N-i+1}^{(n)}=a+b, i=1, \cdots, p \tag{8}
\end{align*}
$$

Equivalently, a basis indexed by the collection of standard tableaux T of shape ν / β such that ν satisfying (7)-(8) and β satifying (5)-(6).

Consider the image of the coordinate ring of $G L_{4}$, with $n=4, p=1, \mu=-1$ and $\lambda=1$ under the Etingof-Freund-Ma functor. The following figure gives some basis elements of the invariant space.

There is an isomorphism between H and \hat{H}

$$
\begin{aligned}
\sigma: H & \rightarrow \hat{H} \\
s_{i} & \mapsto \hat{s}_{n-i}, i=1, \cdots, n-1 \\
s_{0} & \mapsto \hat{s}_{n} \\
s_{n} & \mapsto \hat{s}_{0} \\
y_{i} & \mapsto \hat{y}_{n-i+1}, i=1, \cdots, n
\end{aligned}
$$

Figure: A standard tableau T and the corresponding standard tableau \hat{T}

Applying ϕ_{0}, then we get

Applying ϕ_{4}, then we get

Applying $\phi_{3} \phi_{2} \phi_{1} \phi_{2} \phi_{3}$, then we get

Applying ϕ_{0}, then we get

Applying ϕ_{4}, then we get

